
JETS: Language and System Support for

Many-Parallel-Task Computing

Justin M Wozniak and Michael Wilde

Argonne National Laboratory

Presented at:

P2S2
Taipei – September 13, 2011

Outline

 Scientific applications

– Batches, ensembles, parameter studies,

– Scientific scripting tools to construct studies

– Use case: Replica Exchange Method (REM) in NAMD

 Performance challenges

 Many Parallel-Task Computing - JETS

 Integration with Swift

 Ongoing work: ExM- Many-task computing at the exascale

 Summary

09/13/2011

JETS

2

NAMD - Replica Exchange Method

 Original JETS use case

 Sizeable batch of short parallel jobs with data exchange

09/13/2011
3

JETS

Application parameters (approx.):

• 64 concurrent jobs
x 256 cores per job =
16,384 cores

• 10-100 time steps per job =
10-60 seconds wall time

• Requires 6.4 MPI executions/sec. →
1,638 processes/sec. over
a 12-hour period =
70 million process starts

Parameter studies

 Treat each application invocation as a function evaluation in a higher-level
method

 Run the same application with varying input parameters

– Parameter sweep: cover a known range of inputs to obtain outputs and produce
statistical information or visualization

– Parameter search/optimization: find inputs that produce interesting/extreme
outputs

– Application script: evaluate arbitrary user script

 REM is a form of parameter sweep with some relatively simple data
exchange- easily expressed in a scripting language

09/13/2011
4

JETS

Scientific scripting - SwiftScript

 Support file/task model directly in
the language

app (file output) sim(file input) {

namd2 @input @output

}

 Provide natural concurrency
through automatic data flow
analysis and task scheduling

file o11 = sim(input1);

file o12 = sim(input2);

file m = exchange(o11, o12);

file i21 = create(o11, m);

file o21 = sim(i21);

...

09/13/2011

JETS

5

 Separate application script from
site configuration details

 Support scientific data sets in the
language through language
constructs such as structs, arrays,
mappers, etc.

script sites apps

Swift Execution…

sim

sim

e
x
c
h
a
n
g
e

input1
o11

m

input2 o12

sim o21

sim
i22

create

create

i21

o22

Task management

 Tasks may be generated by a simple list or by a running program or
workflow

 Workflow execution produces “job specifications”- user tasks to be
executed on the available infrastructure

 We are currently investigating the following infrastructures:

 Tradeoffs include performance, portability, and usability

09/13/2011

JETS

6

Coasters Falkon JETS

Task generation Task distribution Task execution

Performance challenges for large batches

 For small application run times, the cost of application start-up, small I/O,
library searches, etc. is expensive

 Existing HPC schedulers do not support this mode of operation

– On the Blue Gene/P, job start takes 2-4 minutes

– On the Cray, aprun job start takes a full second or so

– Neither of these systems allow the user to make a fine-grained selection of cores
from the allocation for small multicore/multinode jobs

 Solution pursued by JETS:

– Allocate worker agents en masse

– Use a specialized user scheduler to rapidly submit user work to agents

– Support dynamic construction of multinode MPI applications

09/13/2011

JETS

7

JETS: Features

 Portable worker agents that run on compute nodes

– Provides scripts to launch agents on common systems

– Features provide convenient access to local storage such as BG/P ZeptoOS RAM
filesystem. Storing application binary, libraries, etc. here results in significant application
start time improvements

 Central user scheduler to manage workers: (Stand-alone JETS or Coasters
discussed on following slides)

 MPICH /Hydra modification to allow “launcher=manual”: tasks launched by
the user (instead of SSH or other method)

 User scheduler plug-in to manage a local call to mpiexec

– Processes output from mpiexec over local IPC, launches resultant single tasks on
workers

– Single tasks are able to find the mpiexec process and each other to start the user
job (via Hydra proxy functionality)

– Can efficiently manage many running mpiexec processes

09/13/2011

JETS

8

Execution infrastructure - Coasters

 Coasters: a high task rate execution provider
(Previously developed for the Swift system)

– Automatically deploys worker agents to resources with respect to user task
queues and available resources

