
1

GEMS: User Control for
Cooperative Scientific Repositories

Justin M. Wozniak∗, Paul Brenner†, Santanu Chatterjee†,
Douglas Thain†, Aaron Striegel†, and Jeśus Izaguirre†

∗ Argonne National Laboratory, Argonne, IL USA
Email: wozniak@mcs.anl.gov

† University of Notre Dame, Notre Dame, IN USA
Email: {pbrenne1,schatter,dthain,striegel,jizaguirr}@nd.edu

Opportunistic techniques have been widely used
to create computational infrastructures and have
demonstrated an ability to deliver computing re-
sources to large applications. However, the man-
agement of disk space and usage in such systems
is often neglected. While overarching filesystems
have been applied, these limit the ability of sub-
groups within an organization to customize and
optimize system behavior. Explicit data placement
techniques offer more utility but may bury users
with the complexity of system specifics and scripts.
New solutions to storage problems will require new
approaches to data abstraction, archive survivability,
security models, and data delivery to consumers. In
this chapter, we describe design concepts used in
the GEMS storage system within which users may
specify abstract resource structures and policies for
their data.

I. INTRODUCTION

Data repositories are an integral part of mod-
ern scientific computing systems. While a variety
of grid-enabled storage systems have been devel-
oped to improve scalability, administrative control,
and interoperability, users have several outstanding
needs: to seamlessly and efficiently work with repli-
cated data sets, to customize system behavior within
a grid, and to quickly tie together remotely admin-
istered grids or independently operated resources.
This is particularly evident in thesmall virtual
organization, in which a subset of possible users
seek to coordinate subcomponents of existing grids
into a workable collaborative system. Our approach
to this problem starts with the storage system and

seeks to enable this functionality by creatingad hoc
storage grids.

Modern commodity hardware used at research
labs and university networks ships with an abun-
dance of storage space that is often underutilized,
and even consumer gadgets provide extensive stor-
age resources that will not immediately be filled.
The installation of simple software enables these
systems to be pooled and cataloged into a spacious,
parallel ad hoc storage network. While traditional
storage networks or tertiary storage systems are iso-
lated behind file servers and firewalls, constricting
data movement, we layer the storage service net-
work atop the client consumer network, improving
the available network parallelism and boosting I/O
performance for data-intensive scientific tasks.

Unfortunately, extending scientific repositories
out to volunteer data sources and across admin-
istrative boundaries using centralized file services,
static replica management systems, or peer-to-peer
systems is not viable because of the nature of tar-
get systems. Heavy scientific workloads, research-
oriented usage patterns, and variably collaborative
resource networks require new storage architectures.

Our focus application area, computational chem-
istry simulations, often produce heavy output data
sets, transcripts, etc., compared to amount of meta-
data that is used to specify the data set, such as the
simulation configuration, random seed, file names,
and access control policy. Metadata may be used
to refer to existing data sets but is typically much
smaller than the files themselves. Programmatic ac-
cess to metadata catalogs creates ascientific filesys-
tem that greatly eases access to complex reposito-
ries. Our architecture is inspired by typical scien-

2

tific usage: optimizing system performance for the
demands of typical software and interfaces for the
mental framework of typical simulation researchers.

The dynamic nature of ad hoc storage networks
allows scientific users to easily provide storage
resources to the system, insert data sets, and man-
age access control to resources and data. Hence,
researchers - not just computer administrators - can
patch together their own communities of software,
data, resources and users while integrating with a
larger repository system and benefiting from semi-
autonomic storage management.

Current systems limit user customizability, which
enables locally optimal performance, and ease of
utility, which enables maintainable software. Our
solution is to develop of flexible systems, provid-
ing a variety of access methods and administrative
controls. The policies carried out by flexiblead hoc
systems will be reconfigurable at the user level,
allowing for integration of grid resources into larger
systems and derivation of smaller grids; likewise,
enhanced or limited privileges will be adminis-
tered by users on their own data environments.
Applications developed on such a system can use
this hybridization, enabling system-aware workflow
structures.

Our solution to this problem is represented by the
GEMS (Grid-Enabled Molecular Simulation) sys-
tem. Programmatically, GEMS presents a reliable
database abstraction atop an uncontrolled network
of independent Chirp [1] file servers. GEMS was
originally designed for molecular dynamics but has
been fully generalized to support any application.
In this chapter, we discuss the advanced capabil-
ities of this system for scientific computation and
collaboration.

II. GEMS ARCHITECTURE

The GEMS architecture, shown in Figure 1 is
intended to provide a quickly deployable organiza-
tional framework for a network of independently
owned and operated storage services. In an insti-
tutional setting, these machines may already be
combined into an opportunistic computing system
such as Condor, but the available disk space may
go unused. The storage services are available on
these machines but not usable because of their
individual instability. By structuring and controlling
these servers, GEMS gains the utility of the extra

Queries

Notification

Synchronization

Data movement

Insertion
Put

Get

Run
Storage

Storage

Storage Storage

Storage

Storage

Visualization

Workflows

Level 2 Level 1

Client Tools with APIs

Metadatabase

Location database

Storage controller

Volunteer
Storage Providers

Central
Services

Level 3

Fig. 1. Overview of the GEMS architecture.

disk space as well as the performance offered by a
data delivery system that is potentially as scalable
as the computing infrastructure.

GEMS delivers the utility of these services as a
unified resource, and relies on four major concepts:
automated replication, awareness of administrative
concerns, distributed access control, and centralized
browsability. Replication increases the reliability
and parallelism of data sources; in GEMS, a semi-
autonomic controller [2] detects and responds to
subsystem failure in a priority-driven manner. Addi-
tionally, administrative matters are managed within
the same control system: disk allocation is balanced
with respect to the available space volunteered to
the system, and data is removed from disks as
their owners fill them. GEMS also manages access
control lists in the volunteered space and provides
an authentication mechanism [3] compatible with
existing techniques. Observed deviations from sys-
tem policy are prioritized and repaired [4] without
user intervention, by locating, allocating, and using
additional available disk space in accordance with
user policy.

The browsable repository created by GEMS es-
sentially implements a parameter sweep database.
This metadata may be used to derive a novel parallel
programming model that enables synchronized tuple
space communication and parallel data movement,
called adata sweep. This framework may be used
to build up parameter sweeps, workflows, interac-
tive parameter space exploration, and related hybrid
structures.

A. Runtime Operation

GEMS maintains a replica list for each data
file inserted into the system, which asynchronously

3

Storage

Storage Storage

Storage

X

Job Submission Site
pippin.cse.nd.edu

gems.cse.nd.edu

ccl00.cse.nd.edu

Execution Site

???.helios.nd.edu

Client Operations

Job Submission

Resource Access

Cluster Failure

???.rcac.purdue.edu

Resource Monitoring

Local User Services

Resource Allocation

Server Catalog

GEMS

Local Resources

Fault−Triggered Replication
???.cse.nd.edu

chirp.rcac.purdue.edu

???.cselab.nd.edu

Remote Resources

Fig. 2. Example operation of replica maintenance system. Replica
shortages are repaired while data services to running jobs continue.

grows as the file is replicated in accordance with
user policy. Management aspects include monitoring
the underlying storage for failure, file existence, and
file corruption via an MD5 comparison. A diagram
of example operation is shown in Figure 2.

Limiting the control software system to user level
limits its ability to abuse resource providers and
enables the opportunistic use of available storage.
Whereas a top-down stovepipe solution might intim-
idate storage providers, resulting in low volunteer
participation, the controller relies on an existing in-
termediary resource discovery service and interacts
with registered services as an ordinary user. This
approach promotes the healthy use of ordinary pol-
icy negotiation among volunteer resource providers
and the consumers of thead hocgrid [5].

