
JETS: Language and System Support for

Many-Parallel-Task Computing

Justin M Wozniak and Michael Wilde

Argonne National Laboratory

Presented at:

P2S2
Taipei – September 13, 2011

Outline

 Scientific applications

– Batches, ensembles, parameter studies,

– Scientific scripting tools to construct studies

– Use case: Replica Exchange Method (REM) in NAMD

 Performance challenges

 Many Parallel-Task Computing - JETS

 Integration with Swift

 Ongoing work: ExM- Many-task computing at the exascale

 Summary

09/13/2011

JETS

2

NAMD - Replica Exchange Method

 Original JETS use case

 Sizeable batch of short parallel jobs with data exchange

09/13/2011
3

JETS

Application parameters (approx.):

• 64 concurrent jobs
x 256 cores per job =
16,384 cores

• 10-100 time steps per job =
10-60 seconds wall time

• Requires 6.4 MPI executions/sec. →
1,638 processes/sec. over
a 12-hour period =
70 million process starts

Parameter studies

 Treat each application invocation as a function evaluation in a higher-level
method

 Run the same application with varying input parameters

– Parameter sweep: cover a known range of inputs to obtain outputs and produce
statistical information or visualization

– Parameter search/optimization: find inputs that produce interesting/extreme
outputs

– Application script: evaluate arbitrary user script

 REM is a form of parameter sweep with some relatively simple data
exchange- easily expressed in a scripting language

09/13/2011
4

JETS

Scientific scripting - SwiftScript

 Support file/task model directly in
the language

app (file output) sim(file input) {

namd2 @input @output

}

 Provide natural concurrency
through automatic data flow
analysis and task scheduling

file o11 = sim(input1);

file o12 = sim(input2);

file m = exchange(o11, o12);

file i21 = create(o11, m);

file o21 = sim(i21);

...

09/13/2011

JETS

5

 Separate application script from
site configuration details

 Support scientific data sets in the
language through language
constructs such as structs, arrays,
mappers, etc.

script sites apps

Swift Execution…

sim

sim

e
x
c
h
a
n
g
e

input1
o11

m

input2 o12

sim o21

sim
i22

create

create

i21

o22

Task management

 Tasks may be generated by a simple list or by a running program or
workflow

 Workflow execution produces “job specifications”- user tasks to be
executed on the available infrastructure

 We are currently investigating the following infrastructures:

 Tradeoffs include performance, portability, and usability

09/13/2011

JETS

6

Coasters Falkon JETS

Task generation Task distribution Task execution

Performance challenges for large batches

 For small application run times, the cost of application start-up, small I/O,
library searches, etc. is expensive

 Existing HPC schedulers do not support this mode of operation

– On the Blue Gene/P, job start takes 2-4 minutes

– On the Cray, aprun job start takes a full second or so

– Neither of these systems allow the user to make a fine-grained selection of cores
from the allocation for small multicore/multinode jobs

 Solution pursued by JETS:

– Allocate worker agents en masse

– Use a specialized user scheduler to rapidly submit user work to agents

– Support dynamic construction of multinode MPI applications

09/13/2011

JETS

7

JETS: Features

 Portable worker agents that run on compute nodes

– Provides scripts to launch agents on common systems

– Features provide convenient access to local storage such as BG/P ZeptoOS RAM
filesystem. Storing application binary, libraries, etc. here results in significant application
start time improvements

 Central user scheduler to manage workers: (Stand-alone JETS or Coasters
discussed on following slides)

 MPICH /Hydra modification to allow “launcher=manual”: tasks launched by
the user (instead of SSH or other method)

 User scheduler plug-in to manage a local call to mpiexec

– Processes output from mpiexec over local IPC, launches resultant single tasks on
workers

– Single tasks are able to find the mpiexec process and each other to start the user
job (via Hydra proxy functionality)

– Can efficiently manage many running mpiexec processes

09/13/2011

JETS

8

Execution infrastructure - Coasters

 Coasters: a high task rate execution provider
(Previously developed for the Swift system)

– Automatically deploys worker agents to resources with respect to user task
queues and available resources

