
Applying Feedback Control to a
Replica Management System

Justin M. Wozniak, P. Brenner, D. Thain, A. Striegel, J. A. Izaguirre

Dept. of Computer Science & Engineering
University of Notre Dame

Notre Dame, IN 46556 USA
{ jwozniak, pbrenne1, dthain, striegel, izaguirr } @nd.edu

Abstract— Many modern storage systems used for large-scale
scientific systems are multiple use, independently administrated
clusters or grids. A common technique to gain storage reliability
over a long period of time is the creation of data replicas
on multiple servers, but in the presence of server failures,
ongoing corrective action must be taken to prevent the loss
of high value and low value data. Such a system is difficult
to control, and replica management is typically handled in
an ad hoc manner. In this work, we claim that repairing
prioritized faults is a scheduling problem, founded on the need
to minimize a risk-based error function, E. Citing experiments
on a prototype replica system for molecular simulations, we
apply concepts from control system theory to analyze and
handle the application of corrective action.

I. INTRODUCTION

Modern high performance scientific computing has
evolved into a community exercise in which large groups of
users share computers and storage resources. The conglom-
eration of middleware and standards used to manage such
a system is called the grid [4]. A grid computing system
allows the user to access a much larger number of sites
for computation as well as participate in large scale, shared
storage systems.

Large, shared storage systems create new problems. As
users increasingly depend on remote systems for storage,
the underlying systems become less trusted and reliable
for a variety of reasons. A storage provider could revoke
storage by filling the storage device, evicting users, or simply
turning the machine off. Additionally, the scale of the number
of hardware components involved implies that individual
components will fail regularly.

To achieve fault-tolerance and data preservation over long
periods of time, replicas of each datum stored in the system
are created and spread across large numbers of devices. The
creation of replicas amplifies the size and scope of the data
management problem. Additional replicas demand additional
storage space. Appropriate metadata regarding the status of
the replicas must be constantly maintained to keep the system
intact. When data is to be retrieved, existing replicas must be
located, and access to the data must be granted to the user.
In a writable system, changes to the data in one replica must
be propagated to all copies in a consistent way. Additionally,
the system is dynamic. Appropriate response actions must
be taken if a file can no longer be accessed. Analogously,

action must be taken if a whole storage device or file server
becomes unresponsive.

In this paper, we describe our solution to the replica
management problem in the application area of molecular
simulation, and provide observations that apply to replica
systems in general. We discuss existing tools for replica
management in Section II, and sketch our solution, Grid-
Enabled Molecular Simulation (GEMS) [10], in Section III.
In Section IV we provide our model for replica systems in
general, and show how it can be used to analyze the actions
of a replica management system. We offer some conclusions
in Section V.

II. RELATED WORK

A variety of systems to support replica management on
distributed computer systems have been developed. A com-
munity leader in the promotion of standards, protocols, and
software for grid computing is the Globus Alliance [1]. The
open-source Globus Toolkit includes the Replica Location
Service (RLS) [3]. The RLS provides the ability to map
logical file names to physical file locations, thus providing a
building block for distributed replica storage. Systems built
upon the RLS must manage metadata externally.

Another important replica system is the Storage Resource
Broker, (SRB), which provides the user with an abstraction
layer over a variety of underlying storage systems. SRB
provides an “all-hosts” replication technique and a user-
controlled technique, and manages the metadata catalog in a
database [7].

A storage system designed for the application area of
molecular dynamics is BioSimGrid [8]. Centering on a
simulator-independent scientific database, BioSimGrid pro-
vides tools to perform analysis on its libraries of simulation
data. The software architecture combines a standard database
with an underlying SRB storage system.