B. Client Toolkit

While existing tools may be used to access files
stored on the underlying system, GEMS enables
the orchestration of higher-level operations by pro-
viding additional tiered client operations as dia-
grammed in Figure 1. First-level utilities enable
resource reservation and insertion. These allow a
client to reserve a given amount of space on a
resource - selected by the user or by GEMS - for
later use. Data movement utilities may be used to
transport the data to that location, in addition to the
use of existing clients compatible with the storage
services. Upon transfer completion, the state of the
files is synchronized with the centralized service,
which is then entrusted to manage them. Other
clients waiting for notification with respect to this
data set may then be notified, or the data set may

be found and located later by executing metadata-
driven queries.

Second-level utilities provide simplified access to
the system, including FTP-like get and put opera-
tions as well as a computation utility to bind existing
programs to data sources in the repository without
code modification. Third-level utilities enable higher
level user interaction with the system. Graphical
tools include a general-purpose data browser capa-
ble of downloading or uploading repository data.
Additionally, workflow structures may be built and
executed by using complex query and notification
combinations, as discussed below.

III. REPLICA ACCESS

Data replication has multiple benefits. While en-
hancing data survivability and enabling wide area
storage systems as discussed above, it may be com-
bined with computation systems to provide perfor-
mance benefits. Large-scale computing infrastruc-
tures built on load-sharing architectures or Internet
peer groups require scalable access to the scien-
tific repositories that enable the application. High-
throughput computing requires the elimination of
bottlenecks, such as the overuse of a particular file
server. A balance in disk usage may intuitively be
obtained by balancing data placement: a user-driven
process discussed above.

Replica-aware computation has several imporant
aspects. Record naming and identification are an
essential user tasks that may be greatly eased by
appropriate software tools. Data access may be
enabled by explicit data transfer or virtual filesys-
tem technologies. Ultimately, efficiency and perfor-
mance must be delivered by proper reference to the
replica system.

A. Data Identification and Access

The underlying complexity of a replica system
creates the need for abstract data catalogs that
enable scientific data tagging and location. In the
case of a simulation repository, for example, each
record in the replica system contains the set of data
files involved; each record is uniquely identified by
a config number. The record may also be tagged by
a unique set of key-value pairs, which are typically
based on the parameters used to generate the data,
such as software settings, scientific coefficients, and
random number seeds. Thescientific namespaceis

4

the set of possible tag combinations that may be
mapped to a record.

While abstract naming systems are required in
the presence of dynamic data placement, the use of
a virtual filesystem creates an additional translation
layer that must be overcome. The combination of a
config number and a filename represents anabstract
name for a file that is location independent with
respect to data sources, that is, replica location. The
combination of a file server name and a filename
represents avirtual name for a file. The resolution
of abstract name to virtual name is the essential task
of a replica location system, but the existence of
both names is useful in replica-aware computation.

The GEMS-based encapsulation of a set of sci-
entific data files inside a logically unified, tagged
record provides both scientific and technical ben-
efits. Simulation result files are typically used in
concert when performing analysis, and the abstract
tagging and naming system simplifies the imple-
mentation of postprocessing routines. The naming
and access scheme additionally helps mask the com-
plex internals of a distributed database, providing
conceptual understanding that may be lacking in a
plain filesystem. Common tasks such as retrieving
yesterday’s results, searching for a critical remote
file, or deleting a whole record may be performed
with confidence.

Technically, the data structures created by the
record system provide guidance when performing
maintenance activities. For example, resource con-
sumption may be allocated with respect to dis-
cernible dataset characteristics or prioritized with
respect to user-defined importance.

B. Computation in a Replica Management System

Utilization of network topology information with
replica access and data insertion is an important
technique. When reading from extended data repos-
itories, simple strategies may be used that benefit
from the user-defined storage strategy to obtain
access to nearby replicas. In a scientific setting,
client software is designed to enable researchers to
benefit from fast access to large data sets using a
variety of computation tools.

Data access methods may be classed asexplicit or
implicit techniques: explicit techniques specify that
data is to be moved; implicit techniques reduce the
method to one similar to a local data access method

and leave the data movement to an underlying
system. Explicit methods are exemplified by FTP
and SCP, while implicit methods are exemplified
by remote filesystems such as NFS or AFS. Addi-
tionally, virtual remote filesystems may be exposed
to user software using adapters such as Parrot or
UFO, allowing implicit access to otherwise explicit
services.

Both access methods are expected in extended
repositories and may lead to performance improve-
ments because of the available locality and par-
allelism of data sources. Added complexity and
flexibility result when combining traditional local
workstation computation with distributed cluster or
grid compute engines. Consider the differences in
complexity between two potential access patterns: a
file retrieval and graphical display on a researcher’s
local workstation or a batch of hundreds of parallel
computation jobs that analyze hundreds of existing
simulations to parameterize and instantiate addi-
tional simulations. In both cases, the system must
be able to provide access to a nearby copy of a data
file for read access.

However, in the distributed case, additional opti-
mizations are possible if the data tools are integrated
with the computation tools. First, when submitting
the job, the abstract name may be used to direct the
job submission system to prefer certain computation
sites that are more likely to obtain good data access
performance. This may be done by inspecting the
replica locations that correspond to the abstract
record definition upon translation to virtual data
names. Next, upon job arrival and start, abstract
names are resolved a second time, and data access
is optimized with respect to the actual job location.

The implementation of multiple-name resolution
provides benefits in performance and reliability.
Performance is improved by a two stage process
that executes jobs close to their data sources and
binds file access to nearby services. Reliability is
improved by allowing running jobs to determine
replica existence and rebinding the file access with
respect to replica availability.

C. Formulating Job Submission for Replica Access

An adapter called Parrot has been previously
developed [1] to present a view of multiple remote
filesystems as a single, local filesystem. By trapping
file operations from a running process, the adapter

5

may allow the process to access files from remote
servers in a transparent way. This adapter enables
the user to choose thecompute site, theinput source
site, and theoutput destination siteindependently.
The replica management system is combined with
these tools to locate data; however, doing so in-
creases the complexity faced by the programmer. A
client job description framework is needed to locate
input sites, find sites to safely store outputs, and
obtain a compute site that is not already occupied.
To obtain good performance, the three sites should
be collocated.

Automated resolution allows clients of the
replica management system to map file loca-
tions in the searchable, database-like namespace
to the physical namespace of the virtual filesys-
tem. In this work, we call the entries in replica
namespace theabstract filenames, as opposed
to the virtual filenames compatible with the
adapter.Name resolutionmaps abstract names in
a /label/path/file format to virtual file-
names in a/protocol/host/path/file for-
mat. The replica management system provides the
additional ability to obtain data set labels by search-
ing over the metadata, enabling one to perform
computation in a completely application-oriented
way, as shown in Figure 3.

> KEY=$(GEMSmatch reagents=acidbase)

> GEMSrun --input HCl /$KEY/hcl

--input NaOH /$KEY/naoh

--output NaCl salt

--output HOH water

reagents=saltwater

--exec transmute HCl NaOH

to NaCl HOH

Fig. 3. Example simulation script using abstract data locations

The first line of the script uses the client toolkit
to locate the data set label required to obtain the
necessary input files for thetransmute task.
The second line invokes the toolkit to resolve the
abstract file names to virtual file names compatible
with the adapter and then to submit the user task,
transmute, to an available compute system, using
the adapter to perform the file operations. The
result of this script is a new entry in the replica
system, containing two files,salt and water,
which may be located by using the tag-value pair
reagents=saltwater.

Clearly, more complex tasks would involve
lengthy command lines. Since existing job sched-
ulers already require users to explicitly define input
and output files, simple extensions to the syntax
of these job scheduler scripts may be preprocessed
by the GEMSrun client to provide a more familiar
syntax for job submitters.

D. Job Submission Methods for Replica Access

In a replica location system, a service maintains
a database of replica locations. This service may be
queried in three ways: to map metadata tags to data
set labels, to map data set labels to a set of file
names, or to map a dataset label and file name to
a storage site. Once the site has been obtained, the
data source may be accessed as described above.

