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Abstract—Growing evidence in the scientific computing com-
munity indicates that parallel file systems are not sufficient for all
HPC storage workloads. This realization has motivated extensive
research in new storage system designs. The question of which
design we should turn to implies that there could be a single
answer satisfying a wide range of diverse applications. We argue
that such a generic solution does not exist. Instead, custom data
services should be designed and tailored to the needs of specific
applications on specific hardware. Furthermore, custom data
services should be designed in close collaboration with users. In
this paper, we present a methodology for the rapid development
of such data services. This methodology promotes the design of
reusable building blocks that can be composed together efficiently
through a runtime based on high-performance threading, tasking,
and remote procedure calls. We illustrate the success of our
methodology by showcasing three examples of data services
designed from the same building blocks, yet targeting entirely
different applications.

Index Terms—HPC, Storage, Data, Services

I. INTRODUCTION

Most scientific computing endeavors require more than just
a single compute job or application to produce a meaningful
result; they are instead manifested as campaigns that span
instruments, computing facilities, and time. These scientific
campaigns rely on a diverse array of data models and access
methods, but the state of the practice for data management in
this environment relies on an aging concept of files stored
in parallel file systems. Such a data management method
will become unsustainable as data models, applications, and
resources become larger and more heterogeneous.

From a technology perspective, parallel file systems cannot
absorb the growing amount of data generated by computation,
and I/O becomes the bottleneck of parallel applications. This
is evidenced by the increasing adoption of in situ analysis
methods as alternatives to storing all the raw data. Parallel
file systems are also limited by the interface they have to

provide for genericity reasons and by the standards they need
to follow [1].

From an application perspective, they require the use of
several layers of library [2]–[4] and middleware [5] to bridge
the semantic gap that exists between the in-memory data and
the file representation [6].

These challenges, in conjunction with emerging NVRAM,
solid state, and in-system storage topology, present an oppor-
tunity to reconsider our approach to data management in HPC.
Replacing the ubiquitous parallel file system model is a daunt-
ing task, however. Any truly generic solution will inevitably be
suboptimal for some applications and system platforms, while
continuous feature expansion leads to untenable complexity
and maintainability challenges.

We propose an alternative strategy: agile creation of new
data services tailored to the needs of individual applications
or problem domains.

This concept is obviously advantageous for applications
that are not well served by generic storage solutions, but it
presents a number of practical problems. If new data services
are created from the ground up, they will lack the code
maturity necessary for portability, maintainability, and subtle
platform optimizations. This calls for a new methodology to
enable rapid development of HPC data services that does not
compromise practical deployment capability.

Over the past three years, our group of researchers from
Argonne National Laboratory, Los Alamos National Labora-
tory, Carnegie Mellon University, and the HDF Group, gath-
ered within the Mochi project, have worked on defining and
implementing such a methodology, which this paper presents.

This methodology promotes the design of reusable building
blocks that can be composed together efficiently through a
runtime based on high-performance threading, tasking, and
remote procedure calls. It enables the development of very
different application-tailored data services with maximal code
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reusability across services and minimal “glue.” This glue code
consists of (1) the client-side interface is a more productive
alternative to generic, “one-size-fits-all” data model API (that
is, applications interface directly with the service rather than
going through multiple software layers) and (2) the compo-
sition code (or daemon), which defines how components are
deployed, configured, and interact with one another.

We illustrate the success of our methodology by showcasing
three examples of data services designed from the same
building blocks, yet targeting entirely different applications.
FlameStore provides a distributed cache for Python-based,
deep learning workflows; HEPnOS is a distributed, hierar-
chical event-store for high energy physics codes written in
modern C++; and SDSDKV is a distributed key/value store for
parallel trajectory splicing in molecular dynamics applications.

Note that this paper does not aim to present performance
evaluation of these system, which will be left for future papers
presenting them individually and extensively. Rather, our paper
focuses on the methodology and its effectiveness in terms
of (1) development speed and (2) code reuse. Our previous
work [7] provides performance evaluation of a simple compo-
nent that is indicative of the capabilities of these services.

The rest of this paper is organized as follows. Section II
presents our methodology for efficiently building HPC data
services. We present an implementation of this methodology
in Section III. Section IV illustrates this methodology with
three examples of actual data services that we developed.
Section V presents related work and Section VI summarizes
our conclusions and briefly discusses future work.

II. METHODOLOGY

In this section we present our methodology for efficient
development of HPC data services that are tailored to specific
applications and problem domains. This methodology is based
on composing a set of reusable building blocks in such a
way that the resulting service satisfies user requirements.
These building blocks cover features needed by most HPC
data services (such as storing raw data on a local device or
managing a key/value database). They are designed to be easily
composable so that the code required to build a service fits
in a few lines of code. Beyond this composition code, the
only programming process required is building the client-side
interface to the data service, which in this approach is tailored
to the application, rather than mandating the use of a single
API.

Our methodology is summarized in Table I. This section
explains it step by step.

A. User requirements

The first step consists of gathering the requirements from
users and applications that will access the services. These
requirements come in the form of (1) the data model that
is exposed by the application; (2) the applications’ access
patterns; and (3) guarantees that the service should meet,
including consistency guarantees for the identified access
patterns.

1) Data model: The data model is the data representation
that the application works with. For example, a machine
learning application may work with NumPy arrays. Scientific
simulations and visualization applications usually work with
meshes and fields. Scientific instruments such as particle
accelerators generate events. Rather than flattening these data
structures into files, the data service should interface directly
to the application’s data model. It should offer access, query,
or indexing functionality that is relevant to the data model. It
could even support receiving code segments from users to be
executed on the stored data, avoiding costly data transfers. The
data model also includes the namespace that the data service
should expose, ranging from attributing objects a unique id, to
organizing them in a hierarchy of named directories, or within
a graph. It also includes how the data will be queried from
the storage service.