III. CASE STUDY: GRID-ENABLED MOLECULAR

SIMULATION

An extremely active area of modern research in high per-
formance computing centers around applications in molecu-
lar dynamics [6]. Molecular dynamics (MD) is the numerical
simulation of bonded atoms and the forces they exert on each
other over time. Typical solvated single protein systems on

the order of 10,000 atoms require weeks of simulation time
on distributed sytems to compute motion on the nanosecond
time scale. Storage for sufficient post analysis of this rela-
tively small system is on the order of gigabytes (109 bytes)
and biochemists are aggressively working to achieve simu-
lations results on micro and milisecond timescales, rapidly
pushing the storage requirements for individual simulations
into the terabyte (1012 bytes) range. Storage repositories
for simulations would require petabyte (1015 bytes) storage
capacity just to facilitate current simulation results.

The combination of MD simulators and modern grid
middleware provides the researcher with a powerful tool
for performing large numbers of experiments, multiplying
the work done and storage required. In fact, the amount of
storage required by one user may be much more than is com-
monly available on one hard disk, and even a conventional
network of storage servers may not be enough. Users must
look elsewhere to find storage.

Additionally, molecular dynamics is an interdisciplinary
endeavor which often combines large numbers of researchers
from geographically and organizationally distant places. The
data from a simulation may be reused to the benefit of all
researchers in a given project. This means that users are often
interested in sharing data with others which implies that the
storage fabric itself is shared.

The GEMS system has been designed to meet these
goals: to increase the amount of storage available to users,
provide a searchable catalog of metadata, and allow for
data sharing and reuse. The system consists of a three-level
architecture: a toolset of client programs, including a GUI,
a central metadatabase and storage management system,
and the distributed storage servers. Users access the system
through the client tools in a variety of ways. They can add
data sets to the system, using GEMSput. The system may be
queried for existing data using GEMSmatch. New data runs
are simplified by using GEMSrun, which allows the user to
spawn new simulations by connecting the user to a compute
system called APST [2], and managing the metadata in a
GEMS-compatible way. Users are expected to typically just
use the GEMSrpr tool, which performs a high-level result
production request, utilizing the three lower-level clients.

The storage layer used is the Chirp [9] personal file server,
which runs on each storage machine volunteered to the
system. The Chirp servers register with a central catalog so
that resource information may be automatically discovered.
Chirp provides file services with UNIX semantics, a variety
of authentication methods, and simplified, user-level admin-
istration.

GEMS is an active replication system. Over time, the
server processes actively probe for problems and determine
a response, typically creating additional replicas or garbage
collecting storage for later use.

The active maintenance in GEMS consists of three com-
ponents, the Auditor, Replicator, and Garbage Collector. The
Auditor uses the metadatabase as a guide, and contacts the
storage servers to determine whether the actual system is
consistent with the information in the database. If a fault is

SQL GEMSd

GEMSmatch GEMSput

GEMSrun

Catalog

Compute

Storage Storage Storage Storage

St
or

ag
e

C
li

en
t

GEMSrpr

Se
rv

er
s

Fig. 1. GEMS Toolset Framework.

detected, relevant information is compiled into a Problem
object, ranked with a priority value, and enqueued in a
Priority Queue. The Replicator monitors the Priority Queue,
removes the Problem object representing the highest ranked
fault, and determines a response. In the case of a typical
server failure, the lost file must be identified by consulting
the metadatabase. Existing copies of this file are looked up,
free space is located on a Chirp storage server, and the file
is copied to restore the replica count to its desired level. If
files are over-replicated, or otherwise inserted into the GEMS
storage space inconsistently with the metadatabase, they will
be detected by the Garbage Collector component and deleted
to free space.

The maintenance process is shown in Figure 2. The
Observation step in the control loop represents the active
probing of the Auditor component for faults. Corrective
action is shown as the Correction signal from the controller.

IV. A MODEL FOR THE ANALYSIS OF A REPLICA

MANAGEMENT SYSTEM

In this section, we discuss some principles to allow the use
of control system theory to analyze our replica management
system. We begin with basic definitions and symbols, and
then describe some basic tools from control system theory
that prove useful when analyzing the GEMS system.