While a replica management system does not
spawn computation itself, we demonstrate a tool
to interface with existing computation systems to
access, analyze, and create data in a compatible way.
In this section, we outline fourcomputation modes:
to effectively perform computation utilizing replica
access:

• Local Computation on Remote Data; which
allows the local workstation to access remote
data sources and create new data in the replica
system over a virtual filesystem.

• Scheduled Computation on Remote Data;
which interfaces with an existing scheduler
to create jobs that access data over a virtual
filesystem.

• Remote Computation on Remote Data; which
utilizes the ability to directly send jobs to
remote systems for processing.

• Multiple Name Resolution; which is a more
complex scheduled method, guiding the match-
making process with respect to data locations.

1) Local Computation on Remote Data (LCRD):
In many common cases, the user simply desires to
run a single job on the local workstation. The LCRD
model enables users to start new jobs that require
data access to the replica management system. This
mode is based on a typical command consisting of
an operation on abstract dataset identities, compris-
ing the input and output locations. These abstract
arguments, which do not specify the actual data
location, are translated by the replica system into
the physical file locations required by the virtual
filesystem adapter, in a manner analogous to shell

6

parameter parsing and expansion. Thus a task that
requires access to remote, abstracted data sets may
be translated into a local task operating on data
that is virtually local. An example execution of this
method is shown in Figure 4 in the LCRD frame.

Optimizing this operation is simple. First, the
output data location is determined. The preferred
output location is a server on the local host, but if
this is not available or not allowed by the relevant
access control policy, a server that is not currently
busy will be selected. In the worst case, a remote,
busy machine will be selected. If any required input
files from the system have replicas on a local server,
these hosts are selected as data sources. Otherwise,
a remote, idle service will be selected to provide
the file; and if this is not possible, the worst case
behavior of a busy remote server will be selected.

2) Scheduled Computation on Remote Data
(SCRD): We augment the specification for sched-
uled remote jobs by allowing users to specify in-
put and output locations that reside in the replica
management system, and we use these locations
in the commands and arguments. The GEMSrun
client translates this augmented submission script
into a submission script compatible with the replica
system by making necessary substitutions: resolving
the abstract data locations into virtual filesystem
locations and ensuring that the resulting job does
in fact run atop the adapter. The data sets required
by the resulting job are then location-independent
because of the adapter (i.e., no data staging is
necessary).

As shown in the SCRD frame of Figure 4, jobs
are sent to the scheduler with requested destination
hosts, illustrated by the “@” markup. The scheduler
honors the request and submits the job to the
appropriate compute site.

3) Remote Computation on Remote Data
(RCRD): The file server used in this work allows
the user to execute jobs inside a server-side
execution environment (a Chirp feature). The
GEMSrun client makes use of this technique
by sending jobs directly to a file server for
computation. The method is similar to the scheduled
SCRD method, but missing two important concepts:
external centralized matchmaking and scheduling.

An example of replica access is shown in Figure
4 in the RCRD frame. Two jobs are submitted to the
system by the user. Each specifies a target file,f1 or
f2. The requests are translated into replica location

operations. The request forf1 is received first, and
the response indicates that the file can be accessed
on hostc3. This host is then marked “busy.” The
client then submits the job to hostc3. The second
response arrives at the server, which locates the file
on c3 andc4. Sincec3 is busy, the job is sent toc4.

4) Multiple Name Resolution (MNR):As seen
above, the local computation method selects replicas
relative to the given computation site, which is
immutable. The scheduled and remote computation
methods select replicas relative to a variety of poten-
tial compute sites, presenting challenges of interest
to designers of grid computing systems.

• In an environment in which replica locations
are free to change or fail, replica locations may
not be available at job execution time.

• If the job is not deployed to the specific host
that optimizes the file transfer, it may be bene-
ficial to re-select replica locations to minimize
transfer relative to the actual computation site.

Clearly the first property is a harder constraint than
the second property, but both represent essential
design issues.

A potential solution involves resolving the replica
locations twice. The first resolution is performed by
the job submission routine, which now selects only
the computation site. The computation site is chosen
in such a way that the resulting file transfers will
be minimized. Then, after deployment, the compute
job again resolves replica locations, essentially per-
forming an LCRD operation described above. At
this point, all replica locations may change as a
result of storage server failure or computation site
surprises, but the selection of compute site is fixed,
greatly simplifying the choice. This may produce
very good throughput at the small but significant
cost of a second query to the centralized replica
location service.1

In summary, we have a scheduled method similar
to the SCRD but more robust and efficient because
of the complex handling of replica locations. Below,
the algorithm for the Multiple Name Resolution
method is outlined:

1A second query is not absolutely necessary: results from thefirst
query could be packaged, deployed, and reused.

7

LCRD SCRD

 Metadatabase

Match
1flocate()

Storage

1c

1f

Storage

c2

1f f 2

Storage

c3

f 2

Storage

c4

adapter

1fjob()

query

response

S
to

ra
g

e
S

e
rv

e
rs

C
lie

n
t

Virtual Filesystem Operations

Local Computation

GEMSrun(f)1

 Metadatabase

Match
1flocate() 2flocate()

Storage

1c

1f

Storage

c2

1f f 2

Storage

c3

f 1 c3job() @ f2 c4job() @

1fjob() f2job()

Storage

c4

f 2

query

response

S
to

ra
g

e
S

e
rv

e
rs

C
lie

n
t

Scheduler

adapter adapter

GEMSrun(f)GEMSrun(f)1 2

Local Computation on Remote Data Scheduled Computation on Remote Data

RCRD MNR

 Metadatabase

Match
1flocate() 2flocate()

Storage

1c

1f

Storage

c2

1f f 2

Storage

c3

f 2

Storage

c4

1fjob() f2job()

query

response

S
to

ra
g

e
S

e
rv

e
rs

C
lie

n
t

GEMSrun(f) GEMSrun(f)1 2

 Metadatabase

Match
1flocate() 2flocate()

Storage

1c

1f f 2

Storage

c3

f 2

Storage

c4

f 1 c3job() @ f2 c4job() @

1f

Storage

c2

1fjob()f 2job()

query

response

S
to

ra
g

e
S

e
rv

e
rs

C
lie

n
t

Scheduler

adapteradapter

GEMSrun(f)GEMSrun(f) 21

Remote Computation on Remote Data Multiple Name Resolution

Fig. 4. Computation in a replica management system

Job Submission
The following algorithm is performed by
GEMSrun.

1) For each potential compute hostci,
compute the network transferni re-
quired to perform computation on
that host.

2) Compute appropriate ranks and sub-
mit the Late Resolution algorithm as
a job to the scheduler.

Late Resolution
The following algorithm is performed by
the job upon arrival on a compute host.

1) Determine the host this task is occu-

pying.
2) Locate all required files, and prefer

locations that are on this host.
3) Resolve abstract file locations to vir-

tual file locations in the user job
argument string.

4) Execute the user job atop the
adapter.

This algorithm is illustrated in Figure 4 in the
MNR frame. In a manner similar to the SCRD
illustration, the user submits jobs, the replica man-
agement system suggests appropriate hosts, and the
jobs are sent to the external scheduler. However,
the external scheduler placesjob(f2) on c3 first

8

and then placesjob(f1) on c4. Simply applying the
SCRD method here would cause two network file
accesses: each job would begin accessing files found
on a different host. Using MNR,job(f2) utilizes
the Late Resolution method and obtains access to
the local copy off2. Then,job(f1) utilizes the Late
Resolution method and cannot locate a local copy
of f1 or the originally preferred copy onc3, but is
able to locate the copy onc2. The net result is that
one job obtains access to a local file, and one job
must access a file over the network.

E. Summary

LCRD jobs can be executed in any environment
in which a replica location service is available,
creating a useful and practical prototyping tool for
running simulation in the presence of any replica
location system. They even can be submitted to job
schedulers, implicitly creating an “unguided” MNR
method.

