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Abstract

Although the grid allows the researcher to tap a vast
amount of resources, the complexity involved in utilizing
this power can make it unwieldy and time-consuming.
The Grid Interface for Parameter Sweeps and Explo-
ration (GIPSE) 1 toolset aims to solve this issue by free-
ing users from script debugging, storage issues, and
other minutiae involved in managing simulations on the
grid. GIPSE, which interacts seamlessly with existing
grid software, abstracts interactions with the grid to
present a research-centric view of the process rather
than the typical task-centric view. GIPSE offers an al-
ternative interface to the grid that removes the need for
application specific wrappers around parameter-driven
simulations and provides an interface to build data sets
for visualization. In this paper, we discuss how GIPSE
bridges a critical gap between existing tools and man-
agement of the overarching data result.

1. Introduction

Over the last few years, the notion of grid comput-
ing has emerged as a promising approach for harness-
ing computing power on a previously unheralded scale.
The foundational work of the Globus project [1] and oth-
ers [2–6] offer a gateway for users to both contribute to
and access the ever growing collection of grid resources.
With such great resources comes a torrent of data that
must be managed with regard to both new task creation
and output analysis, storage, and visualization. While
the grid provides the necessary tools for locating and
utilizing resources, modern grid software is targeted to-

1This work was supported in part by the National Science Founda-
tion through the grant SCI04-12633.
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Figure 1. Script-oriented process

wards managing individual tasks rather than the over-
arching result. This is only natural, as the purpose of
the grid is completing tasks and distributing work, not
management of data. Hence, the tasks related to man-
agement, such as splitting up tasks, submitting tasks to
the grid, parsing and storing the results, and analyzing
the results are left to the user as shown in Figure 1.

While various toolsets such as the Java CoG kit [7]
and others [8] have reduced the complexity associated
with interfacing with the grid, supporting interfaces
must still be developed to bridge the final interface to
the application. For parameter-driven simulation envi-
ronments with large parameter spaces, the development
gap between the existing tools and the actual results can
be quite significant.

To that end, we propose the concept of a generic
framework for parameter-driven simulations that links
the entire data production process in a result-centric
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Figure 2. Data-oriented process

fashion. The Grid Interface for Parameter Sweeps and
Exploration (GIPSE) toolset offers an alternative inter-
face to the grid that is specifically tailored to simulation-
based research. In short, GIPSE sits on top of exist-
ing grid tools and employs XML metadata to link the
service-centric nature of the grid with the data-oriented
nature of the researcher. GIPSE does not change the ex-
ecution of the grid but rather transforms the view of the
grid through the use of the XML metadata, as shown in
Figure 2. Thus, the researcher can still interact with the
grid using traditional tools in a task-centric view with
GIPSE-linked tasks simply appearing as normal tasks.

The remainder of our paper is organized as follows.
We first give a brief overview of existing tools to meet
modern grid problems in Section 2. Next, in Section 3,
we motivate GIPSE through examples from the domains
of network simulation and bio-complexity. The philoso-
phy of GIPSE and its approach to these problems is de-
scribed in Section 4 and, finally, Section 5 offers several
concluding remarks.

2 Modern Parameter Sweep Tools

A very common use of the grid is to provide a so-
lution to a so-called “embarrassingly parallel” problem.
In this problem, one has a set of data points to com-
pute, each of which is generated by the same basic sim-
ulation with a few different input parameters and none
of which depends on the intermediate output of another
task, implying no communication among tasks. There
are a great many uses for this model by researchers in
a variety of disciplines when conducting experiments

by simulation. Examples include simple cases where
a range of random number seeds should be input to a
simulation, or one of the more complex case studies dis-
cussed below. The size of the user pool and the inherent
complexity of the grid as a computing resource have led
to the design and construction of a variety of tools that
implement a solution to the above parallel problem.