A. Definitions

Fundamental to the analysis of a replica system is the
number of replicas of a given file. The system contains N

files, where each file fi has xi replicas, fi1...fixi
. Each

replica must be stored on a server c, which means that for
each fij in existence, ∃k : fij ∈ ck. We loosely say fi ∈ ck

if ∃j : fij ∈ ck. The replica count is constantly changed as

Storage Storage StorageStorage

Catalog

U

O
bs

er
va

ti
on

Priority Queue

Plant

Controller

C
orrection

Auditor Replicator

X
File copy

Fig. 2. Replica Control Loop.

files are lost due to storage loss, or as files are replicated, so
we have xi(t) representing the number of replicas for fi at
time t. If xi = 0, then fi is permanently lost. Each file has a
size in bytes, si. The total storage consumed by the system
can be expressed as:

S(t) =

N∑
i=1

sixi(t). (1)

The number of storage servers and the amount of storage
offered is also constantly changing over time. Of the M

storage servers, dj represents the amount of disk space
offered by server cj . Thus physical storage limit of a server
represents a constraint on the files that may be stored there:

∀cj ,
∑

i:fi∈cj

si < dj . (2)

The amount of available storage C in the system at a given
time t may be expressed as:

C(t) =

M∑
j=1

dj(t). (3)

A clear consequence of (2) is that C ≥ S.
At the time of data insertion into the system, the user

may specify how many replicas are requested for a given
file, which we call ui. If xi < ui, then the user’s desired
replication level is not being met, and replication should
occur. The total storage requested by all users is:

U =
N∑

i=1

siui. (4)

We consider U to be the reference signal to the GEMS
system; the GEMS system is constructed to keep the under-
lying storage in line with the requested replica level.

B. System Response Analysis

We begin this discussion with an example: an experimental
use of the system over a short period of time, as shown in
Figure 3.

This experiment proceeded over a period of 5 hours. A
GEMS installation was configured, and access was granted
to Chirp storage servers running on 19 machines. The system
was configured such that the amount of apparently available
storage for GEMS was near 350 GB. The given diagram
plots the amount of storage apparently available as observed
internally by GEMS, and the amount of storage apparently
consumed as observed by GEMS. Both observations are
significantly delayed behind real time.

For the first 1.5 hours, data was inserted into the system
using GEMSput. The input data consisted of 50 files, each
337.6 MB in size, each replicated 10 times. At hour 1.5,
the system contained 500 files. Shortly after data insertion,
a fault was induced on one of the storage servers, causing it
to lose all GEMS data. This means that those replicas were
permanently lost, but that the amount of storage available
was not reduced. The effect is almost imperceptible on this
plot. At hour 2, faults were induced on 4 servers, causing
a noticeable bump in the amount of storage apparently
consumed. At hour 3, faults were induced on 7 servers,
causing an even more significant bump.

This type of diagram may be compared to a diagram
describing the response of a system to an impulse. In this
simple experiment, since all the files are equivalent, the input
signal can be described as U = 500 × 337.6MB, requiring
the system to maintain 500 files of 337.6 MB each. Deviation
from U may be measured over time to determine how poorly
the system is able to respond to the forced change in state.
A variety of error functions may be developed to quantify
the performance of the system.

A simple metric is simply the storage used by the system.
GEMS should not leave free space unused when additional
file replicas are requested. For t in the runtime of the
experiment, the error function in (5) simply measures how
well GEMS is filling the available space with data.

E =

∫
t

min(C(t), U(t)) − S(t) dt. (5)

Equation (5) offers no information about what is filling

 0

 100000

 200000

 300000

 400000

 500000

 0 1 2 3 4 5

S
to

ra
ge

 (
M

B
)

Time (hours)

Space used by GEMS

MB available to GEMS
MB used by GEMS

Fig. 3. System Reponse to Induced Server Faults.

that space, whether it is high priority data, or even whether
some files are over-replicated. If the system is full, i.e. U ≥
C, this equation is a equivalent to:

E =

∫
t

N∑
i=1

(ui − xi)si dt. (6)

Since the system should not be rewarded for over-
replication, we have:

E =

∫
t

N∑
i=1

(max(ui − xi), 0)si dt. (7)

For many purposes, including fairness, file size is almost
irrelevant to the worth of data. In many cases, if a single file
is lost, of any size, the amount of work that the researcher
would have to do to diagnose the problem and rescript
the simulation run is similar. Strictly in terms of per-file
replication counts, one could measure unweighted replica
shortages as:

E =

∫
t

N∑
i=1

(max(ui − xi), 0) dt. (8)

A related measurement is the number of files that have
been completely lost due to the loss of all of their replicas.
We measure this as:

Z(t) = (The count of files permanently lost.) (9)

C. Optimal System Response

All files are not created equal. Most users of storage
systems can specify which files are more important than
others. GEMS makes this easy, and provides a few ways of
specifying data worth to the system. As discussed in Section
III, GEMS maintains a great deal of metadata about the
datasets it stores which can be used.

The performance of a replica management system should
be measured in terms of what the users require from the
system. This is partially captured in the difference ui − xi,

but this does not capture the value of the data.
A simple observation from the experience of running

simulations, developed more fully in [5], is that input files
are more valuable than output files. This is especially true in
the GEMS environment, which is designed to promote the
sharing of input files: it is convenient to have pre-computed
output files, but if lost they may always be recomputed by
combining the input files and the execution information from
the GEMS metadatabase. Additionally, other factors may
weight the value of data files.

Data value would not be important if GEMS had unlimited
ability to respond to faults, but this is not the case. The
typical response to a fault, as described in our experiment,
is to create an additional replica. The ability to create
additional replicas is limited by several factors, including
the availability of source servers, destination servers, and the
network. GEMS limits the stress on servers by ensuring that
the Replication process never makes use of a given server
for more than one task at a time, i.e., a server is either
transmitting a single file, receiving a single file, or idle.
GEMS does not currently explicitly limit its consumption
of network resources.

The result of these observations and constraints is that
faults in a large system such as GEMS must be prioritized:
they can not all be handled or repaired at once, and they
do not all represent a threat to data of the same value. This
line of thinking led to the creation of the Priority Queue in
the GEMS controller, between the Auditor and Replicator in
Figure 2.

The architecture necessary is simple enough, but the
priority assignment scheme has not been dealt with. Given a
certain set of faults, what is the appropriate action to take?

If we assume that we have an error function E that is
correct, then we simply must minimize E. At each opportu-
nity, the system must take the action that will likely result
in the minimum value of E. Since future values of the cost
function are affected by unknown, unpredictable events such
as server failures, we must make standard assumptions about

Problem Object

Field Type

RequestedReplicas integer
CurrentReplicas integer
Duration date
Size integer
InputFile boolean
FileMetadata object
Priority integer

Fig. 4. Problem Object in GEMS

the future status of the system. For example, we can assume
that all servers are equally likely to fail, regardless of the
content that is stored on them. This implies that we may
minimize E by locally minimizing the cost function. If the
cost function E is easy to understand, this is easy to do.

Our cost function is simply the sum of a set of values
that result from observed faults. Each fault is prioritized in
some way. So the set of actions that we may take is made
up of the set of corrective actions we may take to repair an
observed fault, and minimizing the cost function is equivalent
to repairing the highest priority fault first.

D. Determining a Priority System

The remaining problem is to find a method to pick an
appropriate E. This is now equivalent to the problem of
prioritizing faults. The priority of a fault is then some
function applied to the available information about that fault.

In a typical replica management system, there are several
available statistics about a fault. We have the number of
requested replicas from the user, the number of replicas in-
tended to be allocated by the system, the number of observed
existing replicas on storage servers, the time elapsed since
the fault was detected, and the size of the affected file. In the
GEMS system, we also have information about whether the
file was an input file to a simulation. GEMS represents each
observed fault as a Problem object, with fields summarized
in Figure 4.