2) Access pattern: Different applications exhibit different
access patterns, ranging from randomly accessing many small
objects to collectively accessing large ones. They may in-
tensively access metadata or access them rarely. They may
mostly read or mostly write. Knowing this access pattern, or
at least the most frequent ones, ahead of service design is
critical. It helps decide whether the service will need to rely
on distributed metadata, object sharding, or other such data
and metadata organization.

3) Guarantees: User requirements also include guarantees
that the data service should satisfy. These guarantees are usu-
ally tied to the access pattern and the data model. They include
at least the consistency model. For example, the application’s
access pattern may be write-once-read-many, indicating that
no locking is needed.

B. Service requirements

Having established the user requirements, the second step
in this methodology is to turn them into service requirements.
These requirements describe how data will be concretely
managed by the data service. These include the data organi-
zation, the metadata organization, and the service’s interface.
Note that there is no one-to-one matching between the users
requirements and the service requirements. All the users
requirements should be taken into account when defining the
service requirements.

1) Data organization: Defining the data organization im-
plies answering a number of questions. These questions in-
clude the following.

• How should objects be distributed? This distribution
can be based on many factors, such as the object’s meta-
data (e.g., using a hash of the object’s name); its content
(e.g., whether the object exhibits a certain property); the
localization of its writer or its potential readers (e.g., to
improve data locality); or even the availability (storage
space or bandwidth) of particular storage servers at the
time the object is written.

• Should objects be sharded? Large objects may be split
into chunks and distributed across multiple storage tar-
gets, or kept entirely in one storage target. This decision
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TABLE I: Our methodology matches user requirements (left) with generic, composable building blocks (right). Its goal is to
maximize code reusability by enabling composition with minimal glue code, which consists of some small composition code
and custom interfacing code tailored to the application.

User requirements Service requirements Building blocks (Mochi implementation)
• Data model

– Arrays
– Structured objects
– Distributed structures
– ...

• Access pattern
– Large vs. small accesses
– Number of accesses
– Concurrency
– ...

• Guarantees
– Performance
– Consistency
– Fault tolerance
– ...

• Data organization
– Sharding
– Distribution
– Replication
– ...

• Metadata organization
– Distribution
– Indexing
– Content
– Namespace
– ...

• Interface
– Language(s)
– Programming interface
– ...

Composition
and
Interfacing

• Runtime
– Threading and tasking (Argobots)
– Networking and RDMA (Mercury)
– Serialization (Mercury, Boost, ...)

• Providers
– Local storage (Bake)
– Local database (SDSKV)
– Group membership (SSG)
– Performance monitoring (MDCS)
– Data indexing (Plasma)
– Local processing (Poesie)

depends on typical access patterns from the application
and on other aspects such as whether users can ship code
to be executed on storage.

• Should objects be replicated? The answer to this ques-
tion may depend on the required data availability, access
performance, or fault tolerance concerns.

2) Metadata organization: Design decisions related to
metadata organization are also driven by a number of ques-
tions, including the following.

• Should metadata be distributed? Applications that
exhibit a metadata-intensive access patterns (e.g., cre-
ating/accessing many objects at the same time) likely
require distributed metadata. Data services that manage a
few large objects may not.

• How should metadata be distributed? If distributed,
localizing metadata can be achieved in different ways. A
hierarchical namespace may hash paths to map directory
metadata to metadata servers. Other techniques can be
used that rely on a distributed hash table, or on properties
contained in the metadata.

• What should the metadata contain? Traditional file
system metadata include the object’s name, owner, per-
missions, and creation time. A custom data service may
expose more information, such as a summary of the
objects it describes (e.g., statistical information), or de-
pendencies to other objects, or even access statistics for
informed caching/prefetching.

• How should the metadata be accessed? Applications
or users may need to query metadata based on something
else than a path. For example, they may need to access
the metadata related to all the objects written in a given
timeframe or to all objects whose content exhibits a given
property. The answer to this question drives decisions
regarding the possible use of indexing techniques.

3) Service interface: Defining the interface to the service
first consists of choosing the language this interface should
be written in. This part of the design also includes defining
how the interface interacts with the service’s component. For

example, a typical protocol to retrieve an object consists of (1)
localizing the metadata server hosting that object’s informa-
tion; (2) querying this metadata server; (3) localizing the server
hosting the object’s data; and (4) querying this storage server.
An alternative protocol consists of having the metadata act as
a proxy, forwarding the request to the right storage server
that performs server-directed remote direct memory access
(RDMA) to the client’s memory. User requirements drive the
design of these protocols.

C. Building blocks

The third step in our methodology consists of matching the
service requirements defined above with a service design based
on building blocks.

In the right part of Table I we have identified a set of
building blocks that are recurring in HPC data services.
They include a high-performance communication library, a
threading/tasking library, some component to control local
storage space (SSD, disks, etc.), and some component to store
and efficiently look up key/value pairs.

1) Terminology: When we say “building blocks” we are
referring to the core libraries (threading, networking, serializa-
tion) as well as the components. The communication library,
the threading/tasking library, and the serialization library play
a particular role in the design of a distributed data service,
since they are at its core and can be used by the rest
of the building blocks. We call this group of libraries the
“runtime.” We call “component” a code relying on the runtime
to provide remotely-accessible functionalities on a single node.
Components export a “client” library and interface, and a
“server” library and interface. The server library of a com-
ponent contains methods to start up “providers.” A single
provider executing on a node forms a “microservice.” A set of
providers composed together across potentially multiple nodes
form a “service.” Providers must have a number of properties,
described hereafter.

2) Limiting scope: A provider should be limited in terms
of functionality that it provides. For example, if a provider

78



enables raw data storage on a device and also performs some
processing on it (e.g., indexing), the developer must consider
splitting such a provider into two separate ones, thus increasing
the reusability and generality of each. Limiting the scope of
functionality that a given provider offers is also a key to easing
maintainability, since there is less functionality to test and
implementation changes will not affect unrelated functionality.