SCRD jobs provide a useful and often requested
additional functionality to existing job schedulers:
they allow matchmaking based on replica location.
Once the job arrives, it functions as a LCRD job,
that is, if a different compute site is allocated by
the scheduler, all file access must occur over the
network, because name resolution haspermanently
occurred.2

RCRD jobs require the user to have compute
access to the remote machine, over a system such as
SSH or Chirp. A special case that could benefit from
such a system is Internet computing applications as
discussed below, because such applications often re-
quire an application-specific job scheduling policy.
The RCRD method would allow such applications
to use the data locations as an additional guide in
the process.

The MNR is a robust and complex method for
job scheduling. By both guiding the job to an
appropriate compute site and making corrections
upon arrival, it gains the benefits of the replicated
data sources and the global view of the scheduler.
Practically, it relies upon the ability to package
additional code as a wrapper around the user job,
which may be a constraint in some environments.

2A variation would be to instruct the scheduler that a given job is
only eligible to be run on the specified host, and must otherwise wait-
which would provide good collocation but would fill job queues in
many applications.

IV. THE REPOSITORYMODEL

Scientific repositories create a browsable front
end for user-labeled data sets stored in a scalable
backend. With the primary intent of creating a
searchable repository, GEMS presents a database-
like abstraction over the file sets stored among the
storage providers. User applications could access
these services directly, but since they are indepen-
dently managed, their presence in the system is
unreliable. Technically, the GEMS system creates
a centralized parameter sweep database of applica-
tion specific metadata backed up by a churn-aware
file replica management backend. By combining
the metadatabase with the management system, a
quickly deployable tuple spaceand a survivable
and parallelizable data system are therefore imple-
mented. The resulting system is thus a merger of
repository tags and parameter sweep entries, which
programmatically represents a shared tuple space in
which running jobs may communicate, with linkage
to a replica location service.

The browsable repository created by GEMS al-
lows users to structure workflows around data sets
stored in GEMS. This metadata may be used to
derive a novel concurrent programming model that
enables synchronized tuple space communication
and parallel data movement, called adata sweep.
This framework may be used to build up parameter
sweeps, workflows, and complex interactive param-
eter space explorations.

Each entrye in the GEMS metadatabase contains
a tuple of parameter tags and values, formatted as
m equations:e.tuple = {pi = vi, i = 1..m} (see
Figure 3). A query set may be formed by creating a
similar tuple{qiRiwi, i = 1..n}, whereRi is some
relation. The metadatabase responds to a query set
by returning the set{e : ∀qi∃pj : pj = qi∧vjRiwi}.
Thus, range queries over the metadatabase may be
simply constructed; for example, a user may request
“all entries of type simulation with temperature
above 300.” The entrye also contains a file man-
agement data structure,e.files, which may be used
to obtain file information and replica locations.

A. Workflows in a Tuple Space

Experimental scientific workloads are more often
driven by adaptive parameter investigations than
well-known static sequences. Popular grid program-
ming models include the parameter sweep and the

9

workflow. In a parameter sweep, the same compu-
tation element is independently performed by using
each eligible point of some parameter domain as
input. In a workflow, a partially ordered set of
data movement and computation elements is run to
completion. An example of a hybrid model is the
parameter optimization, in which the output of the
computation is optimized within a given parameter
domain.

While these models are extremely powerful, they
fail to capture other important computations such
as postprocessing analysis, query-based computing,
and interactive computing. Given a computation
y ← P (x), examples for these cases include the
following:

• For each completed simulation in categoryC,
compute the average of state variableyi and
store it.

• For each completed simulationPC(x), if the
output matchesQ, re-run the simulation with
parameter modification∂x.

• Plot the current state of each simulation.
Restart a user-selected set of simulations from
their last checkpoint after altering the state
variablexi.

Workflows built within the GEMS framework are
supported by the ability to parameterize workflows,
thus seeding the resulting execution. While existing
programming tools such as shells support all of the
operations performed by workflow tools, workflows
are useful for three software engineering-related
reasons:

• Encapsulation:Operations performed within a
workflow task form a logical group.

• Clarity: The task dependency structure may be
described by a simple graph, and the state of a
running instance may be similarly diagrammed.

• Restartability: Partially completed workflows
may be restarted based on previously com-
pleted, safely stored work. The ability to
quickly determine the minimum amount of new
work that must be performed to renew an
attempt to achieve a target or explore a new
target limits the damage done by faults and
enables exploratory interaction.

Any new workflow system functionality should
not impede these abilities: without them the user
might as well use a fully functional programming
language. Thus, the GEMS method alters this model

in only a few well-defined ways First, workflow
targets are parameter tuples, not files or opera-
tions. The existence of these may be easily queried,
as shown above. Second, workflow targets may
be parameterized, resulting in function call-like
tasks. This results in several problems that must be
solved by the new framework. Task parameters must
be arithmetically manipulated and propagated into
the actual task execution. Additionally, operations
within workflow targets must be properly param-
eterized. Inputs and output file locations are also
parameterized values that must be linked into the
user computation.

Consider a batch of scientific simulationsS, over
which several random seeds may be used, and the
simulation time is broken into manageable, check-
pointable segments. Each evaluationS(u, r, t) of the
simulation is defined by a user nameu, a random
seedr, and a time segmentt, for m random seeds
and n segments. Each evaluation depends on the
previous evaluation with respect to time but within
the same random seed group.

B. Dynamic Creation of Workflow Targets

In a static workflow system the user would have
to generate a Makefile-like script containingm× n

workflow tasks with hand-parameterized filenames
and other objects. In a parameterized workflow
system this may be framed by simply stating that
S(u, r, t) : S(u, r, t − 1); that is, each segment
of execution time is dependent on the previous.
A base caseS(u, r, t = 0) is inserted into the
system as an initial simulation state or base case.
A target S(sorin, 312, 100) may then be specified.
The system would generate the 100 resulting tasks
and execute them. Parameters are passed into user
code by filtering a user-specified configuration file
with sed-like operations. Then the user task is exe-
cuted as specified by the workflow node. Thus each
workflow task must contain a header, a dependency
list, a mapping from header parameters to metadata
values, a mapping from configuration file tokens
to header parameters, and an execution string. The
resulting example workload fills a rectangular pa-
rameter space but includes dependency information
as shown in Figure 5a).

More complex, interactive workflow-like struc-
tures may also be simply instantiated within this
model. Consider the same molecular simulation

10

t

simulation segments for u

r
t

r

simulation segments for u

a) b)

Fig. 5. (a) In a parameter sweep [6], [7], user jobs typicallyfill a square parameter space. (b) To allow for interactive parameter execution,
the system has to allow the dynamic user creation of execution branches.

example with the addition of user steering: the
user may modify the force fields applied within the
experiment, thus forking a new trajectory through
the parameter space as shown in Figure 5b). In this
case, user requests simply create new targets, and
tasks are launched with respect to the dependency
state of the whole workflow. The tree-like search
structure is a simple consequence of a minor change
to the parameterized dependency rule, such as

S(u, r, t,branch = p) :

S(u, r, t− 1, branch = p) (1)

or S(identity = p, time = t− 1).

Thus, abranch parameter is added, and the segment
identity code is referenced. Segments depend on
either the previous segment in timeor the branch
point when appropriate.

V. COMPUTING IN A REPOSITORY OFREPLICAS

The data-driven grid models a compute grid as
a set of data sources and sinks of interest, laid out
as a potential workspace. Mobile jobs, submitted
by data-aware schedulers, interact with thedata
landscape, consuming existing data objects and
storing output data records through unitary opera-
tions calledtransforms[8]. Users of a opportunistic
grid of arbitrary size may havetemporaryaccess
to a large variety of existing storage resources,
accessible over standard APIs [9], [10]. However,
individual users would typically have difficulty or-
ganizing these sites into usable categories, ensuring
data survivability in the presence of churn, and
efficiently using the resources as data sources and
sinks.

