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ABSTRACT
CityCOVID is a detailed agent-based model (ABM) that represents
the behaviors and social interactions of 2.7 million residents of
Chicago as they move between and colocate in 1.2 million distinct
places, including households, schools, workplaces, and hospitals,
as determined by individual hourly activity schedules and dynamic
behaviors such as isolating because of symptom onset. Disease pro-
gression dynamics incorporated within each agent track transitions
between possible COVID-19 disease states, based on heterogeneous
agent attributes, exposure through colocation, and effects of protec-
tive behaviors of individuals on viral transmissibility. Throughout
the COVID-19 epidemic, CityCOVID model outputs have been pro-
vided to city, county, and state stakeholders in response to evolving
decision-making priorities, while incorporating emerging informa-
tion on SARS-CoV-2 epidemiology. Here we demonstrate our ef-
forts in integrating our high-performance epidemiological simulation
model with large-scale machine learning to develop a generalizable,
flexible, and performant analytical platform for planning and crisis
response.
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1 JUSTIFICATION FOR ACM GORDON BELL
SPECIAL PRIZE FOR HPC-BASED COVID-19
RESEARCH

We

• implement a distributed COVID-19 ABM in Chicago, model-
ing 2.7 million individuals moving between 1.2 million places
with hourly activity schedules;

• run mixed Bayesian calibration and ABM workflows at full
machine scale and 84% utilization on ALCF Theta;

• provide forecasts and counterfactual analyses to city and state
public health departments.
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2 PERFORMANCE ATTRIBUTES

Attribute Value
Category of achievement Scalability & Time-to-solution
Type of method used Bayesian optimization &

Agent-based modeling
Results reported Whole application including I/O
Precision reported Discrete
System scale Measured on full-scale system
Measurement mechanism Utilization & Application metrics

3 OVERVIEW
The COVID-19 epidemic has brought epidemiological modeling
to the forefront of discussions on how evidence-based decision
making can be supported in times of crisis and uncertainty. Since
the beginning of March 2020 we have applied CityCOVID, a de-
tailed agent-based model (ABM) that represents the 2.7 million
residents of Chicago in terms of people (behaviors and social interac-
tions), places (1.2 million unique geolocations including households,
schools, workplaces, and hospitals), and hourly activity schedules,
with the aim of understanding COVID-19 transmission dynamics
and potential effects of nonpharmaceutical interventions (NPIs).
CityCOVID is based on the ChiSIM framework [50] and Repast
HPC [20], which enable the creation of efficient, urban-scale MPI-
distributed agent-based models (ABMs). Each individual, or agent,
in the model includes its own individualized disease progression
dynamic that determines transitions between possible COVID-19
disease states. Transitions have functional dependence on hetero-
geneous agent attributes, exposure through colocation over time
with infected individuals, and other factors such as the effects of
protective behaviors on viral transmissibility.

Our detailed modeling approach is substantially more computa-
tionally demanding than other types of modeling methods being
applied to COVID-19, such as statistical models and compartmen-
tal models. However, in contrast to statistical models, which tend
to be retrospective, we are able to investigate novel interventions
that have not been implemented yet. When compared with compart-
mental models, we can simulate more specific and realistic NPIs,
such as imposing restrictions on specific types of businesses, or
detailed school attendance models, closely resembling those being
considered by public health officials.

A central element in the application of epidemiological mod-
els is running in silico experiments for model calibration, scenario
analyses, and uncertainty quantification, what we refer to as model
exploration (ME) [61]. These processes often require sophisticated
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machine learning (ML) algorithms to automate iterative, or sequen-
tial, strategic explorations of possible model behaviors, since brute-
force approaches are not generally feasible even with the largest
computing resources. Substantial advancements are being made in
sequential ML algorithms that can be applied to ME. However, im-
plementing dynamic ME processes at the necessary computational
scales poses serious challenges, not the least of which is the need for
efficiently dispatching and coordinating mixed workloads related to
ML algorithms and complex models such as CityCOVID.