3) Remote and local accessibility: The runtime used to
develop service providers should transparently expose their
functionality as remote procedure calls and as local procedure
calls. Doing so enables clients (applications or other providers)
to access the functionality of a provider without needing to
know whether that provider runs on the same node or on a
separate node. When deploying a service, this aspect enables
users to test different mappings of providers to nodes and find
the one that leads to the best performance on a given platform
and for a given workload.

4) Decoupling: Providers must be as much as possible
decoupled from one another. That is, they should be developed,
maintained, and tested separately prior to being integrated and
tested as a whole within a service. This decoupling increases
the development productivity by limiting as much as possible
the dependencies across teams working on different providers.

If a provider does depend on another one, it should be
agnostic to the particular configuration of that other provider.
For example, a user must be able to switch the particular
implementation of a storage provider (e.g., from storing data
in memory to storing it on an SSD or on a disk) without
this change affecting other providers. This decoupling with
respect to implementation is key to later adapting a service
to a particular use case by simply configuring its providers
independently.

5) Composability: Providers must be composable, that is,
able to share the runtime without introducing dependencies
among one another, without requiring providers to execute in
distinct nodes, in distinct processes, or even in distinct threads.

Composability is the main reason the runtime is external to
the providers. Execution resources (cores, threads, time slot in
a scheduling policy) are managed by the runtime and assigned
to providers based on a configuration that is external to all
providers. For communications, providers should rely on a
common communication runtime that will manage queuing
and dispatching of requests to providers.

D. Composition and interfacing

The last step in our methodology is to compose providers
on top of the runtime to make up a data service that satisfies
the service requirements and ultimately the user requirements.

1) Ease of composition: The providers should be easy
to compose. When reaching the development phase, this
capability can be measured by how much code is required
to compose providers. Well-designed building blocks should
allow composing to be achieved with less than a couple
of hundred lines of code. Ideally, this could even be made
generic, with the composition being described in a YAML,
JSON, or XML file, rather than programmatically.

Fig. 1: Mochi component

2) Interface: The interface to the service (i.e., what the end
user will see) requires the most development effort, because
it is specific to each individual application. This interface
should hide the composition in such a way that the application
remains agnostic of how the service is implemented, how it is
distributed across available resources (although in some cases
this information may be exposed to optimize access locality),
and how it is configured. This interface may be written in a
language other than that of the providers.

III. ARCHITECTURE OF A MOCHI COMPONENT

This section describes how we implemented the above
methodology within the context of the Mochi project.

A. Anatomy of a Mochi component

Mochi components are built by using the Mercury and
Argobots libraries, brought together within the Margo runtime.
This section describes the different parts of such a component,
whose architecture is shown in Figure 1.

1) The Margo runtime:
a) Mercury: Mercury1 [8] is a C library for implement-

ing remote procedure calls (RPC) and optimized for HPC
systems. It features a number of network plugins, including
libfabric [9], BMI [10], and CCI [11]. These plugins support
various transport protocols ranging from TCP to HPC fabric
transports such as Cray GNI [12]. Mercury enables RDMA
of bulk data either by using the native capabilities of the
underlying network plugin or by using shared memory if the
target process is colocated within the same node.

Mercury abstracts the notions of client and server to favor
instead origin and target semantics, which facilitates the de-
velopment of services and their composition. It also provides
a number of preprocessor macros to produce the C code
necessary to serialize data structures. The API uses a callback-
based model with explicit progress, which gives services

1http://mercury-hpc.github.io/
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flexibility in making decisions on progress, execution of RPC
callbacks, and the threading model used.

b) Argobots: Argobots2 [13] (lower right in Figure 1) is
a threading/tasking library designed for massively multicore
processors. It directly leverages the lowest-level constructs in
the hardware and operating system: lightweight notification
mechanisms, data movement engines, memory mapping, and
data placement strategies, in order to make the best use of the
available resources.

Argobots decouples the notion of execution streams (ESs)
mapped onto hardware threads and that of user-level threads
(ULTs) and tasks, which are scheduled to be executed on
execution streams. This programming model enables reducing
contention and increasing concurrency by avoiding explicit
locks (such as mutex) when possible and by relying instead
on ULTs mapped to resources according to their dependencies
and yielding to one another as needed.

c) Mercury + Argobots = Margo: Argobots gives us
an opportunity to simplify the Mercury programming model,
which is callback-driven with an explicit progress loop. To
make Mercury and Argobots operate together, we developed
Margo3 (lower middle in Figure 1)). Margo hides Mercury’s
progress loop in an Argobots ULT, which either executes in a
dedicated ES or shares an ES with other components.

Using Margo, Mercury callbacks are replaced with ULTs.
This way of programming RPC handlers and Mercury client
code leads to a much more natural control flow than does rea-
soning with callbacks. As an example, the following function
in Mercury sends an RPC to a remote target.

hg_return_t HG_Forward(
hg_handle_t h, /* RPC handle */
hg_cb_t cb, /* completion callback */
void *uarg, /* arguments for the cb */
void *in); /* input of the RPC */

This function immediately returns. The provided callback will
be triggered within the Mercury progress loop once a response
has been received. Meanwhile, the user must keep track of
other work that can be completed while waiting for a response.

Margo, in contrast by doing implicit progress, provides the
following function.

hg_return_t margo_forward(
hg_handle_t h, /* RPC handle */
void *in); /* input of the RPC */

This function sends the RPC, then yields back to the ES’
scheduler, leaving the current ES free to be used by another
ULT to perform useful work. Once the response is received,
the ULT running the Mercury progress loop will yield back to
the ULT that called margo_forward so that it can continue
executing. The user no longer needs to keep track of what
to do while waiting for a response. This aspect is the key to
microservice composition: the Margo runtime is in charge of
scheduling the work submitted by providers on the available

2http://www.argobots.org/
3https://xgitlab.cels.anl.gov/sds/margo

resources. Margo can therefore transparently schedule ULTs
from multiple providers without these providers being aware
of one another.