Nimrod scripts:

This file runs sim with inputs {0, 1, 2}.

parameter x from 0 to 2 step 1
task main
node:execute sim $x

end task

Set up a compute resource and submit.

nimrod generate sim.pln
nimrod resource computer.edu
nimrod portalapi addrun sim G
nimrod addserver sim computer.edu
nimrod portalapi startexp sim

Figure 3. Scripts for Nimrod (simplified)

One such tool, named Nimrod/G [3], provides sev-
eral basic services to grid programmers through a sim-
ple scripting tool and a set of shell programs. To prepare
a set of tasks for execution in Nimrod/G, the researcher
writes a script to specify the variable parameters and the
list of commands to be executed, which may include
node-to-node file copies, substitutions, and other pro-
grams. The provided tools must then be used to build up
a database of computational resources, connecting these
to the task. Nimrod/G builds up a task list by varying
the parameters in the domain specified by the user, and
the user then executes the task list, and may observe its
progress by examining the database. An additional tool
that builds upon Nimrod/G is Nimrod/O, which provides
more advanced functionality for parameter optimization.
An example use of Nimrod is shown in Figure 3.

A different approach to the same problem is taken by
the AppLeS Parameter Sweep Template (APST) [6]. In
this framework, the researcher must know all the tasks
and parameters in advance, or produce this information
by a separate script. This information is written into an
XML file that provides the input for APST. The XML
file also contains the requested computational and stor-
age resources, input and output files, and other system
information. The user then executes the APST client,
which automatically executes the tasks on the various
resources, copying files as necessary. An example use
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Figure 5. A GIPSE client performing a small parameter sweep

APST scripts:
This file sets up a compute resource and
runs sim with inputs {0, 1, 2}.

<apst>
<compute><host id=’compute’>
<ssh server=’compute.edu’/>

</host></compute>
<tasks>
<task executable=’sim’

arguments=’0’>
<task executable=’sim’

arguments=’1’>
<task executable=’sim’

arguments=’2’>
<tasks>

</apst>

Submit.

apstd sim.xml

Figure 4. Scripts for APST (simplified)

of APST is shown in Figure 4.

Perhaps the most important weakness in these soft-
ware models is that they have no knowledge of the data
produced by the individual runs. Thus, the data can not
be used during run time to control the simulation envi-
ronment. In contrast, our solution intends to provide a
common data storage to allow for control of the over-
arching result. The user, with the resulting data set in
mind, can set up the parameter sweep or search in a
data-driven way, rather than a task-driven way. Figure
5 demonstrates a small parameter sweep in GIPSE. The
left panel shows how a complete data run is specified
with its configurations, and the simulation parameters
are set in the right panel. A summary of differences be-
tween the existing tools and the GIPSE design is sum-
marized in Table 1.

3 Case Studies

To better motivate the need for GIPSE, we describe
two modern simulation applications that are currently
managed by ad hoc grid tools. We then demonstrate how
GIPSE would provide a useful, extensible and scalable
solution for managing the simulation environment.
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Feature Nimrod APST GIPSE

Emphasis Tasks Tasks Result
Scripting Yes Yes None
Efficiency None None Automatic
Deadline-Driven Budget None Built-in
Data-Driven No No Built-in
User Steerable No No Automatic
Inter-operability None None XML
Data Knowledge None None General
Data Management None None Built-in
Database queries None None Built-in
Regression Testing None None Built-in
Parameter Sweep Built-in None Built-in
Parameter Search Built-in None Built-in

Table 1. Summary - GIPSE Toolset Im-
provements

Characteristic Networks Biology

Application ns-2 [10] ProtoMol [11]
Run Time Avg. 30 min. 7,200 min.
Arguments 35+ 15+
Parameters 7-12 10
Output Fields 100+ 10+
Tasks / Data Run 1-1.5k 1-2k
Generated Data 200-500MB 10-100GB

Table 2. Case Study Characteristics

3.1 Network Simulation

Network simulation is currently a rich area of new
research, algorithms, and software. This example is
gleaned from ongoing work by one of the authors [9]
that exemplifies the typical network simulation environ-
ment, in which a large amount of parameterized tasks are
submitted to a grid engine by use-once scripts. However,
as will be shown shortly, the gap between the existing
set of tools and the actual required interfaces for utiliz-
ing the grid can be quite significant and time consuming
to address.