We developed the EMEWS framework [59], built on Swift/T [76],
expressly to enable large-scale ME as ML-driven HPC workflows,
which can be run on leadership-scale resources. Throughout the epi-
demic, members of our group have been regularly meeting with city,
county, and state stakeholders and providing them with CityCOVID
model outputs in response to their evolving priorities. Given the
dynamic nature of information on the epidemiology of SARS-CoV-2
and the shifting foci of NPIs, we have engaged in a concerted effort
to address computational efficiency across multiple dimensions and
to reduce the “time to analysis.”

The work we present here covers the approaches we took, includ-
ing the following:

(1) Parallelization, load balancing, and caching within CityCOVID
(2) Applying multiple large-scale ML algorithms, such as multi-

objective approximate Bayesian computation and Bayesian
optimization, for model calibration and uncertainty quantifi-
cation

(3) Coordinating single-node ML tasks and ordered multinode
MPI tasks in a scalable HPC workflow

(4) Connecting the system to the real world via observed data
and database access

We demonstrate the scaling performance of our integrated approach
through whole-machine runs on the Argonne Leadership Computing
Facility (ALCF) Theta supercomputer. Furthermore, we discuss the
potential impact of this work in developing novel use cases for HPC
resources beyond COVID-19 to a generally applicable decision-
support platform.

4 STATE OF THE ART
4.1 Epidemiological Modeling
Current epidemiological modeling for disease spread is based on
three intrinsically different types of modeling approaches: (1) so-
called SIR/SEIR compartmental models, which are based on differ-
ential equations that specify mathematically rates of change between
compartments, for example, susceptible (S), exposed but not infected
(E), infected (I), and recovered (R) states; (2) agent-based models,
in which the interactions of individual agents (people) and their
explicit behaviors and contacts are directly simulated; and (3) statis-
tical forecasting, which makes no assumptions about the details of
the disease, such as the Institute for Health Metrics and Evaluation
(IHME) model. Each of these approaches is capable of, for example,
predicting the expected daily number of deaths, hospitalizations, and
infections for COVID-19 in a given geographical region, as well
as providing uncertainty bounds for these estimates, if stochastic
elements are included in the model formulations.

The basic idea of “mechanistic" epidemiological models is to ex-
plicitly model the mechanisms of disease spread between individuals

by modeling two processes: (1) the frequency of co-located contacts
between individuals and (2) the nature of contacts between individu-
als that, probabilistically, facilitate or mitigate disease transmission.
Agent-based models allow for these processes and all relevant vari-
ables to be included at the finest grain level of detail required to
answer the questions posed by decision-makers. The CityCOVID
model can simulate entire cities with millions of individuals, necessi-
tating the use of HPC resources. The detailed agent-based modeling
approach facilitates testing hypotheses concerning transmission, un-
derstanding optimal policies for reducing rates of transmission, and
providing estimates for the impact of loss of staffing for critical
services.

4.2 Agent-Based Modeling
ABMs and the toolkits with which they are developed, such as Repast
Simphony [57], MASON [48], and NetLogo [74], have been con-
fined to a single CPU for most of their development, with occasional
forays into multithreaded parallelism. Within the past decade, how-
ever, we have seen increasing support for multiprocess distributed
toolkits. Here, performance is achieved primarily by dividing the
global population of agents among processes. A typical simulation
can loop through all the agents during each iteration of a simulation.
The fewer agents to iterate over, the faster the simulation. Toolkits
such as D-MASON [23] initially attempted to avoid the complexity
of MPI (at least in the Java environment) in distributing and coor-
dinating agents across processes in favor of sockets and the Java
Message Service before turning to MPI as a more performant solu-
tion for interprocess communication. Other ABM toolkits such as
Pandora [67], Care HPS [15], and Repast HPC [20] also use MPI
as the message-passing layer, while Flame GPU [65] distributes
agents across a GPU such that their behavior can be executed in
parallel. Other areas of emphasis are strategies for load balancing
and the optimal partitioning of agents using different topologies and
ghosting techniques [15, 21].