2) Components: We design Mochi components on top of
Margo. Each component consists of a client library and a
server library. The client library defines a set of functions that
issue an RPC to a target provider and wait for a response. The
server library defines a provider, which encapsulates a set of
functionality typically implemented in a number of backends.
For example, the SDSKV provider, described later, exposes a
put/get interface to a key/value store, and includes backends
for BerkeleyDB and LevelDB. The Poesie provider enables
one to remotely execute code written in languages such as
Python or Lua. A common header is used by both client and
server libraries to define the data types of RPC arguments
and return values. These definitions are used by Mercury to
generate serialization and deserialization code (although in
some examples we bypassed this serialization to provide our
own, based on either Boost or Python’s pickle).

Multiple providers can execute on top of the same Margo
runtime, in the same node. One provider can be a client of
another provider. Clients and providers can reside in the same
node or in different nodes. When in the same node, Mercury
will optimize RPCs by using shared memory to transfer data.

3) Interface and bindings: Each component typically ex-
poses a C interface for both its client-side and server-side
libraries. The client-side interface is used to connect to a
provider and to access its functionality. The server-side in-
terface gives the means to spin up and set up a provider and
compose it with other (local or remote) providers.

For convenience, most of the components we developed
have a Python interface as well. The main advantage of
this Python interface is to enable writing the composition of
providers in the form of a simple Python script that can then
be deployed on the machine.

Wrappers to the Margo runtime for Python (Py-Margo) and
for C++ (Thallium) also enable the development of complete
Mochi components in these languages.

B. Example Mochi components

The Mochi framework includes a set of common, pre-
defined components that conform to the conventions described
in the preceding section. Key examples are enumerated below.4

1) Bake provides remote access to persistent storage ex-
tents. Bake is optimized for RDMA networks and non-
volatile memory. It uses Mercury and libpmemobj [14]
to achieve low latency and high bandwidth on HPC
platforms [7].

2) SDSKV provides remote access to key/value storage
instances. It includes a modular backend with support
for LevelDB [15], BerkeleyDB [16], and in-memory
databases for flexible deployment without modifying the
data service architecture.

4All these components, as well as Margo, Py-Margo, and Thallium, are
available at https://xgitlab.cels.anl.gov/sds.
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3) Scalable Service Groups (SSG) is a group membership
system that can be used to assemble single-instance
providers such as Bake and SDSKV into distributed
services. SSG employs the SWIM gossip-based group
membership protocol [17] to detect failures and evict
dead members from the group.

4) MDCS is a lightweight component that tracks perfor-
mance and usage metrics from other providers, for di-
agnostic purposes. For example, Bake can use MDCS to
record statistics on bandwidth, access sizes, and number
of operations, thereby making these statistics remotely
available to the users or other service providers.

5) Poesie is used to embed programming language in-
terpreters (currently Lua and Python) within a Mochi
provider. Poesie clients can send code to Poesie
providers to execute remotely on their behalf. Coupled
with Python wrappers for building block components,
Poesie enables on-the-fly recomposition and reconfigu-
ration of Mochi services.

6) ch-placement5 is a modular consistent hashing library
that can be used by distributed services to map objects
to storage servers in a reproducible and replication-
friendly manner. It is not a Mochi provider (as it does
not follow the client/server design pattern) but rather a
utility library that generalizes a common data service
capability.

IV. EXAMPLES OF CUSTOM HPC SERVICES

The methodology presented above and its implementation
within the Mochi project enabled us to quickly develop a
number of storage services tailored to particular applications.
This section showcases three of them: FlameStore, HEPnOS,
and ParSplice. Note that the purpose of this paper is not to
evaluate these services.It is to show how the methodology was
used to design them. Future papers will focus on extensively
presenting these services and evaluating their performance.

A. FlameStore

FlameStore6 is a transient storage service tailored to deep
learning workflows. It was developed to meet the needs of
the CANDLE cancer research project.7 These workflows train
thousands of deep neural networks in parallel to build pre-
dictive models of drug response that can be used to optimize
preclinical drug screening and drive precision-medicine-based
treatments for cancer patients. Following discussions with
users, FlameStore required only a few weeks of development
to reach a first working version.

1) User requirements: Since CANDLE workflows train
deep neural networks using the Keras framework [18] in
Python, FlameStore needs to present a Python interface capa-
ble of storing Keras models (the workflow’s data model). More
generally, this can be achieved by enabling storing NumPy
arrays along with JSON metadata.

5https://xgitlab.cels.anl.gov/codes/ch-placement/
6https://xgitlab.cels.anl.gov/sds/flame-store
7http://candle.cels.anl.gov/

The workflow’s access pattern consists of writing potentially
large NumPy arrays. Overall, users expect such models to
range from a few hundreds megabytes to a few gigabytes.
These arrays are written once and never modified.

Users requested that FlameStore provide a flat namespace,
that is, a simple mapping from a unique model name to a
stored model. Trained models need to also be associated with
a score indicating how well they perform on testing datasets.
FlameStore needs to store such a score along with other user-
provided metadata (including the hyperparameters used for
training the model) that can be used for querying particular
models. Users may also want to send Python code to nodes
storing a model in order to perform local computation (e.g.,
evaluating some properties of the stored models in order to
make decisions).

FlameStore needs to be a single-user service running for
the duration of the workflow that accesses it. It needs to
act like a semantic-aware distributed cache built on federated
storage space (RAM, NVRAM, or disks) provided by compute
nodes. It is backed up by a traditional parallel file system for
persistence across multiple workflow executions.

2) Service requirements: Based on the user requirements,
we expect FlameStore to store few (on the order of a thou-
sand) large objects that need to be written atomically, read
atomically, and accessed locally in a consistent manner. Hence
we expect large data transfers to be the critical aspect of the
service to optimize. We will need the storage space for these
objects to be distributed. Because we need to be able to execute
code within the data service to do some processing on single
models, we need each model to be stored on a single node.
This also aligns with the fact that workflow workers do no
collectively work on the same model.