A. Data Placement

While approximately optimal solutions have been
attempted for the job/data co-scheduling problem,
we focus on the simple case of users attempting
to enable grid computing in small collaborative
projects. Our model relies on an external, flat list of
available, independently administered storage sites.
Users are then capable of organizing the sites into
logical clusters, making up a storage map. This
reusable per-record process is technically less diffi-
cult than typical job placement matchmaking. The
maps result in a mentally tangible data environment
in which the storage, access control, and data move-
ment policies may be carried out.

Policy negotiation lends itself to existing work
on resource matchmaking [11], however, we extend
this model in the storage case by enabling users to
specify cluster topology along with the eligibility
criterion, called astorage map. This additional
information deepens the semantics offered by the
given policy information, by labeling the eligible
sites as well as defining how to use them. Given
a list of available storage sites, the user can select
eligible locations and group them into clusters. In
typical use cases, whole swaths of available ma-
chines at collaborating universities can be pooled
together, with simple categorization.

For example, using traditional matchmaking a
controller could be instructed to store two replicas
on a given list of eligible sites; with the storage map,
one replica would be stored at each of two clusters,
and data access operations from a client at either
cluster would be directed to the nearest replica. Thus
the simple augmentation can be used to reduce the
occurrence of wide-area data access performance

11

penalties and increase the availability of replicas in
the event of cluster outages. Other consequences of
the storage map concept are discussed below.

B. Data Access

To satisfy these problems, we offer thedata
sweepas a programming model. This model al-
lows users to operate within adata landscape
by performing database-like operations. Application
checkpoints, job dependencies, user or automatic
branches, and ordinary stored data records may be
encapsulated and utilized by the researcher. While
the high-level approach works with abstract data
records stored within the storage map, the under-
lying system still operates on the distributed file
servers, allowing the use of existing application
codes.

Each data record in the system is correlated
to a storage map indicating the cluster topology
used by the record. Combining the data sweep
computation model with this information allows
running jobs to access replicas that arenearestto
the computation site with respect to the map. Thus,
while not globally optimal, the user-level replica
placement flexibility offered allows users to create
locally optimal systems for their work.

Compiled user codes are unable to accommodate
the variety of new and experimental APIs. Thus,
new systems must provide tools to connect them to
new services. Our approach to this problem builds
on previous work that creates abstractions within
UNIX-like structures. Since GEMS is primarily a
grid controller, it does not deal with these struc-
tures directly but provides tools to orchestrate the
connections. Additionally, our solutions reinforce
the generally held conception that coarse-grained,
suboptimal performance is achievable by easily
portable software. In these examples, we consider
data access methods for scientific users launching
large batches of jobs that run on a compute net-
work in which an opportunistic storage network is
embedded. Experimental cases were performed on
a simple archive creation workload and in an actual
molecular hyperdynamics application.

C. Archive Creation

The first experiment measured the time taken to
create a simple tar file from a local data set used by a
real world scientific application, the hyperdynamics

experiments. The resulting archive is 3.7 GB and
contains 13,934 files. The data storage sites ran
Linux 2.6.9 on dual 2.4 GHz 64-bit AMD machines,
all on the same institutional network. The GEMS
server was located on a dual 2.8 GHz AMD system
running Linux 2.4.27. The three methods were run
and profiled; results are shown in Figure 6.

• G/P
GEMS provides a data repository for running
scripts through traditionalget and put op-
erations. Interleaving these within script oper-
ations results in a data staging model similar
to that used by Condor and other systems.
However, since data records and replicas are
stored among the compute sites, there is great
potential for data parallelism and locality. This
solution is highly portable as it relies only on
the GEMS client toolkit, a Java implementa-
tion, but it also relies on significant local disk
usage and data copying.

• PIPE
GEMS creates datasourcesandsinksthat may
be targeted by input and output streams. For
example, users may reserve larger amounts of
space in the GEMS system than are available
on a local client machine, and then use a
reference to the reserved location as a streamed
output target, enabling the creation of large
archives without large local space or data copy-
ing. This method offers relatively high perfor-
mance and an intermediate level of portability
and complexity. Again, it uses only the GEMS
client tools, but it requires interprocess commu-
nication connected by the user through UNIX
pipes or a similar technique.

• VFS
GEMS offers client tools to manage file-
naming conventions used by the Parrot virtual
filesystem. This user space adapter provides
system call translation to reformulate ordinary
data access methods into distributed filesystem
RPCs. GEMS clients simplify user access to
this tool when operating within the replica
system. While this solution offers the most
functionality, it is available only on Linux.

The G/P method created the archive and stored
it with the GEMSput repository insertion tool
in separate steps. ThePIPE method consisted of
three steps: creating a repository reservation with

12

G/P PIPE VFS
0

100

200

300

400

500

600

Fig. 6. Archive creation times via various methods. In theG/P
case, the turnaround time consists of two components, localarchive
creation (black) and archive tranfer to the repository (white). The
other methods perform both operations concurrently.

GEMSreserve; piping the output oftar into a
Chirp I/O forwarding tool; and on completion, com-
mitting the repository record withGEMScommit.
Since each GEMS method took less than 2 seconds,
the time consumed is not visible. TheVFS method
created the record, usingGEMSrun to drive tar
execution inside aparrot environment, and man-
aged the record construction internally.

Results show that streaming output methods are
slightly better than the two-step method and that
moving data through the pipe is slightly faster than
moving data through the virtual filesystem.

D. Hyperdynamics

The next experiment measured the overhead
of the GEMS model on a complex computation,
molecular dynamics (MD). MD simulation [12] is
a powerful and widely used tool to study molec-
ular motion. Insight into chemical properties of a
molecule may be obtained by observing rare confor-
mational transitions from one metastable region of
the simulated potential energy surface into another.
Typical systems stay in one metastable state for a
long time before making a transition into another
metastable state. Thus considerable computational
resources must be allocated to achieve the simu-
lated timescale necessary to reach the transitions.
Recently, many approximate methods have been
developed to extend the timescale of molecular sim-
ulations. These methods include transition path sam-
pling, the kinetic Monte Carlo method, the finite-
temperature string method, and the hyperdynamics

TABLE I
MD ENERGY SURFACE EXPLORATION APPROACHES

Name Approach Challenge
HYD-DEPTH Long run Numerical performance of

scalar system
HYD-BREADTH Branch search Scalability of distributed

system
HYD-EXPLORE Interactive Human interaction with dis-

tributed system

method [13].
In this section, we apply GEMS to the hyper-

dynamics method. In hyperdynamics simulation,
enhanced storage organization and rapid data ac-
cess for spacious parameter sweeps are insufficient
features for the effective investigation of system
behavior. This steered method allows the user to bias
the simulation into areas of conformational space
yet to be explored.

The hyperdynamics method treated here essen-
tially consists of a search through a parameter
space of simulation parameters, including the level
of hyperdynamics bias force applied. The method
attempts to observe a rare long timescale event
quickly by applying additional bias forces to the
system. The application produces timescale and
entropy histograms that indicate whether the simu-
lation has progressed to the point at which applying
another bias potential level would be beneficial and
free from serious error. Since there is no analytical
method to make this determination, tools to enable
ad hoc exploration of the parameter space were
required.

Our target application involved the generation
of simulated molecular trajectories over a range
of input parameters, including temperature (T) and
density (ρ). These trajectories are independent and
thus are an ideal application for parameter sweep
toolkits. Figure 5a) diagrams this method by in-
dicating simulationsegments- restartable chunks
of simulation progress - as functions of the(T, ρ)
input and time,t. Each trajectory, shown in the
figure as a row, is a sequence of segments over
time, each containing the simulated molecular state
over a given segment length and encapsulated in the
storage system. Applications described above such
as transition path sampling (TPS) have already been
implemented in such a way [14].

