

Distributed Object Storage Rebuild Analysis via Simulation with GOBS

Justin M Wozniak, Seung Woo Son, and Robert Ross

Argonne National Laboratory

Presented at:

Workshop on Fault-Tolerance for HPC at Extreme Scale (FTXS 2010) Chicago, IL – June 28, 2010

Outline

- Context
 - High-performance storage use cases
 - Parallel filesystems
 - Object storage motivation
- Problem statement
 - Disk size/fault rate dynamic
 - System model
- GOBS Simulator
 - Data placement for survivability
 - Simulation and analysis of rebuild performance (GOBS)
- Preliminary results
 - Hot spots
 - Eager rebuilds

Context

Uses of high-performance storage (1)

Checkpoint

- Write out all user memory to non-volatile storage
- Basic survival strategy to avoid lost work
- Optimal checkpoint interval
 - First-order approximation to optimal checkpoint write interval

$$t_o = \sqrt{2t_w t_f}$$

- » t_o: checkpoint interval
- » t_w : time to write checkpoint
- » t_f : mean time to failure

- Future trends
 - Bigger memory \rightarrow longer writes
 - More components \rightarrow more faults
 - Could reach a critical point

Uses of high-performance storage (2)

- Useful application data
 - MPI-IO
 - Parallel interface for file I/O operations
 - Allows I/O experts to implement optimizations
 - High-level libraries
 - Provide a variable-oriented view on data
 - PnetCDF, HDF5, ADIOS
 - Can use MPI-IO
 - POSIX I/O
 - Still prevalent in large-scale applications
 - Must maintain user expectations, portability, but make use of high-performance machines

Parallel filesystems

Eliminate single bottlenecks in I/O

- PVFS Clemson, ANL
 Open source, community maintained
- GPFS IBMLicensed by IBM

Lustre – Oracle/SunOpen source but supported

PanFS – PanasasSoftware/hardware packages

Object storage

Separation of concerns

Employed by many modern systems – not "old news" either

Distributed object placement

• Object placement algorithm:

- Replicas must be placed on different servers
- Place whole objects
- Essentially distribute a hash table over multiple sites

Related work

- RUSH
 - (Honicky and Miller, 2003) described distribution of remaining replicas after loss of one replica server
 - (Weil et. al., 2006) evaluated efficiency of reorganization
- Kinesis
 - (MacCormick et. al., 2009) evaluated object load balancing of object placement, user accesses and rebuild parallelism
- PIO-SIM
 - (Bagrodia et. al., 1997) analyze MPI-IO strategies such as collective operations, two-phase I/O, and cooperative caches
- PFSS
 - (Speth, 2005) simulated PVFS with RAID under various fault conditions

Problem statement

Exascale storage challenges

Number of disks

- Speed: to satisfy checkpoint requirements, will need ~30,000 disks
- Capacity: may use additional storage hierarchy for space
- Required bandwidth
 - ~12 TB/s
 - New ability to manage many clients
- Redundancy
 - Must plan to lose up to 10% of disks per year
 - That's 263 TB/day; 3.125 GB/s
- (Power)

System architecture

System design parameters

- Setup
 - **B** : address bit-length
 - **files** : number of files
 - file.*: file generation parameters, including file.width
 - **nodes** : number of servers (~700)
- Disks
 - disk.size:bytes
 - disk.speed: bytes/second
- User accesses
 - reads
 - writes

- Faults
 - disk.mttf: seconds
 - **mttc**: seconds
 - **mttr.reboot**: seconds (~1hr)
 - mttr.disk: seconds (~24hr)
- Redundancy
 replica.source: (primary, etc.)
 - file.replicas: (~3)

RAID Reliability Formula Chen et. al., 1994

Fault response model

- Object copies scheduled by replica management routines
- One copy per server in flight

Distributed Object Storage Rebuild Analysis via Simulation with GOBS

Disk failure rates

- CMU study
 - Typically ~5%/year
 - Up to 13%

- Google study
 - Below 5% in first year
 - Peaks near 10% in year 3

GOBS simulation of 32,000 disks in RAID 5 (4+1)
 Plot shows inter-node traffic due to RAID loss

Future directions in large-scale storage systems

Simple data placement is problematic

- Combine local RAID with inter-node replication for availability
- Local RAID is relatively faster for read-modify-write operations
- Whole node loss often temporary managed with replicas
- Replica chaining
 - Simple, localized object placement
 - On rebuild, creates a hot spot of activity

- Large declustered RAIDs
 - Fully distributed
 - On rebuild, all nodes involved, all write to one new disk

GOBS Simulator

Simulation as initial approach

Simulated system

Software abstractions

General OBject Space (GOBS) simulator architecture

- User interface
- Core functionality
- Replaceable components

Simulator - extensibility

- Extensible Java simulator
 - Heavy use of inheritance
 - Enable easy implementation of new schemes

Preliminary results

GOBS results - rebuild hot spots

- 600 servers; 30 TB disks; RAID 5 (4+1); disk transfer rate 400 MB/s;
- 1EB filesystem
- Single fault induced rebuild performed

GOBS results – rebuild curves

Single fault induced – rebuild performed

Replica pulled from last in chain

GOBS results – rebuild concurrency

- Multiple faults induced average traffic recorded
- Replica pulled from primary
- "target" RAID (4+1)
- "san" RAID (8+2)
- "active" begin copies immediately
- "latent" wait until replacement is inserted

GOBS results - data loss

- Vary disk MTTF and report objects lost per year
- Neither scheme loses data unless MTTFs are extremely low
- Indicates that aggressive schemes may be used that favor user accesses
- (How does one quantify amount of data loss?)

GOBS: Summary

Data placement strategies matter when performing rebuilds

• Rebuild time matters over long data lifetimes

Simulation can help evaluate placement strategies

• Much more to do here...

Thanks

Grants:

This research is supported in part by NSF grant OCI-721939, NIH grants DC08638 and DA024304-02, the Office of Advanced Scientific Computing Research, Office of Science, U.S. Dept. of Energy under Contracts DE-AC02-06CH11357 and DE-AC02-06CH11357. Work is also supported by DOE with agreement number DE-FC02-06ER25777.

Questions

Distributed Object Storage Rebuild Analysis via Simulation with GOBS

28