Table 2 summarizes the characteristics associated
with a typical data run. For each step along the process,
scripts and user interactions were employed to create the
simulation results. Currently, Perl is used to generate all
the task command lines and input files by sweeping over
the target parameters. The tasks are then submitted to

the grid by the script. The user may monitor the submis-
sion and completion of tasks by other scripts and shell
tools. A final set of scripts collects the relevant data and
builds the output plots, and a directory hierarchy is cre-
ated to archive results. Often, this procedure must be
repeated to correctly position the parameter sweep or fix
scripting errors.

While the above scripts are sufficient to allow for the
use of grid functionality, the scripts suffer from several
key weaknesses:

• Task estimation: Although the use of task run-
time extrapolation does allow for a rough estimated
completion time, the results are often skewed to be
lower than actually required due to the heterogene-
ity of task execution length.

• User steerability: Unless the tasks are appropri-
ately organized in advance for individual tests, it is
difficult to remove tasks to hasten the completion
time. Since the grid engine only records tasks, one
must rely on the current queue of the grid engine or
a priori organization to determine which tasks to
remove. This problem is only further compounded
in the event of a busy grid in which a user’s tasks
are interspersed with other users’ tasks.

• Dataset management: The use of scripts and wild-
cards does not lend itself to easily mitigating the
effect of incomplete datasets. In the event that the
user does steer the results, partial datasets must be
purged manually or through the development of ad-
ditional scripts.

In contrast, GIPSE offers a distinctly different per-
spective for the simulation. To start, all of the typically
necessary scripts for submitting tasks to the grid or pars-
ing the data are removed. The interface to the simulation
is governed by a list of arguments that are based on a list
of user-defined variables. In fact, GIPSE shares many
of the properties of scripts. However, GIPSE removes
the minutia of script programming in a simple, intuitive
interface. Furthermore, unlike the previous case with
multiple disjoint scripts, the definitions of variables and
arguments are used throughout the entire simulation pro-
cess.

Once the user has defined the basic interface points
between the simulation and GIPSE, the user works from
the perspective of the final visualization, not tasks or
scripts. This process is further streamlined as the names
of what is available to vary and plot are already avail-
able from the earlier setup. For example, the user se-
lects what inputs to vary, the configurations needed, and
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Figure 6. GIPSE vs. existing tools

what output values to plot. For the researcher, the setup
process now deals with the desired end results. Figure 6
shows how GIPSE handles the total data run from start
to finish.

Upon submission of a simulation suite, GIPSE au-
tomatically creates the underlying scripts and inter-
acts with the chosen grid interface such as Globus via
JavaCoG [7] or Condor-G [2]. Job control is unified as
GIPSE presents an interface for monitoring and modify-
ing the data run progress from a scientific perspective.

Furthermore, GIPSE can assess a much more ac-
curate estimated completion time. Beyond using his-
torical or benchmarked runs, GIPSE can infer changes
in computational length due to changes in inputs since
GIPSE knows under what parameters a task was gener-
ated. Thus, GIPSE can offer an effective deadline driven
service driven by actual results, not by user guesswork.
Finally, GIPSE assists with the simulation process by
automatically parsing and analyzing the results and pro-
ducing the desired graphs. The data storage is handled
by GIPSE with the final statistical analysis or visualiza-
tion presented to the user.