We do not expect metadata to be a bottleneck, and we can
therefore use a single node to manage it. However, SDSKV
is not sufficient to handle the type of queries expected from
the workflow: FlameStore, indeed, needs not only to store the
metadata but also to make decisions on where to store each
model, based on colocality with the node that generates it,
on available space in each storage node, and on the content
(semantics) of the data.

3) Implementation with Mochi components: Figure 3a
shows the organization of components used in FlameStore.
Its implementation primarily relies on Bake for storage man-
agement. It uses PyMargo to implement a custom Python-
based provider for semantic-aware metadata management and
another custom provider for the management of storage nodes.
PyBake is used to interface with Bake using Python. This
Python interface also enables RDMA transfers of NumPy
arrays to Bake providers. FlameStore’s composition code is
entirely written in Python. In the future, we plan to integrate
the Poesie component to enable shipping Python code to the
storage servers at run time. Figure 2a provides the number
of lines of code used by FlameStore’s components as well
as the percentage this code represents: 86% of the code con-
sists of reusable components, the remaining 14% comprising
the client-side interface (6%) and the composition code and
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(a) FlameStore (b) HEPnOS (c) SDSDKV

Fig. 2: Single Lines of Code (SLOC) of the three example services, broken down into common components and custom code.

(a) FlameStore (b) HEPnOS (c) SDSDKV

Fig. 3: Architecture of our three data services. The Margo runtime and some components such as MDCS and SSG have been
omitted for simplicity.

custom providers (8%). Note that this figure does not include
the lines of codes of Argobots (15,193) and Mercury (27,959)
since these libraries existed before the Mochi project and could
be replaced with alternatives in the implementation of our
methodology. According to our git history, only 15 days were
needed to finish a first version that users could start working
with.

FlameStore enables users to plug in a controller module,
written in Python, that implements smart data management
policies. This controller makes decisions including persisting
good models in HDF5 files; discarding models that have been
outperformed by other models; migrating models to improve
load balancing or data locality; or compressing models that
are unlikely to be reused but still need to stay in cache.

FlameStore ensures that models are written only once and
atomically. It does not allow updates and partial writes. It
does not replicate data by default but enables the controller
to duplicate models across multiple storage locations if they
need to be reused by multiple workflow workers.

Metadata in FlameStore consist of (1) a model’s name,
(2) a JSON-formatted model architecture, (3) the location of
weight matrices (i.e., network address of the storage node
and indexing information), and (4) additional user-provided
metadata (e.g., the hyperparameters used for training, the
accuracy of the model, and the network address of the client
that is writing it). User-provided metadata are used to drive
the controller’s decisions.

Clients write in FlameStore by first contacting the metadata

provider with the model’s metadata. The metadata provider
responds with the identity of a Bake provider in which to
write the model. At this point the metadata provider marks
the model as “pending.” It is not yet visible to other clients.
The client contacts the selected Bake provider, which issues
RDMA pull operations to transfer the NumPy arrays from
the client’s memory. Upon completion, the client contacts the
metadata provider again to complete the model’s metadata
with the location of the stored NumPy arrays.

Clients read models by contacting the metadata provider
with the model’s name. The metadata provider returns the
model’s metadata, which include the information on how to
retrieve NumPy arrays from Bake providers. The metadata is
sometimes the only information clients need, since it encapsu-
lates the entire model’s architecture as well as user-provided
metadata. If needed, the client can request the NumPy arrays
from the corresponding Bake providers, which will transfer
them using RDMA push operations.

4) Example client code: Listing 1 shows an example of
client code that interacts with FlameStore. The client starts by
initializing a WorkspaceHandle, which points to a direc-
tory in a parallel file system where FlameStore configuration
files are located (with information on how to connect to the
providers) and where models are stored when they are flushed
to storage by FlameStore workers. The store_model and
load_model are the main two functions for the client to
use. The former extracts the metadata from the Keras model
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and sends them to the Master Manager, which invokes the
controller and responds with the identity of a Bake provider to
contact for storing the layers’ NumPy arrays through RDMA.
The load_model contacts the Master Manager to get the
metadata, then loads the NumPy arrays through RDMA back
to the client and recomposes the model.

1 from f l a m e s t o r e . workspace i m p o r t WorkspaceHandle
2 # open a F l a m e S t o r e workspace
3 workspace = WorkspaceHandle ( ” p a t h / t o / my / workspace ” )
4 model = . . . # d e f i n e and t r a i n your Keras model
5 # s t o r e t h e model i n t o F l a m e S t o r e
6 workspace . s t o r e m o d e l ( ” mymodel ” , model )
7 # r e l o a d a model from F l a m e S t o r e
8 model = workspace . load mode l ( ” mymodel ” )
9 # shutdown t h e F l a m e S t o r e s e r v i c e

10 workspace . shutdown ( )

Listing 1: Example of client code using FlameStore

B. HEPnOS

HEPnOS8 is a storage service targeting high energy physics
experiments and simulations at Fermilab, and developed in
the context of the SciDac4 “HEP on HPC” project.9 It aims
to eventually replace Fermilab’s data storage system, which
currently relies on ROOT files [19] stored in a parallel file
system.

1) User requirements: Scientists at Fermilab currently use
ROOT files to store the massive amount of events produced
by their high energy physics experiments, and also by simu-
lations and data-processing codes. Aiming to replace ROOT
to achieve better performance, better use of new technologies,
and more development simplicity, we started to develop HEP-
nOS to specifically address their needs.

HEPnOS needs to organize data objects in a hierarchy of
datasets, runs, subruns, and events. These containers act in a
way similar to directories but map better to the way high-
energy physics experiments organize their data. Datasets are
identified by a name and can contain runs as well as other
datasets. Runs, subruns, and events are identified by an integer.
Runs contain subruns; subruns contain events. The notions of
“relative path” and “absolute path” make it possible to address
a container relative to another or relative to the root of the
storage system, respectively.