The application described in this paper differs in
that only a subset of the whole parameter space is

13

Fig. 7. Graphical user interface representation of hyperdynamics segments. The tool automates simulation branches and restarts by setting
up a hyperdynamics bias. Thumbnails show that entropy distributions in segment 3 and 4, level 0 are similar. Therefore, one can branch
from segment 3 to level 1. At level 1, the bias will push the system away from the conformational space already traversed inlevel 0.

explored: it is too large to fully explore, and only a
part is of interest. However, the area of interest is not
known in advance and must be determined by statis-
tical analysis of previously computed segments. The
interesting areas of the parameter space are entered
by branching from the existing segments, creating
a new trajectory that differs from the unmodified
sequence in that a new bias potential, described
above, is applied. Thus, additional metadata must
be stamped on each segment to record the location
of the segment in the search tree, as diagrammed in
Figure 5b).

Table I provides an overview of potential ap-
proaches to this method. The first,HYD-DEPTH,
represents the control case of using only traditional
molecular dynamics. The second,HYD-BREADTH,
automatically explores all possible applications of
the method. While this method may employ massive
parallelism to obtain a given result quickly, we
demonstrate here that it wastes a great deal of re-
sources. A solution is offered in theHYD-EXPLORE
method, which allows for the controlled use of
parallelism to explore promising paths as well as
to selectively prune useless searches. This method
relies on the technical solution of distributed com-
puting problems such as data management and
organization, user feedback and programmability,
and job control. Our results demonstrate that user-
steered hyperdynamics (HYD-EXPLORE) can im-

prove on traditional dynamics (HYD-DEPTH) as
long as the resource consumption of brute-force
techniques (HYD-BREADTH) is restrained.

As an example, Figure 7 shows a combination
of parameter tags from the central database as well
as a view of plotted data files. These distributed
hyperdynamics executions were followed remotely
by Matlab postprocessing, generating and storing
simulation output and plots on the remote coop-
erative system. Parameters include the execution
hostand outputtimescale, a hyperdynamics-specific
indicator of work performed and the benefit of the
new algorithm. This client also uses parameter tags
to arrange the tiles in the frame, and it pulls image
files from the storage network to provide a high-
level view of workflow progress.

In our present application, viewing output on
the fly is not enough. The timescale and entropy
histogram indicate whether the simulation has pro-
gressed to the point at which applying another bias
potential level would be beneficial and free from
serious error. Because the algorithm under study is
new and there is no analytical method to make this
determination, tools to enablead hocexploration of
the parameter space are required.

As a demonstration of the nontriviality of this
process, Figure 8 diagrams the timescale perfor-
mance as a function of branch location on the time
axis. Thus, the researcher controlling the simula-

14

Fig. 8. Performance ratioR for various branch points. The ratio is
plotted above a diagram indicating two illustrated examplebranches.
R is plotted as a function of branch time. A higher ratio indicates
more efficient exploration of the simulated conformation space. The
performance ratio is obtainable only as the result of a simulation
segment, necessitating interactive workflow control.

tion must monitor the output histograms for er-
ror and smoothness while selecting branch points
that maximize simulation efficiency in terms of
timescale. Critically, applying additional bias levels
poses hazards. If the bias is too high in a metastable
region, the system will not reach a local equilibrium
in the biased trajectory, and the timescale of the
trajectory will be incorrect. On the other hand, if we
apply fewer bias levels, a longer simulation will be
required for the system to move from one metastable
region to another. It is not knowna priori how
long one will need to simulate in order to achieve
correct distribution ofS for the next bias level.
Typically, one would like to run a set of independent
hyperdynamics simulations, each with a different set
of parameters, such as temperature, density, and bias
settings.

Since the application of additional bias levels
increases computation time per segment, we use
a performance ratio(R) that indicates efficiency:
work done measured by timescale per unit of CPU
time, or

R =
timescale (simulated femtoseconds)

CPU time (real seconds)
.

(2)
In this perspective, a set of normal single-

processor hyperdynamics simulations is individually

Distributed
Fabric

Computing
Service

submission

in
se

rtio
n

Workflow Instance

Notification
Service

Potential Tasks
(parameter sets)

(GEMS)
notice

Fig. 9. Notification/submission loop for parameterized workflow
instances in the GEMS framework.

run at a baseline performance level. GEMS offers
the ability to easily exploit the available paral-
lelism in the method on an opportunistic comput-
ing/storage system. Any method to parallelize the
set of sequential runs will accumulate some lost
communication time; in this section we consider the
communication time consumed as a whole, that is,
the time that would not be consumed if running all
tasks on a sequential system.

The GEMS framework was used to create a
notification-based dependency loop, enabling or-
dinary workflow programming on parameterized
GEMS records, implemented as a data sweep over
the required search targets, as diagrammed in Figure
9. Since additional search jobs are based on statistics
obtained in previous jobs, a complex dependency
structure is automatically built from the the user
dependency rule outlined in Equation (1).

0 100 200 300 400 500 600 700
0

10

20

30

40

50

60

Time (minutes)

N
um

be
r

of
 C

on
cu

rr
en

t J
ob

s

Fig. 10. Job parallelism over time in the hyperdynamics method.

15

0 2 4 6 8 10
0

0.05

0.1

0.15

Segment Number

I/O
 R

at
io

Fig. 11. I/O RatioI (Equation 3) per segment. Averages are reported
with 95% confidence intervals where appropriate.

E. Interpretation of Hyperdynamics Results

Running tasks alternate between I/O operations
and computation. Here, I/O operations consist of
centralized metadata operations as well as data
movement operations. A checkpoint, for example,
consists of a metadata insertion, a reservation, par-
allel data movement, and record committal. Compu-
tation is fully independent per node. An important
measure of system congestion is thus theI/O ratio
(I), computed as follows:

I =
Time spent in GEMS clients

Time spent in computation
, (3)

where computation includes PROTOMOL and Mat-
lab operations. This ratio is plottedper segment
in Figure 11. Thus, the scalability in terms of
number of leaves on the search tree is considered.
Plotting the ratio in the segment domain indicates
the scalability of the search algorithm.

Additionally, individual operations were profiled
for performance for a similar, shorter run up to
segment 4. The relative server response time as
measured by the server for each operation is shown
in Figure 12. Metadata operations were the most
common operation during the run and were also the
most expensive.

By extrapolating from the results achieved in this
experiment, we can estimate the cost of performing
the experiment with another method. Results are
tabulated in Table II.

• EmployingHYD-DEPTH would have required
running a single job with traditional dynamics

Insertion

Notification

Metadata

Retrieval

Fig. 12. Centralized time consumed on the replica management
server per operation.

to achieve the target timescale at which the
droplet was observed. This would result in 1.8
hours of single-processor computation.

• Additionally, a full search of all pathways of
length 17 could have been performed, one of
which would have resulted in the observed
droplet. This would rely on the implementation
of perfect parallelism on216 processors for the
final leaves, and ignores the scalability issues
mentioned in the previous sections. This ideal-
ized computation would result in total resource
consumption of 5800 CPU-hours. Since the
path length is still 17, the turnaround time is
again only 1.4 hours, however.

This experiment demonstrates that while a cen-
tralized metadata system may be used to efficiently
manage workflows that interleave metadata opera-
tions with computation, when all tasks request in-
tense synchronization and metadata information si-
multaneously, performance is greatly affected. Thus,
while a full automated search of the parameter space
is potentially possible under nominal conditions, se-
lective pruning and interaction with user-identifiable
parameter regions should be attempted to gain better
resource utility on practical systems.

TABLE II
EXPERIMENTAL RESULTS.

Name Total (hours) Turnaround (hours)
HYD-DEPTH 1.8* 1.8*
HYD-BREADTH 5800* 1.4*
HYD-EXPLORE 6.2 1.4

*Result extrapolated from experiment.

16

VI. COLLABORATION AND SECURITY

Extensible repositories combine user-defined
naming schemes, storage strategies, and externally
owned and operated storage services into a viable
scientific resource. Each operation in the system
combines metadata operations on the centralized
system with data operations on distributed volunteer
systems and funnels a wide, potential usage space
through enabling client functionality and tools.

Simple data tagging-frameworks are doomed to
eventually expire. Different communities of re-
searchers will emphasize different tags because of
the varying importance of simulation parameters,
local conventions in usage patterns, or obvious
application-related factors. An extensible repository
will provide the minimum data-tagging tools to
make collaboration possible, allowing for new user
groups to import existing data sets and naming
schemes into the greater system.

