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CHALLENGE

The preeminence of artificial intelligence (AI) is
making radical changes in the commercial and con-
sumer computing spaces, and an impetus is needed
to transform scientific computing work cycles into
a form compatible with the advances that have
been made and will be made with AI. The post-
exascale era will create a multitude of software
development challenges and high-level tools will
be necessary to get the widest possible range of
workloads running quickly. Other projects have
begun using AI (via deep learning (DL)) to ad-
dress scientific problems. The ECP Cancer Deep
Learning Environment (CANDLE), for example,
has produced a range of benchmarks or mini-apps
that exemplify the application of DL to three pilot
areas, including drug response, protein folding, and
text synthesis for clinical reports. The high-energy
physics community has started using DL systems
to analyze the immense data streams produced at
large colliders like CERN, and experiment-in-the-
loop workloads are starting to become a reality.

Exciting new scientific applications that are
rapidly developed to attack new, critical, and dy-
namic application spaces are predominantly large
composite applications (or workflows) that integrate
a great deal of software together. New computa-
tional paradigms, such as the prevalence of machine
learning (ML) techniques, uncertainty quantifica-
tion, and design optimization add to the importance
of programming at this level. Applications thus
face challenges when integrating the significantly
different paradigms of high-performance computing
(HPC), big data analysis, and the ML toolboxes
emerging today.

Rapid progress in disciplines that benefit rely on
HPC is stymied by a bottleneck not addressed by
the Exascale Computing Project or other scientific

computing programs. The effort and length of time
needed to interact with HPC machines via exotic
programming techniques reserved for highly skilled
developers is a bottleneck that can be greatly alle-
viated in most cases by allowing users to interact
with the machine via reusable patterns captured in
AI-based services designed for various use classes.
These include: humans, both expert and non-expert,
which interact with the machine via higher-level
queries; experiments, such as light source science
cases in which image classification can be readily
utilized to modify the running experiment; sensors,
such as telescopes or weather data sources, that pro-
vide data to be assimilated into running models; and
other devices, such as experimental autonomous
vehicles or other agents.

OPPORTUNITY

This fundamental re-architecture – both techno-
logical and conceptual – of the computing complex
for AI raises multiple critical research and design
questions. Novel query interfaces will have to be
developed that allow scientific questions to be for-
mulated for the system. These will be accessible to
the traditional programmer, but will be developed
with an eye toward the developing user interfaces
in voice, vision, and other areas rapidly developing
in consumer electronics. These queries will have to
be mapped to emerging DL and ML technologies
in meaningful and efficient (i.e., proper data rep-
resentation) ways. Uncertainty quantification will
be a key component; it will be used to determine
when a query cannot be answered satisfactorily
and must be converted to a simulation run (or
other data acquisition action). Automatic workflow
control and deployment will be used to manage
these simulations in support of the user query.
These subsystems will manage the execution of the
simulations, feed results to the storage hierarchy,



and provide additional training data back up to the
DL interface, which will ultimately produce the
response. The patterns that build up this computing
model will be highly reusable.

These include patterns that address sampling,
multiple-fidelity experiments, data integration and
assimilation, convergence, anomaly detection, and
other such high-level coordination concepts. Rel-
evant techniques for sampling include automating
management of parameterized task queues, asyn-
chronous input and output of algorithm parameters,
handling of partial sample results with handling
of stragglers or missing results. Techniques for
data integration include connecting matching tasks
for assimilation, asynchronous/partial task-based
reductions, and access to efficient I/O for assimila-
tion with external data. Techniques for convergence
include abstractions for task cancellation, termi-
nation, or modification if convergence is detected
and task prioritization (e.g., for samples that are
predicted to be closer to an optimum). Techniques
for anomaly detection include retry strategies, man-
agement of conflicting results, and coupling of
integrated testing modules.

Existing approaches to implementing outer
loops algorithms are typically either monolithic
codebases or build on existing workflow lan-
guage/runtime solutions. Neither approach, how-
ever, is capable of achieving what is proposed here.
Directed acyclic graph (DAG), block-synchronous
parallel (BSP), and dataflow abstractions cannot
be used to optimally implement these patterns. An
important research direction will be to research the
primitives needed to support these patterns, build
them upon a generic messaging abstraction, and
present them as a system of coordination patterns
for AI-driven studies.

The ECP Cancer Deep Learning Environment
(CANDLE) prototyped aspects of this approach in
its reusable “Supervisor” workflow framework [1].
While this approach was originally deployed for
hyperparameter sweep and optimization workflows,
it more recently demonstrated reusability as ap-
plied to other workflow studies in data analysis [2]
and decision boundary analysis [3]. What we are
proposing here, however, is a more fundamental
re-evaluation of how progress happens in an AI-
based system and how to produce the underlying
components that can make rapid AI-based studies
possible and scalable.

TIMELINESS

Our approach – re-architecting computational
experiments around reusable patterns in an AI-
based system – has the capability to revolutionize
an extremely broad range of applications, and is
particularly appropriate for a range of DOE-relevant
applications. This problem is not well-studied in
other computer systems research. We propose that
this re-architecture may be broken down into a
reasonable set of programming systems research
milestones and technology developments with re-
gards to advanced workflows, data management,
and ML.

A recent motivator for this model of development
is the study of COVID-19 transmission through
a large city population via multi-objective opti-
mization [4], a case in which ML dominated the
computation time and workflow complexity of the
study. This project demonstrated adaptability in
response to changing scientific questions in the
early days of the pandemic, and showed that AI-
driven workflows can be rapidly re-formulated and
scaled to address dynamic problems.

This level of programming will become critically
important as complex model exploration studies
and AI-infused workflows are deployed on exascale
systems. In the absence of a comparable systems
and methodologies, researchers will have difficulty
developing and deploying such complex applica-
tions.
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