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Abstract

Large distributed computer systems have been success-
fully employed to solve modern scientific problems that were
previously impracticable. Tools exist to bind together no-
tably underutilized high speed computers and sizable stor-
age resources, creating architectures that provide perfor-
mance and capacity that scales with the quantity of re-
sources invested. In various forms such as Internet com-
puting, desktop grids, and even “big iron” grids, users and
administrators find it difficult, however, to obtain aggregate
systems that are more reliable than their underlying compo-
nents and simple to utilize in concert. In this work, we will
propose a model for controlling complex distributed systems
and its application to the construction of scientific reposito-
ries.

1 Introduction

Distributed computer systems seek to overcome natural
or economic limits in computer processing speed by link-
ing multiple computers together to create more powerful but
less wieldy scientific tools. A variety of existing tools may
be used to parallelize numerical computation [1] or archive
large data sets [2, 3]. However, the modern phenomenon
of overpowered desktops has created university labs, corpo-
rate offices, and home gaming machines that contain grossly
underutilized computing power and storage space. The cre-
ation of new middleware systems [4] that benefit scientific
users is an extremely active modern research area. In this
proposal, we outline our approach to an important practical
problem: the creation of a unified, reliable, secure scientific
repository from existing storage resources.

Scientific researchers employing computational systems
to perform numerical processing may implement relatively
efficient solutions using ordinary workstations. Potential
gains in processing power attract these users to distributed
computing, where they ideally undergo a scientific soft-

ware design process. First, they must coordinate processing
among the compute sites targeted by the application, ensur-
ing that the application can be used in the larger scale com-
puting environment and determining the resources required.
Second, they must coordinate data movement and storage
for the computation and integrate the storage resources with
the framework. Third, they must store and maintain the re-
sults in a permanent manner.

Modern computational research that seeks to scrap to-
gether whatever resources are available may be performed
by gluing together existing tools, writing new tools to solve
small problems, or building completely new architectures
and computational frameworks. Our approach to scalable,
widely distributed software systems recognizes the prob-
lems associated with solutions that are either too large or too
small. Essentially, we recognize the permanence of existing
systems and divide the framework into two parts: an exist-
ing resource fabric and a new controller: the resource fabric
is unchanged, allowing for existing systems and software to
function without the controller. For a variety of reasons in-
cluding simplicity and security, we constrain the controller
to perform operations on the resource fabric as an ordinary
user. From a software perspective, the controller may be
queried or called, allowing new software to be written us-
ing controller functionality as methods. The highlight of
the framework is that the controller has an internal model of
the resource fabric that is used when making policy-based
decisions. Such a model will borrow from the mathemati-
cal modeling and analysis of computing systems, including
operating systems, distributed systems, autonomic systems,
and others.

We call such a new system that has these properties a
grid overdrive controller, and the effort of our research will
be investigating and developing this model as well as em-
ploying it to solve problems in distributed storage. While
the scope of the project focuses on issues related to dis-
tributed computer systems, scientific end users are the ulti-
mate target, and we will emphasize ways in which we may
aid such developers undergoing the design process.
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The overdrive controller approach differs from existing
solutions in several ways. While much work in grid com-
puting has enabled resource sharing and secure remote ac-
cess, a higher level entity may be used to maintain a subset
of these resources. Thus the controller may focus on a spe-
cific task, such as maintaining specific replicated data sets
for a certain group of collaborating chemists on a chosen
subset of available resources. Control theory is tapped in
the design of the software to clarify the architectural frame-
work, numerically identify the system state and deviations,
and prevent potential failures such as data loss or disk full
conditions. Existing solutions have given us access and ab-
stractions, we intend to provide utility, management, relia-
bility, and meaning at the user level: atop an unpredictable
grid or Internet computing environment.

The remainder of this document is organized in the fol-
lowing way. Section 2 describes the current need for robust,
self-managing systems that interact with scientific users in
a reliable, understandable way. In Section 3, we describe
our intended areas of study. Preliminary results and a re-
view of our work are covered in Section 4. A summary of
the expected results of our research in Section 5.

2 Background

In a cooperative storage model, multiple users with mul-
tiple resources attempt to combine them into a unified sys-
tem. While the traditional methods described above are still
required - data access and movement for scientific jobs -
new problems arise as the system takes on several new prop-
erties: the system lacks a central authority [5]; the coop-
eration stems from application background and is defined
by the users, thus requiring administrative abilities to be
granted to end users; and the complexity of such large sys-
tems requires the use of additional abstractions [6].

Specifically, our approach to scientific computing in a
cooperative storage environment involves the construction
of a distributed database of datasets, in which user data is
replicated over the cooperative network. Such a database
is influenced by previous work in replica location, as in the
Replica Location Service [7]. Additionally, users of such
systems typically rely upon meaningful metadata lookups
given by a metadata catalog such as the MCAT [8] to obtain
the logical dataset of interest.