The ability to add and remove external storage
services during normal system operation from the
system is a fundamental feature. Users must be able
to determine storage sites that are eligible to store
their data. Consequentially, extensible repositories
cannot impose data placement strategies on users.

A. Scientific Collaboration

Extensible repositories are motivated by the con-
cept of collaborating scientists creating a common
catalog and management system while maintaining
local resource autonomy. Thus, a common ground
is instantiated at the intersection of client requests
and authorized system services. User and site man-
agement is a monumental problem in a large scale
system, and must be localized by data set owners.
The global set of users must be able to operate
without global data definitions, user lists, host lists,
and so forth, as these are likely to change rapidly.
Administrative data structures are thus created on
a per-record basis and represent a usage and man-
agement policy followed by the greater system but
enforced by the underlying systems trusted by the
users. A repository extended over existing resources
such as volunteered desktops must be able to respect
the ownership of the resource as well as the security
of the data objects.

The system allows for the interaction of users
in various roles, includingdata consumer, data
provider, storage provider, and replica manager.

Note that a person may take on multiple roles. Each
has limited knowledge of other users and limited
ability to affect the whole system.

Individual users may find it complex to man-
age dynamic replica locations, monitoring of user-
defined network topology maps, authentication
schemes, and large-scale user groups. Thus, sim-
plified concepts are applied and a generalized au-
thentication scheme is used to enable scientific data
sharing when desirable, and tight access restriction
otherwise.

B. User Management and Access Control

Scientific systems operators who wish to share
data sets and storage resources with remote users
will find that allowing authorized access and pro-
hibiting unauthorized access is of primary impor-
tance. These problems are commonly treated as
security issues. All users who attempt to access sys-
tem components must be authenticated. In practice,
superficial tests are performed to determine whether
the user can satisfy a given test based on the subject
name claimed by the connecting party. Upon satis-
faction, the system determines whether the subject
is eligible to perform the requisite operation by
consulting an access control list (ACL).

Wide-area extended repositories are designed to
support a large number of volatile user groups, data
record, and storage devices. The construction and
maintenance of a global static list of users and
their authentication abilities are not practical. Thus
the authentication process is pushed away from
the centralized system and onto the intermediate
storage systems with which the users interact. An
authentication test may be performed on a storage
site relevant and trustworthy with respect to the user
and record at hand. The successful completion of
the test indicates that the operation is acceptable,
and resulting changes are propagated up to the
centralized replica management system.

C. Semi-autonomous Regions

This functionality may be enabled by a careful
consideration of all system stakeholders and through
the use of appropriate procedures and data struc-
tures. Data providersmay specify access control
rules use a commonly used tool, the ACL, without
referring to a global user list or authentication pro-
tocol. Additionally, they may specify whichstorage

17

Metadata
ServerLocally Defined Users and Groups

Locally Defined Usage Policy

WAN Disk Management

Indirect Authentication

Interregional Access

Fig. 13. User-specified cluster topology information creates semi-
autonomous regions on a per record basis. Users and storage
providers interact over authenticated connections. Although users
have locally defined identities, changes are propagated up to the
metadata level as authorized by the record owner.

providersare eligible to host their data sets. Since
data placement is dynamically controlled by the
replica manager, pattern matching-based specifica-
tion structures are used to include or exclude servers
and clusters for individual data records, creating a
manageable per-record storage network topology.

The intersection of data and storage providers
creates a conceptualsemi-autonomous regionin
which data lives. These constructs are autonomous
in that the allowable authentication techniques and
user lists may be maintained without reference to a
global center such as the replica manager or another
region.

Data consumersmust be able to navigate the
distributed data structure created by the data and
storage providers. Access to a given record requires
satisfaction of the record ACL with respect to a
given storage site. Thus read access is enabled in a
pairwise manner, without requiring regulation by the
replica manager. Users from multiple regions may
interact via these direct connections by regulating
access control and consulting the centralized meta-
data catalog, creating the possibility for efficient,
direct data connections and blackboard-style data
publication. This creates the potential for simplified
collaboration.

D. Repository Access on the Grid

A founding design feature of grid computing is
the ability to allow access resources to users across
administrative domains. An administrative domain
may be commonly conceived as a local UNIX in-
stallation managed by a system administrator. Grid

construction allows users outside the local system
to run jobs or allocate storage on the resource. A
system administrator may enable these capabilities
by first creating a local user that has access to these
services, then installing a grid software system that
runs as this user. The new system maintains an in-
dependent authentication and authorization scheme
intended to scale to many users. For example, the
Globus system includes a public key authentication
system combined with a virtual organization model
to authorize grid operations [15].

This solves the basic grid security problem but
has certain limitations. It allows a new abstraction
layer - the grid security system - above the oper-
ating system layer in a scalable way. However, it
shoehorns users into a single authentication scheme
orchestrated by administrators, not users. This adds
to administrative workloads while restricting the
ability of users to share their access to resources
with others. Typical systems do not allow users to
grant privileges to another user without compromis-
ing their own account by revealing a password or
private key. Access control lists allow the addition
user names and permissions but are an authorization
scheme. GEMS provides a method to turn arbitrary
access control lists into a globally visible authenti-
cation scheme as well.

E. Use Cases

Consider a case in which research group lead-
ers from distant universities desire to construct a
relatively secure cooperative database, building on
existing (grid-enabled) resources. This problem is
concerned with constructing new grids from existing
grids or their fragments, ultimately creating a grid-
of-grids. In the pre-grid era, they would have to
agree on a global user list and propagate it out.
Using grid tools, they could establish a global secu-
rity authority and ensure that all components agree
to use it. Both solutions are problematic, as global
user lists are extremely difficult to manage, and a
globalized security system may be overwhelming,
limiting the ability of users to create subgroups or
employ previous methods (such as UNIX or DNS
authentication).

In the distant university case, the construction of
the cooperative distributed database should not be
taken to mean that within the database all records
are equal from a security perspective. In fact, many

18

cases could arise in which users could agree to share
resources, say, in a pairwise way within the greater
structure. This would involve selecting certain re-
sources for use in the derived system and ensuring
that the security system works for the users and
systems involved: a local procedure that should have
no global side effects. This process again creates a
data landscapein which a subgroup of users has
access to a subset of possible resourcesand data
records. This use case creates a record-specific grid-
within-grid abstraction.

F. Implementation

The creation of a semi-autonomous region starts
with the well-known process of matchmaking, a
process analogous to selecting rows from a database
table. The process is augmented because it results
in a new environment, one in which other users can
participate. Our simplified implementation begins
with a small-scale user process: the selection of
the requested resources. Resources may be orga-
nized into clusters reflecting network topology or
geographical distance to enable certain functionality
described below. This information is organized into
a storage mapand may be stored for later use.

The creation of a data landscape begins when a
user combines a data record containing data files
and metadata tags with a storage map and ACL,
resulting in aconfig. A typical use of a config is
the input and output files of a simulator program,
combined with metadata such as the options passed
to the program. This config is instantiated, registered
with the greater system, and entrusted to its control.

The storage map defines the derived grid re-
sources upon which the data files will reside, defin-
ing the data landscape in terms of system-level
security and data movement performance. The ACL
is propagated to these storage sites and applied
to the appropriate files. While this approach may
be performed with existing tools, an important
challenge remains: how does information from the
config propagate up to the greater system? Users
must be able to administer their data at the global
level. For example, they must be able to delete a
config and its underlying widely replicated files.
To do this they must authenticate to the greater
system. The ability to provide meta-grid control of
diverse resources constitutes our solution to the grid
integration problem.

G. Rendition: An Enabling Technology

The process by which a user performs authen-
ticated operations within the config data landscape
is called therendition protocol [3]. This protocol
applies in systems that implement the grid controller
model, in which a controller manages the global pol-
icy but is agnostic with respect to system specifics
such as a password list. In this case, the system
may interact in an authenticated manner only with
underlying physical storage sites that implement
direct authentication protocols. Upon this fabric we
intend to build an indirect protocol that enables the
controller to authenticate a channel for a certain user
with respect to a config.