09/13/2011
9

JETS

– Implements the Java CoG provider
interfaces for compatibility with
Swift and other software

– Currently runs on clusters, grids,
and HPC systems

– Can move data along with task
submission

– Contains a “block” abstraction to
manage allocations containing large
numbers of CPUs

– Originally only supported
sequential tasks

Execution infrastructure - JETS

 Stand-alone JETS: a high task rate parallel-task launcher

– User deploys worker agents via customizable, provided submit scripts

09/13/2011
10

JETS

– Currently runs on clusters, grids,
and HPC systems

– Great over SSH

– Runs on the BG/P through
ZeptoOS sockets- great for
debugging, performance
studies, ensembles

– Faster than Coasters but provides
fewer features

– Input must be a flat list of
command lines

– Limited data access features

NAMD/JETS - Parameters

 NAMD REM-like case:
Tasks average just over 100 seconds

09/13/2011

JETS

11

 ZeptoOS sockets on the BG/P
90% efficiency for large messages
50% efficiency for small messages

• Case provided by Wei Jiang

JETS - Task rates and utilization

 Calibration: Sequential
performance on synthetic jobs:

09/13/2011

JETS

12

 Utilization for REM-like case:
not quite 90%

NAMD/JETS load levels

 Allocation size: 512 nodes

09/13/2011

JETS

13

 Allocation size: 1024 nodes

 Load dips occur during
exchange & restart

JETS - Misc. results

 Effective for short MPI jobs on
clusters

 Single-second duration jobs on
Breadboard cluster

09/13/2011

JETS

14

 JETS can survive the loss of worker
agents (BG/P)

Future work:

ExM: Extreme-scale many-task computing

15
09/13/2011

JETS

 Project goal- investigate many-task computing on exascale systems

Possible benefits:

– Ease of development – fast route to exaflop application

– Investigate alternative programming models

– Highly usable programming model: natural concurrency, fault-tolerance

– Support scientific use cases: batches, scripts, experiment suites, etc.

 Build on and integrate previous successes

– ADLB: Task distributor

– MosaStore: Filesystem cache

– SwiftScript language: Natural concurrency, data specification, etc.

Task generation and scalability

16
09/13/2011

JETS

 In SwiftScript, all data items are futures

 Progress is enabled when data items are closed, enabling dependent
statements to execute

 Not all variables, statements are known at program start

 SwiftScript allows for complex data definitions, conditionals, loops, etc.

 Current Swift implementation constrains the data dependency logic to a
single node (as do other systems like CIEL) - thus task generation rates are
limited

 ExM proposes a fully distributed, scalable task generator and dependency
graph – built to express Swift semantics and more

Performance target

17
09/13/2011

JETS

 Need to utilize O(109) concurrency

 For batch of 1000 tasks per core

– 10 seconds per task

– 1 hour, 46 minute batch

 Tasks : O(1012)

 Tasks/s: O(108)

 Divide cores into workers and control cores

– Allocate 0.01% as control cores, O(105)

– Each control core must produce O(103) = 1000 tasks/second

Performance requirements for distributing the work of Swift-like task
generation for an ADLB-like task distributor on an example exascale
system:

Recap and further reading…

 Case studies in storage access by loosely coupled petascale applications
Petascale Data Storage Workshop at SC’09

 Turbine: A distributed future store for extreme-scale scripted applications
Submitted to PPoPP: A preprint is available

09/13/2011

JETS

18

Task generation Task distribution Task execution

Swift, ExM, Turbine Coasters, JETS Collective Data
Management

Thanks

 Thanks to the organizers

 Swift team: Ketan Maheshwari, Mihael Hategan, Mike Wilde

 ExM team: Ian Foster, Dan Katz, Rusty Lusk, Matei Ripeanu,
Emalayan Vairavanathan, Zhao Zhang

 Thanks to Wei Jiang (ANL) for providing the NAMD use case

 Grants:
This research is supported by the Office of Advanced Scientific Computing Research, Office of
Science, U.S. Dept. of Energy under Contracts DE-AC02-06CH11357. Work is also supported by DOE
with agreement number DE-FC02-06ER25777.

09/13/2011
19

JETS

Questions

09/13/2011
20

JETS