Events data consist of serialized C++ data objects. Hence,
HEPnOS needs to present a C++ interface that resembles that
of the C++ standard library’s std::map class, allowing to
navigate items within containers using iterators. The expected
access pattern is, as in FlameStore, write-once-read-many, with
only atomic accesses to single objects. However, users expect
a much larger number of objects (several millions). These
objects, after serialization, typically range in size from a few
bytes to a few kilobytes.

2) Service requirements: Based on the user requirements,
we defined the following service requirements. HEPnOS will
need to distribute both the data and the metadata, given the
large number of objects that it will store. Objects will not be

8https://xgitlab.cels.anl.gov/sds/HEPnOS
9http://computing.fnal.gov/hep-on-hpc/

sharded, but contrary to FlameStore the reason is their small
size rather than because they need to be accessed locally.

Ultimately, Fermilab envisions running HEPnOS in pro-
duction in a multiuser setting. In order to deal with fault-
tolerance in this context, HEPnOS needs to enable both data
and metadata replication. This also enables potentially better
read performance.

Data and metadata will be queried based on the full path of
the object; hence no particular indexing method is required.

Optimizations should also be implemented to enable bulk-
loading and bulk-storing objects, in order to avoid the cumu-
lated latency of many RPC round trips when storing or loading
objects one at a time.

3) Implementation with Mochi components: Figure 3b
shows the organization of components used in HEPnOS.
HEPnOS uses Bake to store objects and SDSKV to store
metadata. Typically, each service node hosts one Bake provider
and one SDSKV provider, although we have not yet evaluated
whether this setting is the best-performing one.

The SDSKV providers storing the information on a partic-
ular container (dataset, run, subrun, event) are selected based
on the hash of the container’s parent full path. Hence all the
items within a given container are managed by the same set
of nodes. Metadata related to serialized C++ objects, however,
are managed by nodes chosen by hashing the full name of
the object. This matches the expected sequential access to
directory entries, versus parallel accesses to data objects.

HEPnOS also optimizes data accesses by storing small
objects within their metadata, in a way similar to file sys-
tems storing data in their inodes when the data are small
enough. Benchmarks should be executed on a given platform
to establish the threshold below which embedding data inside
metadata is advantageous.

HEPnOS bypasses Mercury’s serialization mechanism and
relies on Boost.Serialization instead, in order to enable serial-
izing C++ objects with minimal changes to the user code.

Contrary to FlameStore, clients write in HEPnOS by first
storing their object’s data into multiple Bake providers in
parallel. They then contact SDSKV providers (also selected
by hashing the object’s path) to store the corresponding meta-
data. Symmetrically, reading is done by contacting a relevant
SDSKV provider, then a relevant Bake provider.

In terms of development effort, Figure 2b shows that
reusable components make up 63% of HEPnOS’ code. The
larger portion of HEPnOS’s custom code is its client-side
interface, which provides extensive functionalities to navigate
the data store using C++ iterator patterns. The code that
actually calls the Mochi components fits in a 276-line file. Our
git repositories indicate that less than two months were needed
between the creation of the project and the release of a first
version that Fermilab could start using. While the server-side
composition was ready within two weeks, most the remaining
time was spent iterating on new client-side functionalities.

4) Example client code: Listing 2 shows an example of
client code that interacts with HEPnOS. The client initializes
a hepnos::DataStore handle with a configuration file
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indicating how to connect to the HEPnOS providers. The code
then exemplifies how to navigate the hierarchy of datasets,
runs, subruns, and events, and to store/load custom data objects
(here a vector of Particle instances) to/from HEPnOS. The
last line shows that one can use C++ range-based loops to
navigate easily within a run. The same can be done within
datasets and subruns.

1 # i n c l u d e <hepnos . hpp>
2

3 / / example s t r u c t u r e
4 s t r u c t P a r t i c l e {
5 f l o a t x , y , z ; / / member v a r i a b l e s
6 / / s e r i a l i z a t i o n f u n c t i o n f o r b o o s t t o use
7 t e m p l a t e<typename A>
8 vo id s e r i a l i z e (A& a , u n s i g n e d long v e r s i o n ) {
9 a r & x & y & z ;

10 }
11 } ;
12 / / i n i t i a l i z e a h a n d l e t o t h e HEPnOS d a t a s t o r e
13 hepnos : : D a t a S t o r e d a t a s t o r e ( ” c o n f i g . yaml ” ) ;
14 / / a c c e s s a n e s t e d d a t a s e t
15 hepnos : : D a t a S e t ds = d a t a s t o r e [ ” p a t h / t o / d a t a s e t ” ] ;
16 / / a c c e s s run 43 i n t h e d a t a s e t
17 hepnos : : Run run = ds [ 4 3 ] ;
18 / / a c c e s s su b r un 56
19 hepnos : : SubRun su b r un = run [ 5 6 ] ;
20 / / a c c e s s e v e n t 25
21 hepnos : : Event ev = su b r un [ 2 5 ] ;
22 / / s t o r e d a t a ( an s t d : : v e c t o r o f P a r t i c l e )
23 s t : : v e c t o r<P a r t i c l e > vp1 = . . . ;
24 ev . s t o r e ( vp1 ) ;
25 / / l o a d d a t a
26 s t d : : v e c t o r<P a r t i c l e > vp2 ;
27 sv . l o a d ( vp2 ) ;
28 / / i t e r a t e ove r t h e s u b r u n s i n a run
29 / / u s i n g a C++ range−based f o r
30 f o r ( a u t o& su b r un : run ) { . . . }

Listing 2: Example of client code using HEPnOS

C. ParSplice

The Parallel Trajectory Splicing (ParSplice) [20] applica-
tion uses a novel time-parallelization strategy for accelerated
molecular dynamics. The ParSplice technique (and associated
application) enables long-time scale molecular dynamics (MD)
simulations of complex molecular systems by employing a
Markovian chaining approach allowing many independent MD
simulations to run concurrently to identify short trajectories
called “segments” that are then spliced together to create
a trajectory that spans long time scales. A master/worker
approach is used to generate segments starting from a set of
initial coordinates stored in a key/value database. From these
initial coordinates the workers use traditional MD simulation
to generate a new segment and upon completion stores the final
coordinate of the segment in a distributed key/value database.