Thus, we reiterate our data-driven focus: Oper-
ations in the system change the data landscape.
Critical operations at the controller level must be
authenticated through a storage site for a config, be-
cause only here is the ACL enforceable and the data
stored and protected. The controller model explicitly
allows users to use old protocols to interact with the
underlying system, relying on direct authentication
methods.

The rendition protocol solution allows users to
obtain an initially anonymous channel to the con-
troller. The user may then request access to modify
a config, at which point the controller creates a
challenge that must be satisfied for the execution
of the operation. This challenge typically takes the
form of a file operation with respect to the storage
site and ACL in question, such as the creation of
a numbered marker file in a directory from which
all users are restricted except those known to be
authorized for the operation by the ACL. When
the file is handed over, the controller is notified to
inspect the satisfaction of the challenge, carry out
the operation, and return the appropriate notice.

This protocol may be thought of as similar to
other indirect protocols that delegate authentication
to an external authority, but in fact rendition offers
greater efficacy. The simplicity of the scheme allows
ordinary users to delegate authentication to the
whole storage fabric, a diverse array of heteroge-
nous sites, each of which may implement a subset
of the available physical authentication protocols.
This derivation of responsibility for security enables
users to make use of local system knowledge to
createad hoccollaborative systems without global
consequences.

19

Storage Storage

Controller

USER CUSER B

Asynchronous replication

Insertion

Domain B

Domain A

Domain C

Job submission JOB B

Data
Access

Fig. 14. Simple three-domain collaboration.

As an example, consider the simple collaboration
shown in Figure 14. In this case, userB inserts a
data record with a config policy that allows storage
and access at domainC. Collaboration and shared
data administration are possible even though each
user is unable to authenticate at a remote site.
Moreover, a job submitted by userB running in
domainC may access data, perhaps using a simple
DNS-based authentication. This case reinforces the
notion that data replication may be viewed as an
asynchronous job pre-staging process.

The rendition-based trust chain infrastructure
solves a common problem in trust delegation: trust
delegates must not receive too much information
from the delegator. Passwords and other credentials
simply cannot be passed to a third party. Like-
wise, the authentication system cannot be globally
affected by ordinary users. Yet users are able to
delegate access to records via an ACL, and the con-
fig data structure provides a physical authentication
test.

VII. CONCLUSION

Observations and design features in this paper
are based on experiences with the GEMS system, a
replica management system originally designed as
a cooperative chemistry simulation repository. The
GEMS model provides new practical solutions for
active research problems such as autonomous grid
control of disparate components, a flexible security
model driven by user needs, and services for data
access from a variety of possible clients.

GEMS enables the rapid construction ofad hoc
storage grids that augment the usability of oppor-
tunistic computing systems. The workflow tech-

niques presented here, integrated in the GEMS
toolkit, improve the ability to browse intermediate
simulation results and guide workflow progress.

The new contribution here is the application of
GEMS concepts to general problems in distributed
scientific computing, framed as grid integration and
derivation problems. While a variety of tools exist to
approach these problems, the ad hoc storage grid as
presented here proposes a comprehensive solution
packaged in a tangible, dynamic data landscape.
Additionally, the collaboration concepts provide
a unified methodology for previously fragmented
archetypes of matchmaking and access control -
providing a platform upon which solutions may be
built.

ACKNOWLEDGMENTS

This research is supported by the Office of Ad-
vanced Scientific Computing Research, Office of
Science, U.S. Dept. of Energy under Contract DE-
AC02-06CH11357. Work is also supported by DOE
with agreement number DE-FC02-06ER25777.

REFERENCES

[1] Douglas Thain, Sander Klous, Justin Wozniak, Paul Brenner,
Aaron Striegel, and Jesus Izaguirre, “Separating abstractions
from resources in a tactical storage system,” inProc. Super-
computing, 2005.

[2] Justin M. Wozniak, Paul Brenner, Douglas Thain, Aaron
Striegel, and Jesus A. Izaguirre, “Applying feedback control to a
replica management system,” inProc. Southeastern Symposium
on System Theory, 2006.

[3] Justin M. Wozniak, Paul Brenner, Douglas Thain, Aaron
Striegel, and Jesus A. Izaguirre, “Access control for a replica
management database,” inProc. Workshop on Storage Security
and Survivability, 2006.

[4] Justin M. Wozniak, Paul Brenner, Douglas Thain, Aaron
Striegel, and Jesus A. Izaguirre, “Making the best of a bad
situation: Prioritized storage management in GEMS,”Future
Generation Computer Systems, vol. 24, no. 1, 2008.

[5] Justin M. Wozniak, Paul Brenner, Douglas Thain, Aaron
Striegel, and Jesus A. Izaguirre, “Generosity and gluttonyin
GEMS: Grid-Enabled Molecular Simulation,” inProc. High
Performance Distributed Computing, 2005.

[6] David Abramson, Jon Giddy, and Lew Kotler, “High perfor-
mance parametric modeling with Nimrod/G: Killer application
for the global grid,” in Proc. International Parallel and
Distributed Processing Symposium, 2000.

[7] Paul Brenner, Justin M. Wozniak, Douglas Thain, Aaron
Striegel, Jeff W. Peng, and Jesus A. Izaguirre, “Biomolecular
path sampling enabled by processing in network storage,” in
Proc. Workshop on High Performance Computational Biology,
2007.

[8] Ian Foster, Jens Voeckler, Michael Wilde, and Yong Zhao,
“Chimera: A virtual data system for representing, querying, and
automating data derivation,” inProc. Scientific and Statistical
Database Management, 2002.

20

[9] Arcot Rajasekar, Michael Wan, Reagan Moore, George
Kremenek, and Tom Guptill, “Data grids, collections and grid
bricks,” in Proc. Mass Storage Systems and Technologies, 2003.

[10] William Allcock, John Bresnahan an Rajkumar Kettimuthu,
Michael Link, Catalin Dumitrescu, Ioan Raicu, and Ian Foster,
“The Globus striped GridFTP framework and server,” inProc.
Supercomputing, 2005.

[11] Rajesh Raman, Miron Livny, and Marvin H. Solomon, “Match-
making: Distributed resource management for high throughput
computing,” inProc. High Performance Distributed Computing,
1998.

[12] Tamar Schlick, Molecular Modeling and Simulation - An
Interdisciplinary Guide, Springer-Verlag, New York, NY, 2002.

[13] X. Zhou, Y. Jiang, K. Kramer, H. Ziock, and S. Rasen-
massen, “Hyperdynamics methods for entropic systems: Time-
space compression and pair correlation function approxima-
tion,” Physical Review E, vol. 74, 2006.

[14] Paul Brenner, Justin M. Wozniak, Douglas Thain, Aaron
Striegel, Jeff W. Peng, and Jesus A. Izaguirre, “Biomolecular
committor probability calculation enabled by processing in
network storage,”Parallel Computing, vol. 34, no. 11, 2008.

[15] Von Welch, Ian Foster, Carl Kesselman, Olle Mulmo, Laura
Pearlman, Steven Tuecke, Jarek Gawor, Sam Meder, and Frank
Siebenlist, “X.509 proxy certificates for dynamic delegation,”
in Proc. PKI R&D Workshop, 2004.

NOTICE

The submitted manuscript has been created by
UChicago Argonne, LLC, Operator of Argonne
National Laboratory (”Argonne”). Argonne, a U.S.
Department of Energy Office of Science labora-
tory, is operated under Contract No. DE-AC02-
06CH11357. The U.S. Government retains for itself,
and others acting on its behalf, a paid-up nonexclu-
sive, irrevocable worldwide license in said article
to reproduce, prepare derivative works, distribute
copies to the public, and perform publicly and
display publicly, by or on behalf of the Government.