Many other systems have used a distributed storage fab-
ric to obtain new utility in reliability and performance. Ex-
tending the notion and method of disk striping and par-
ity disks [9] to networks of storage services, Zebra [10]
stripes data across multiple servers. A further extension is
OceanStore [11], which stripes replicated data across a po-
tentially global network of untrusted participating servers.
In contrast to disk striping, full file replication is performed
on untrusted servers by Farsite [12].

Grid computing attempts to solve data storage problems
and more, including security, importing legacy computing
technologies, managing virtual organizations, and high per-
formance. At the core of grid computing is the ability to
perform remote operations securely through the Globus Se-
curity Infrastructure [13], a public key system. Multiple
organizations may be coordinated to access resources us-
ing the virtual organization abstraction [14]. Grid comput-
ing attempts to provide a high quality of service [15] while
managing resources well, that is, providing job schedul-
ing [16], negotiating network management [17], and main-
taining high utilization [18] of the available hardware.

Fault management of storage systems takes three forms:
fault detection, fault resiliency, and fault recovery. Fault
detection on dynamic grid storage has important, as ordi-
nary RAID is insufficient [19, 20]. The Globus Heartbeat
Monitor [21], for example, employs unreliable failure de-
tectors [22] to detect problems and trigger a correction.
Replica creation is employed for data resiliency by several
systems, including the Storage Resource Broker (SRB) [23]
and the Grid Data Management Pilot (GDMP) [24]. Re-
cent work has focused on reducing the cost of recovery, as
in the FARM system [25], however, restoring the loss of a
given amount of data will always require a transfer of that
size. As a result, systems like OceanStore emphasize parity
based recovery models [26].

3 Research Plan

Much scientific data may be tabulated and stored us-
ing the database model. However, scaling these databases
with high throughput commodity computing systems is not
well understood. Users that have massive computation re-
quirements may submit thousands of jobs to a job sched-
uler, and run hundreds in parallel. We propose to employ
a new database system that manages scientific data in the
database model while coordinating with the requirements
of weighty computational projects. The new system, called
GEMS (Grid-Enabled Molecular Simulation) will combine
an accessible database of user-specified scientific informa-
tion with an underlying distributed system for the manage-
ment of large scientific data sets. The system must meet
the practical design requirements of ease of scientific use,
ability to function in a dynamic resource environment, and
flexible access control. Assuming that a multitude of stor-
age devices are available, what is desired is a front-end in-
terface and controller for an external, scalable cooperative
storage network.

The construction of a large commodity scientific
database of this type is a resource management problem in
which a multitude of storage providers must be conglom-
erated into a unified resource. System disks must be man-
aged to prevent the occurrence of disk full conditions in the
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worst case, and load balanced to prevent overuse of some
systems, with respect for the fact that the systems are bor-
rowed. Replicated data sets are much more difficult for
users to manage, so the system has to provide ease of use
tools and allow for reasonable default settings. Users must
be informed of potential storage sites for their datasets, so
that they may restrict replication to trusted resources. Sim-
plified but meaningful abstractions must be provided to al-
low the proper, efficient use of the distributed system when
programming. While a great deal of previous work has been
done properly managing local disks or coordinating data
placement on remote disks, our new system intends to man-
age remote disks to balance storage loads and prevent disk
full conditions.

A simple replica management system performs basic op-
erations to detect and handle faults. Faults or storage fail-
ures may observed by querying the storage servers. Faults
are handled by dynamically creating replicas, ensuring that
the user specified replica count is maintained. However,
in the presence of continuous server appearance and disap-
pearance, called churn [27], the amount of data that would
need to be transmitted to maintain user-specified replica
counts would be very large, which requires analysis from
the perspective of bandwidth economics, data preservation,
and other constraints [28].

The system model of concern to this work uses ordi-
nary methods to manage an existing system. In the ma-
ture field of feedback control, this existing system is called
the plant [29]. A controller is used to maintain the plant
in accordance with user requests. We intend to draw from
control models to optimize the state of the system when re-
sponding to the external disturbances. A diagram of the
control model to be developed by our system is shown in
Figure 1.

4 Preliminary Results
We began our research in this area by investigating sci-

entific databases for simple, massively parallel batches of
parameter sweep tasks [30]. This work allowed for a deeper
understanding of typical scientific usage of grid systems, as
well as represention of cataloged application data.

A cooperative scientific database called GEMS, for Grid-
Enabled Molecular Simulation, has been constructed and is
installed on three servers at the University of Notre Dame.
Each system makes use of the existing Chirp storage net-
work and thus has access to around 250 storage sites. The
software is currently used for molecular dynamics research
but could be easily and effectively used by other data inten-
sive computational tasks.