09/13/2011
9

JETS

– Implements the Java CoG provider
interfaces for compatibility with
Swift and other software

– Currently runs on clusters, grids,
and HPC systems

– Can move data along with task
submission

– Contains a “block” abstraction to
manage allocations containing large
numbers of CPUs

– Originally only supported
sequential tasks

Execution infrastructure - JETS

 Stand-alone JETS: a high task rate parallel-task launcher

– User deploys worker agents via customizable, provided submit scripts

09/13/2011
10

JETS

– Currently runs on clusters, grids,
and HPC systems

– Great over SSH

– Runs on the BG/P through
ZeptoOS sockets- great for
debugging, performance
studies, ensembles

– Faster than Coasters but provides
fewer features

– Input must be a flat list of
command lines

– Limited data access features

NAMD/JETS - Parameters

 NAMD REM-like case:
Tasks average just over 100 seconds

09/13/2011

JETS

11

 ZeptoOS sockets on the BG/P
90% efficiency for large messages
50% efficiency for small messages

• Case provided by Wei Jiang

JETS - Task rates and utilization

 Calibration: Sequential
performance on synthetic jobs:

09/13/2011

JETS

12

 Utilization for REM-like case:
not quite 90%

NAMD/JETS load levels

 Allocation size: 512 nodes

09/13/2011

JETS

13

 Allocation size: 1024 nodes

 Load dips occur during
exchange & restart

JETS - Misc. results

 Effective for short MPI jobs on
clusters

 Single-second duration jobs on
Breadboard cluster

09/13/2011

JETS

14

 JETS can survive the loss of worker
agents (BG/P)

Future work:

ExM: Extreme-scale many-task computing

15
09/13/2011

JETS

 Project goal- investigate many-task computing on exascale systems

Possible benefits:

– Ease of development – fast route to exaflop application

– Investigate alternative programming models

– Highly usable programming model: natural concurrency, fault-tolerance

– Support scientific use cases: batches, scripts, experiment suites, etc.

 Build on and integrate previous successes

– ADLB: Task distributor

– MosaStore: Filesystem cache

– SwiftScript language: Natural concurrency, data specification, etc.

Task generation and scalability

16
09/13/2011

JETS

 In SwiftScript, all data items are futures

 Progress is enabled when data items are closed, enabling dependent
statements to execute

 Not all variables, statements are known at program start

 SwiftScript allows for complex data definitions, conditionals, loops, etc.

 Current Swift implementation constrains the data dependency logic to a
single node (as do other systems like CIEL) - thus task generation rates are
limited

 ExM proposes a fully distributed, scalable task generator and dependency
graph – built to express Swift semantics and more

Performance target

17
09/13/2011

JETS

 Need to utilize O(109) concurrency

 For batch of 1000 tasks per core

– 10 seconds per task

– 1 hour, 46 minute batch

 Tasks : O(1012)

 Tasks/s: O(108)

 Divide cores into workers and control cores

– Allocate 0.01% as control cores, O(105)

– Each control core must produce O(103) = 1000 tasks/second

Performance requirements for distributing the work of Swift-like task
generation for an ADLB-like task distributor on an example exascale
system:

Recap and further reading…

 Case studies in storage access by loosely coupled petascale applications
Petascale Data Storage Workshop at SC’09

 Turbine: A distributed future store for extreme-scale scripted applications
Submitted to PPoPP: A preprint is available

09/13/2011

JETS

18

Task generation Task distribution Task execution

Swift, ExM, Turbine Coasters, JETS Collective Data
Management

Thanks

 Thanks to the organizers

 Swift team: Ketan Maheshwari, Mihael Hategan, Mike Wilde

 ExM team: Ian Foster, Dan Katz, Rusty Lusk, Matei Ripeanu,
Emalayan Vairavanathan, Zhao Zhang

 Thanks to Wei Jiang (ANL) for providing the NAMD use case

 Grants:
This research is supported by the Office of Advanced Scientific Computing Research, Office of
Science, U.S. Dept. of Energy under Contracts DE-AC02-06CH11357. Work is also supported by DOE
with agreement number DE-FC02-06ER25777.

09/13/2011
19

JETS

Questions

09/13/2011
20

JETS