Each Problem observed by the Auditor represents a file
that is below its requested replica count and thus is in
need of additional replication. The RequestedReplicas field
indicates how many replicas of this file were requested by
the user, and indicates indirectly how valuable the user feels
this file is. The CurrentReplicas field indicates how many
replicas currently exist in the system, which is a volatile
observation. The system stamps each Problem with the time
of observation, stored under Duration. The size of the file is
stored as Size. File size may affect the resulting response in a
variety of ways, for example, the system may choose to delay
replicating a very large file to allow hundreds or thousands
of smaller file copies to complete first: performance which
may be desirable under many of the error definitions given
above. The InputFile field is true if the user has indicated that
the given file is an input file to a simulation. FileMetadata
is a compound field that provides the filename and replica

locations, and is needed to perform the repair. Based upon
all of this information, the Priority field can then be used to
determine which Problem to process next, highest Priority
first.

In GEMS, the priority function (P) is related to the
above error functions but is also influenced by more general
notions of fairness, as well as known observations about the
underlying storage system. For example, it is known that
many storage servers that are unavailable will eventually
come back, so a delay (D) component is introduced, and
the priority is based around the duration in minutes (M) of
the Problem, scaled by the risk of total file loss (K). We
adopt the convention that Problems with P ≤ 0 are left in
the queue. Currently:

P = MK − D (10)

Future work in developing GEMS will bring the priority
computation into relationship with the control-theoretic error
functions describe above.

V. CONCLUSION

Replica control systems have complex dynamics that must
be controlled carefully to minimize the risk of the loss of
high and low valued data. There is a need to quantify the
state of the system and its current level of risk in a cost
function. The resulting error function for the system may be
then be used to control the system in a systematic way, as
opposed to an ad hoc manner.

In this paper, we demonstrated some simple functions that
are useful when analyzing a certain replica control system,
GEMS. We then showed how this error function can be used
to make decisions when faults are observed in this system.

REFERENCES

[1] The Globus Alliance. http://www.globus.org .
[2] H. Casanova, G. Obertelli, F. Berman, and R. Wolski. The AppLeS

parameter sweep template: User-level middleware for the grid. In
Proceedings of the 2000 ACM/IEEE conference on Supercomputing.
IEEE Computer Society, 2000.

[3] A. L. Chervenak, N. Palavalli, S. Bharathi, C. Kesselman, and
R. Schwartzkopf. Performance and scalability of a replica location
service. In Proceedings of the International Symposium on High
Performance Distributed Computing (HPDC-13), 2004.

[4] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid. Intl.
J. Supercomputer Applications, 15, 2001.

[5] I. Foster, J. Voeckler, M. Wilde, and Y. Zhao. Chimera: A virtual
data system for representing, querying, and automating data derivation.
In Proceedings of the 14th Conference on Scientific and Statistical
Database Management, 2002.

[6] T. Schlick. Molecular Modeling and Simulation - An Interdisciplinary
Guide. Springer-Verlag, New York, NY, 2002.

[7] G. Singh, S. Bharati, A. Chervenak, E. Deelman, C. Kesselman,
M. Manohar, S. Patil, and L. Pearlman. A metadata catalog service for
data intensive applications. In Proceedings of Supercomputing, 2003.

[8] K. Tai, S. Murdock, B. Wu, M. Ng, S. Johnston, H. Fanghor, S. J.
Cox, P. Jeffreys, J. W. Essex, and M. S. P. Sansom. BioSimGrid:
towards a worldwide repository for biomolecular simulations. Org.
Biomol. Chem., 2, 2004.

[9] D. Thain, S. Klous, J. Wozniak, P. Brenner, A. Striegel, and J. Iza-
guirre. Separating abstractions from resources in a tactical storage
system. In Proc. of Supercomputing, 2005.

[10] J. M. Wozniak, P. Brenner, D. Thain, A. Striegel, and J. A. Iza-
guirre. Generosity and gluttony in GEMS: Grid-Enabled Molecular
Simulation. In Proceedings of the International Symposium on High
Performance Distributed Computing, 2005.