During the course of a ParSplice simulation, the key/value
database continues to grow to include all the states necessary
for workers to generate new trajectories from a prior state.
Since workers are distributed across many individual compute
nodes and are stateless, the key/value store must provide
scalable concurrent access (read/insert). Exascale simulations
using ParSplice could span tens of thousands of compute nodes
with thousands of database clients accessing the key/value

store concurrently. To support this level of concurrency, and
to minimize the memory footprint required on any one worker
node, we have developed a distributed key/value service,
SDSDKV, built on Mochi microservices, as described in
Section III.

1) User requirements: The introduction of the SDSDKV
service is motivated principally by the potential reduction of
code complexity in ParSplice via componentization. More-
over, this organizational strategy allows for easier runtime
customization of key/value service behavior (e.g., selecting
an appropriate communication protocol, database back-end,
or key distribution methodology [21]), thereby improving
program performance portability.

The SDSDKV service needs to store values of a few
thousand bytes that represent the MD state including positions,
velocities, charges, and other particle characteristics. The
number of key/value pairs ranges from tens of thousands at
current scales to several millions expected at exascale. These
key/value pairs are written once and never overwritten, and
are accessed atomically (i.e., no partial access to a value is
required). The current key/value store does not erase entries,
but future expansion of the service may need to remove keys.

2) Service requirements: The service requirements are
driven by large runs that will need to distribute the key/value
store across multiple nodes to balance out memory use, access
latency and bandwidth, and keep the fan-out size from a master
worker within a scalable size. The objects will be distributed
by their hash keys, obviating the need for metadata. Replica-
tion is an option for improving response times. This service
can be asynchronous without any guarantees of determinism
or handling of race conditions. The service interface needs to
be implemented in C with a simple API of create/destroy for
service control and put/get/delete for data handling.

3) Implementation with Mochi components: Figure 3c
shows the organization of components used in SDSDKV.
SDSDKV (∼1,000 SLOC) is based on the SDSKV and
SSG components and on ch-placement for consistent hashing.
It exposes a small, straightforward C interface providing
runtime service configurability through user-supplied input
parameters as shown in Listing 3. SDSDKV’s use centers on
opaque context handles that encapsulate service-maintained
state. With this design, multiple, independent SDSDKV in-
stances may exist within a single application, each with po-
tentially different configurations such as membership makeup,
database backend type, and communication protocol used. At
sdsdkv_open(), all members of the initializing commu-
nicator (supplied during sdsdkv_create()) collectively
participate in service startup, initializing the individual com-
ponents composing SDSDKV. From this point until context
destruction sdsdkv_put()and sdsdkv_get() operations
may be performed—routed by ch-placement and ultimately
serviced by the appropriate SDSKV provider.

Figure 2c shows the fraction of code that is reused and the
fraction that is custom. Custom code include the composition
code (7%) and the client interface (4%). The client interface
provides a simple, minimalistic put/get interface dispatching
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the operations to particular SDSKV providers based on a hash
of the keys. The composition code is written in C++ and spins
up multiple SDSKV providers, grouped by using SSG and
distributed based on the node placement of server processes.

4) Example client code: Listing 3 illustrates the use of the
SDSDKV API, which essentially is a simple put/get interface
accessing raw data.

1 / / De te rmine p e r s o n a l i t y t y p e from g l o b a l MPI ID .
2 s d s d k v c o n f i g p e r s o n a l i t y p = (
3 ( r ank % 2 == 0) ? SDSDKV PERSONALITY SERVER
4 : SDSDKV PERSONALITY CLIENT
5 ) ;
6 / / De f in e an SDSDKV i n s t a n c e c o n f i g u r a t i o n .
7 s d s d k v c o n f i g d k v c o n f i g = {
8 MPI COMM WORLD, / / I n i t i a l i z i n g MPI communica tor
9 p , / / P r o c e s s p e r s o n a l i t y ( c l i e n t o r s e r v e r )

10 r p c t h r e a d c o u n t , / / RPC t h r e a d i n g f a c t o r
11 SDSDKV HASHING CH PLACEMENT, / / Hashing back−end
12 SDSDKV DB LEVELDB, / / D a t a b a s e back−end t y p e
13 SDSDKV COMPARE DEFAULT, / / K/V compare f u n c t i o n
14 ” groupname ” , / / Group i d e n t i f i e r
15 db name , / / Base p a t h t o d a t a b a s e b a c k i n g s t o r e s
16 ” o f i + t c p ” , / / Communicat ion p r o t o c o l
17 } ;
18 / / C r e a t e an SDSDKV i n s t a n c e named dkvc .
19 s d s d k v c r e a t e (&dkvc , &d k v c o n f i g ) ;
20 / / C o l l e c t i v e l y open t h e dkvc i n s t a n c e .
21 sdsdkv open ( dkvc ) ;
22 / / C l i e n t p r o c e s s e s i n t e r a c t w i th key / v a l u e s e r v i c e
23 / / w h i l e s e r v e r p r o c e s s e s f i e l d p u t / g e t r e q u e s t s .
24 s d s d k v p u t ( dkvc , &k , s i z e o f ( k ) , &v , s i z e o f ( v ) ) ;
25 . . .
26 s d s d k v g e t ( dkvc , &k , s i z e o f ( k ) , &v , &v s i z e ) ;
27 . . .
28 / / C o l l e c t i v e l y d e s t r o y SDSDKV i n s t a n c e .
29 s d s d k v d e s t r o y ( dkvc ) ;

Listing 3: Example pseudocode using the SDSDKV API.

V. RELATED WORK

This section puts our methodology in the perspective of
other works related to parallel file systems, data services,
networking libraries, and alternate programming models.