3.2 Bio-Complexity

Another research topic that is generating a great deal
of new software is computational biology and bioinfor-
matics. The advent of massive amounts of biological
information brought by the human-genome and associ-
ated projects requires ever increasing amounts of com-
putational power and storage to efficiently analyze the

data. For instance, molecular dynamics has been pur-
sued with stochastic Monte Carlo steps (Hybrid Monte
Carlo), cf. [12–15]. With its inherent complexity, many
optimizations to the method are possible, and such op-
timizations typically involve the tuning of several pa-
rameters. The process of automatic optimization of al-
gorithms and run-time software for the above cases re-
quires extensive testing of the algorithm space and en-
capsulation of rules for guiding the selection of algo-
rithms and parameters.

In general, the method developer needs to character-
ize the parameter space and the performance metrics that
will be monitored. This type of problem usually involves
a portfolio of scripts that manage a complicated set of
input parameters that may be based on partial results of
previous runs, and also must manage metadata and stor-
age of the large output files. Statistics for typical com-
putations are shown in Table 2. Current users of Proto-
Mol use a combination of awk, sed, and shell scripts to
create a large directory hierarchy which combines input
files and output files. Parameter sweeps are performed
through shell loops, jobs are queued by the shell, and the
data is stored in directories named according to the vari-
ous metadata attributes of the data runs. Post-analysis is
then performed by awk scripts.

Although the current methods are sufficient to de-
velop the ProtoMol software and investigate new algo-
rithms, users find that scripts are rarely reusable from
job to job, so scripts and costly output data is not eas-
ily shared. Generally speaking, ProtoMol users face the
same difficulties discussed in Section 3.1; task comple-
tion time cannot be estimated, there is no available infor-
mation about running tasks. Data runs could be steered
by complex scripts but this is not done in practice. Fi-
nally, the output data sets are not easily accessed.

GIPSE would provide users of ProtoMol a variety of
techniques to manage data runs from a software perspec-
tive as well as a parameter search perspective. First,
the configurations and variable lists that are specified for
any ProtoMol/GIPSE run would be compatible with any
other ProtoMol/GIPSE run. Second, complex parame-
ter sweeps and searches and run time task selection and
specification are not realistically possible with the cur-
rent method. GIPSE would provide pluggable sweep al-
gorithms and stop conditions to provide runtime aware
controls of the tasks in the sweep.

As a practical example, a current ProtoMol user sub-
mits a parameter sweep over a variable that represents
an error tolerance in an energy computation, and desires
to observe the effect on total run time of the simulation.
Each parameter value is determined in advance, though
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Figure 7. GIPSE data in a GUI client

all are between 0 and 0.2. As above, complex scripts and
directory structures are used to run the sweep and extract
the relevant output data, which is the runtime of the sim-
ulation. In GIPSE, however, once the input parameters
and output data are known to GIPSE, sweeps could be
phrased “Plot as many values as possible before 8 A.M.
tomorrow morning, running up to 10 simulations in par-
allel.”

4 GIPSE Feature Overview

In this section, we describe the fundamental GIPSE
philosophy for managing simulation environments and
data runs.

4.1 Common Data Format

For most existing grid-friendly applications, so-
lutions that are aware of the underlying data are
application-specific. In the absence of a standardized
base format, the tools can become time consuming
to develop and maintain. In contrast, the foundation
for the basic and advanced features of GIPSE begins
with the use of a standardized XML format that is not
application-specific, as illustrated in Figure 8. GIPSE
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Figure 8. Example GIPSE XML output
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offers a consistent and open interface for storing, ana-
lyzing, and gathering data.

The actual conversion process to the GIPSE XML
format can be accomplished in one of two fashions.
First, a GIPSE library can be directly included in the
simulation and used for statistical data gathering. In this
case, the inter-operability with GIPSE is seamless as the
library contains appropriate output and submission func-
tionality. In the second option, the user writes a client
that incorporates the GIPSE library to convert the cus-
tomized format to GIPSE.