4.3 Model Exploration
The rise of artificial intelligence has provided broad and renewed
interest in the development of statistical and ML algorithms that can
address the evolving scale of ME tasks, resulting in vibrant ecosys-
tems of free and open source libraries that are continually added
to and updated as research frontiers are expanded. The relevant
algorithms applicable to ME include various active learning [69]
approaches, including Bayesian optimization (BO) approaches using
Gaussian process (GP) surrogate models [11, 12] and ML models
such as random forest [16, 61]; approximate Bayesian computation
(ABC) approaches [7, 37], including sequential Monte Carlo [8] and
Incremental Mixture ABC [68]; evolutionary approaches, including
single [39] and multiobjective [25] genetic algorithms; and data as-
similation approaches, including ensemble Kalman filtering [31, 63]
and particle filters [4, 34]. Libraries that provide cutting-edge imple-
mentations of these algorithms or the components from which to im-
plement them include scikit-learn [62], scikit-opt [38], BOTorch [6],
ABCpy [29], ELFI [47] and DEAP [32] in Python; caret [44],
mlrMBO [14], randomForest [46], EasyABC [41], IMABC [51],
DiceKriging [66], hetGP [10], laGP [35], and GPareto [13] in R.
However, a vast majority of these libraries and algorithms have not
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been developed specifically with HPC scales or batch sampling in
mind. That is, batch sizes often stay lower than a dozen (e.g., [18]),
especially for multiobjective Bayesian optimization [24]. Exceptions
include [73], which uses an ad hoc filtering to select batches of a few
hundred candidates a posteriori, without considering repeating ex-
periments and thus decreasing the noise at evaluated configurations.
In addition, approaches combining ABC and GP methodologies have
also been considered (see, e.g., [53, 75]), although the approach we
take here differs in that ABC is used to provide initial evaluations
and the GP optimization process provides refining. Moreover, toolk-
its specifically aimed at model exploration on HPC resources exist
(see, e.g., [3, 36]); however, they are not geared toward integrat-
ing external, multilanguage libraries or large-scale mixed ML and
simulation workflows.

4.4 Workflow Integration and MPI Task
Management

Coordination among the ML and ABM modules in this workflow
requires deep integration of components written in Python, R, and
C++/MPI. The overall workflow shares hardware resources for these
systems and rapidly switches among them. The workflow generates
parameters in R-based optimizers, distributes these parameters to
C++/MPI simulations, and registers progress via database operations
called via Python—all on the same resources. Thus, building this
complex application requires a workflow system with the capability
to manage in-memory user libraries and third-party packages such
as scripting language interpreters.

Other workflow solutions are generally constructed to orchestrate
Unix-like program invocations [79] or whole-job scheduler sub-
missions [26, 71]; some recent systems support in-memory Python
snippets [5], while others have been extended to handle more com-
plex ensembles and heterogeneous compute resources [27]. To our
knowledge Swift/T is the only system that offers innate support for
calling functions in Python and R, as well as tasks that are libraries
that use MPI. In addition to coordinating ML and simulation tasks,
our approach further allows for external ME algorithms to control
the overall progression of complex workflows (see § 5.3).

Launching large numbers of MPI jobs is difficult on today’s HPC
systems. Typical solutions treat this as a shell programming problem
and use a shell-scripting-like technique (or Python, for example) to
manage calls to vendor-supplied job launchers (mpiexec, srun, aprun,
jsrun, etc.), each with different command line interfaces. In contrast,
the Swift/T approach seeks to use a pure MPI model for managing
workflow tasks that use MPI. More generally, an MPI-based solution
is needed [77].