A. Parallel file systems

File system developers have long found the classic POSIX
interface and semantics limiting. Researchers have imple-
mented extensions to meet various parallel I/O workloads.
PVFS [22] removed POSIX semantics, implementing some-
thing closer to MPI-IO semantics. PVFS also provided a user-
level library with features such as datatype I/O [23]. Few if
any applications used these interfaces directly. These projects,
however, have demonstrated the need to move beyond the
POSIX interface. Our service-oriented approach means we
can quickly implement novel interfaces tailored to specific
applications. We no longer need to think about an interface that
both extends POSIX and has sufficient application acceptance
to be viable.

Object storage has emerged as an alternative interface for
storage devices. Some file systems built on top of object stores
expose that interface directly to users (e.g., Ceph [24] with
RADOS [25]). We, too, have implemented an object storage

interface, although its backend implementation may or may
not be an object store.

Some approaches have narrowed their focus to one type of
access pattern (e.g., checkpoints in PLFS [26], that is, write
frequently, maybe read sometimes). Others have explored the
use of active storage offload capability to extend file system
functionality [27], [28]. The benefits of such special-purpose
interfaces directly motivate our service model: separating
interface from implementation will allow us to deploy many
specialized interfaces all of which utilize a shared core.

B. Specialized data services

Specialized data services are already widespread in scien-
tific computing as a means to augment parallel file system
functionality. Examples include services for multidimensional
scientific data [29], tuple spaces [30], key/value pairs [31],
checkpointing [32], in situ indexing [33], and shared-library
management [34]. These may be deployed persistently to meet
the workload needs of a particular platform or deployed on
demand to meet the needs of a particular application. Such
services are often built from the ground up to meet the needs
of particular use cases. More recently, Sevilla et al. [35] have
explored how to decompose existing parallel file systems into
components that can then be reused within programmable
data services expressed using Lua. This approach offers rapid
access to robust software components from existing production
services. Those components also inherit limitations of the
original service, however, such as limited support for in-
system HPC hardware. Other specialized services such as
DataWarp [36] retain a traditional file system data model, but
implement it as a transient service that provisions in-system
resources on demand to meet the requirements of a specific
application.

C. Networking

Communication and message exchange for data services is
key to efficient composition. In the context of HPC, the first
communication and messaging interface that comes to mind
is MPI [37], which can also take advantage of RDMA [38].
As detailed in [39], however, while MPI is most likely the
best communication interface for scientific applications, it is
not suitable for the development of data service middleware
where resiliency and dynamic resource scheduling are critical.

Other solutions such as Protobuf [40] or ZeroMQ [41] are
widely used solutions for building distributed services, but they
are not adapted to HPC environments and do not support native
network fabrics, nor do they provide native RMA semantics
to transfer large data.

Existing HPC frameworks have also been developing and
integrating similar solutions such as DART [42] or Nessie’s
NNTI [43] [44] in the context of building either data staging
mechanisms or distributed services. In either case, Mercury
provides an API that is more adapted to the development of
distributed services: by using origin and target semantics; pro-
viding a dedicated interface for handling bulk data; and letting
high-level components be in charge of dedicated progress and
multithreading models.
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D. Programming models

Programming models for concurrent distributed data ser-
vices must strike a balance between runtime performance
and developer productivity. Traditional options include mul-
tithreading as exemplified by the Apache web server [45],
event-driven architectures as exemplified by memcached [46],
and state machines as exemplified by the PVFS/OrangeFS file
system [47]. Recent works have also explored alternatives to
traditional concurrent programming models. Examples include
the Seastar futures and promises model [48], the Boost.ASIO
proactor model [49], [50], Grand Central Dispatch queues [51],
Aesop C concurrent language extensions [52], and Intel TBB
tasking templates [53]. Each of these has introduced new prim-
itives that aid in the expression of concurrent code paths, but
they also present a nontrivial barrier to entry for rapid devel-
opment of community services. Conventional multithreading
models remain the most widely understood among POSIX
developers, can be readily expressed in any language, and are
comparatively simple to understand and debug.

User-space threads offer the potential to express con-
current code paths in using straightforward multithreading
conventions while retaining the advantages of low latency
and high concurrency offered by explicitly asynchronous pro-
gramming models [54]. A number of lightweight threading
or tasking frameworks have been developed and deployed
in the HPC community as a result [55]. Notable examples
include QThreads [56], MassiveThreads [57], and Converse
Threads [58]. Among available user-space threading packages,
Argobots is most readily applicable to Mochi because of a
combination of three key features: portability across HPC
architectures, customizable schedulers that aid in services
composition, and low resource for data services colocated with
applications [13].

Closer to our work is Faodel [59], which provides a set of
libraries to build workflow-oriented data services. Ulmer et
al. also propose to interface directly to applications through
a high-performance communication library, RDMA, and a
key/blob storage service. They demonstrate the effectiveness
of their set of libraries in a particle-in-cell simulation workflow
with VTK-based analysis. Contrary to our paper, however, they
do not focus on the software engineering methodology around
the use of their libraries.

VI. CONCLUSION

We have introduced a methodology for rapidly developing
HPC data services tailored to particular applications. By rely-
ing on componentization, our methodology proved to enable
high code reuse and minimal extra code. This methodology
allowed us to quickly develop three data services for very dif-
ferent use cases: deep learning workflows for cancer research,
high-energy physics experiments, and molecular dynamics
simulations. Contrary to parallel file systems, which are meant
to be generic and require layering middleware and libraries to
be usable by applications, our data services interface directly
with the applications and are modular enough to adapt to the
particular applications’ requirements.

A number of interesting aspects have not been discussed
in this paper. One is authentication/authorization, which is
important for data services that are shared between multiple
users or remotely accessible from outside the supercomputer
where they are deployed. We plan to further investigate how
to integrate auth/auth with our methodology and how to
concretely implement it within the Mochi framework.

Data ingestion is another important aspect of data services
when existing data is stored in a parallel file system or when
the data service should still store data to a backend parallel file
system (e.g., for persistence across multiple jobs that rely on
a transient service). From our experience, however, the data
ingestion problem is specific to the use case, and we can hardly
generalize practices into a methodology.
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