The current system meets many of the requirements pre-
viously discussed. From a scientific perspective, it offers a
unified view of the storage network to enhance the ability

to utilize a variety of remote storage resources in an ab-
stract way, and provides a public, searchable metadata tag-
ging system that may be used to catalog application-specific
input and output parameters. It eases the user management
of distributed data sets by implementing a “fire-and-forget”
replication model in which users may submit data and ne-
glect to fine-tune the replication process, performs active
replica monitoring and management, and promotes resource
load balancing by observing the state of the storage layer
when creating replica sites.

GEMS enhances the ability of users to create distributed
applications with a novel combination of functionality. It
provides a transaction model for the importation or creation
of new data by creating reservations and accepting data set
committal at a later date, and it integrates with a personal
virtual filesystem [6] to create a convenient I/O subsystem.
GEMS maintains replica locations and may derive local-
ity from user-specified topology information on a record-
by-record basis. Most importantly for users of distributed
job schedulers, GEMS supports computation through client
utilities that may create jobs in a variety of methods, includ-
ing local execution, active server execution, or job scheduler
execution. An overview of the GEMS design is shown in
Figure 2 a).

Additionally, the system meets the needs of both stor-
age providers and storage consumers [31]. It allows users
to gain access to remote machines with survivability deliv-
ered through the use of replication. It also respects storage
providers by allowing them to restrict access to unknown
users, evicting data, and monitoring the usage of their sys-
tem.

As GEMS relies upon a borrowed, relatively unmanaged
storage fabric, storage faults must be handled on a continu-
ous basis. The loss of storage sites or individual files must
be detected and promptly rectified to prevent the complete
loss of a record. GEMS currently uses an architecture in-
spired by feedback control systems [32] to handle storage
anomalies, which are treated as perturbations from the de-
sired system state. While resources are consumed when per-
forming large replications, other smaller datasets may be
lost. Thus, replication must be both prioritized, efficient,
and broad to prevent data loss but conservative to avoid
overconsumption of resources in the presence of short term
outages. We have adapted a model from control system the-
ory using probabilistic concepts to derive a ranking system
to handle observed storage problems.

As discussed above, grid computing is distinguished by
the ability to work across administrative boundaries, requir-
ing an ability to gain access to remote resources over new
protocols. The GEMS system implements an extremely ab-
stract representation of user identities, allowing the storage
providers and data owners to coordinate resource sharing
and collaboration without having to directly authenticate to
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Figure 1. Schematic of a cooperative storage controller (GEMS). The controller actively observes the
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Figure 2. a) Key components of the GEMS system. Automatic services include metadata queries,
replica location, and management. The underlying system consists of external grid-enabled file
servers. b) Usage scenario of the GEMS system. Local, off-site, and remote campus resources are
monitored for failures and automatic replica creation results to ensure dataset survival. Remote jobs
executing in a Condor environment obtain free storage space or nearby dataset replica locations via
GEMS client tools.
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GEMS [33]. A rendition protocol was introduced by which
a client may authenticate to the system indirectly through
a storage site in a situation in which authentication would
otherwise be impossible. This allows for a greatly enhanced
administration environment in which users which are essen-
tially unknown to GEMS may configure and share new stor-
age networks, maintaining their own access policies, while
gaining the benefits of replication and storage management.

GEMS is intended to be utilized by scientific jobs as they
execute on distributed scheduled resources. Current work
focuses on refining the methods used to access GEMS stor-
age by jobs running in these existing systems as shown in
Figure 2 b). The emphasis here is that GEMS simplifies the
distributed storage problem to the point that storage servers
may be as widely distributed as the compute servers. By
scheduling jobs to access on-site replicas we eliminate the
turnaround penalty caused by data staging, thus, replication
now has a double benefit: storage reliability and data pre-
staging.

5 Summary
The following list summarizes the projected contribu-

tions of this work.

• An enhanced understanding of dynamic replica sys-
tems, mathematical models that may be used to inter-
pret them, policy that makes effective use of them, and
software that manages them through the maintenance
of the system model;

• A complete model for overdrive grid controllers that
enhance the utility of existing systems by providing
new abstract functionality and actively maintaining un-
derlying grid resources;

• New software packages in the GEMS and East project
domains.

The GEMS home page is:
http://gipse.cse.nd.edu/GEMS.
GEMS is available at:
http://sourceforge.net/projects/gems-nd.

6 Notes
Justin Wozniak is in his third year of the PhD program

at the University of Notre Dame, working with advisor Dr.
Aaron Striegel. Dissertation defense is planned for March
2008.

Another application of the overdrive grid controller
model is in deadline driven job scheduling and policy en-
forcement [34], implemented in software called East, which
was not covered here for lack of space.
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