4.2 Intelligent Task Submission

Since GIPSE can understand and parse the underly-
ing data, GIPSE can offer a host of features not pre-
viously available on a generic basis. The ability to be
aware of the data has implications for not only data min-
ing but also for dynamically driven simulations, such
as simulations driven to fill a search space or mini-
mize a cost function. Furthermore, GIPSE can provide
statistically-driven simulations or intelligently steered
simulations, which is a significant improvement over the
cycle of user guesswork from before.

Whereas the workload for task generation with cur-
rent grid toolsets is left to the user and typically done
in an application-specific manner, GIPSE handles all as-
pects of task generation in an application-agnostic man-
ner. Due to the fact that GIPSE is targeted towards
parameter-driven simulations, an interface is presented
that lets the user select which variables to alter for the
simulation. Based on the selected sweeps, the GIPSE
server will generate the appropriate tasks and submit
those tasks to the grid. GIPSE then adds the associated
metadata to link the progress of individual tasks to the
overall progress of the data run for the simulation.

Another benefit of GIPSE with regard to task sub-
mission is the approximation of completion time. As
many simulation researchers know, better estimates of
completion time allow the researcher to react quicker to
the underlying impact of the computation. The fact that
GIPSE is aware of the inputs that contributed to a spe-
cific task and its respective performance allows GIPSE
to more quickly arrive at the correct estimation for data
run completion. GIPSE can calculate the estimated per-
formance of future tasks by including a weighting of the
relative impact of parameters rather than a blind average.

A secondary application of the increased accuracy of
task estimation would be better scheduling and in het-
erogeneous resource environments. Since GIPSE un-
derstands the relative impact of parameters on resource

Start Run simulation Store Output

Determine Convergence Finish
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Figure 9. The GIPSE data repository

consumption, it can schedule tasks with more precise
resource requirements. A more complete analysis of pa-
rameterized task time estimation in GIPSE will be dis-
cussed in a future paper.

4.3 GIPSE Data Repository

The final portion of GIPSE lies with the GIPSE data
repository. The GIPSE data repository completes the en-
tire abstraction of management for grid computing by
virtualizing how the resulting data is stored on the sys-
tem. GIPSE offers two important qualities, namely or-
ganization and traceability. GIPSE provides organiza-
tion through its global namespace, and traceability by
automatically recording useful information about how
the data was produced. To the user, it simply appears
that GIPSE is a giant database holding all of the various
data iterations that have been produced by the simula-
tions.

In Figure 9, a generic simulation is shown perform-
ing a parameter search until a certain statistical prop-
erty is reached. The diagram is greatly simplified; it
sequentially runs one simulation at a time. The solid
lines represent event propagation from the completion
of a task, and the dotted lines represent data flow fil-
tered through the GIPSE Library or a GIPSE client. The
output from each simulation is stored in the repository,
where it may be recovered later to automatically gener-
ate input paramters for a new simulation. This powerful
GIPSE feature will drive future work in the area of sim-
ulation parameter optimization by allowing for the use
of hot-pluggable control algorithms.

5 Summary

In summary, GIPSE offers a new approach for the
management of simulation-oriented grid computations.
Rather than fundamentally changing the underlying grid
engines, GIPSE abstracts the interactions with the grid
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engine to present a research-centric view of computa-
tion rather than exposing the service-centric view. Table
1 presents a summary of the numerous improvements
offered by GIPSE. Through its flexible XML-based in-
teractions, the GIPSE package removes the complex-
ity of managing grid software and offers the potential
to dramatically lower the barriers to simulation-oriented
research taking greater advantage of grid computing.
Thus, we feel that GIPSE offers significant benefit and
is a compelling platform for future development.
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“Protomol, an object-oriented framework for pro-
totyping novel algorithms for molecular dynam-
ics,” ACM Transactions on Mathematical Soft-
ware, vol. 30, no. 3, Sept. 2004.

[12] S. Duane, A. D. Kennedy, B. J. Pendleton, and
D. Roweth, “Hybrid Monte Carlo,” Phys. Lett.
B, vol. 195, pp. 216–222, 1987.
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