As a quantitative comparison of these approaches, consider run-
ning a minimal 64-process C/MPI application that simply does
Init, Barrier, and Finalize. On a Theta compute node,
10 executions of this program with aprun take 49.88 seconds for
a rate of 0.20 tasks/second. In the Swift/T model with in-memory
MPI tasks, however, 10 iterations take 0.33 seconds for a rate of
30.49 tasks/second—150× faster. This is due to the fact that the
very notion of starting a child MPI task is very different in these
two approaches. In the aprun model, many new processes must be
created and connected, with the help of underlying job start services.
In the Swift/T model, the child MPI task is simply called as a library

Figure 1: Conceptual progress model in the HVR workflow. The
workflow loops until convergence.

on resources allocated within an pre-existing MPI job, by allocating
resources managed and indexed by Swift/T and connecting them
with a new subcommunicator.

5 INNOVATIONS REALIZED
The innovations within this work are in two areas:

(1) distributed simulation with CityCOVID and
(2) application and workflow integration of large-scale machine

learning.

A schematic for the CityCOVID Hypervolumne Refinement (HVR)
workflow, our most complex workflow for which we provide full
machine performance results in § 7, is shown in Figure 1. Empirical
data from hospital systems and public health departments are used to
parameterize CityCOVID and to provide targets for calibration. Each
iteration of the HVR algorithm (described in full in § 5.2.2) consists
of three ML phases, each using an ensemble of single-node, many-
core R methods distributed across the machine. The first phase is
for fitting Gaussian process, or kriging, metamodels to the evaluated
simulation runs, where evaluations are errors in fitting both hospital-
ization and death time series model outputs to empirical data. The
second phase calculates the Expected Hypervolume Improvement
of new candidate parameter points, and the third phase optimizes
the best new candidate points. The calculations from the three ML
phases produce simulation allocations, which are assigned across
the existing Pareto front and new candidate points for evaluation.
These simulations are instantiated and distributed across the system
as multi-node C++/MPI programs. The HVR algorithm proceeds
through multiple iterations as it refines the Pareto front (i.e., jointly
optimizes multiple objectives). Simulation parameters are written
to a Postgres database as the algorithm progresses for real-time
feedback and final reporting.

5.1 CityCOVID
5.1.1 Model Overview. Models built with the ChiSIM frame-
work [50] take three main inputs: 1) synthetic people, 2) places,
and 3) activity schedules. In the case of CityCOVID, we model
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Figure 2: (a) Joint posterior distributions of CityCOVID input parameters (Table 1) from sequential ABC, (b) successive Pareto fronts
of errors in deaths (x-axis) and hospitalizations (y-axis) from HVR workflow, (c) COVID-19 attributed hospitalization outputs from
CityCOVID (red dots: empirical Chicago data, dark line: median simulation output, dark band: 50% simulation intervals, light band:
95% simulation intervals), (d) CityCOVID zip code level snapshot of weekly infection outputs at 47 days after June 3, 2020, initial
easing of restrictions in Chicago for two scenarios (strict: population wide adherence to protective behaviors, i.e., \9 is maintained as
reopening occurs, relaxed: gradual increase of \9 to a value corresponding to 80% viral transmission reduction).

the 2.7 million residents of Chicago as they move between 1.2 mil-
lion places based on their hourly activity schedules. The synthetic
population of agents extends an existing general-purpose synthetic
population [17] and statistically matches Chicago’s demographic
composition. Agents can colocate at the geolocated places, which in-
clude households, schools, workplaces, hospitals, and group quarters
(e.g., nursing homes, dormitories, jails). The agent hourly activity
schedules are derived from the American Time Use Survey and the
Panel Study of Income Dynamics and assigned based on agent de-
mographic characteristics. CityCOVID includes COVID-19 disease

progression within each agent, including differing symptom severi-
ties, hospitalizations, and age-dependent probabilities of transitions
between disease stages.

In the present work we focus on the calibration of the City-
COVID parameters 𝜽 listed in Table 1. These parameters were cho-
sen through a sensitivity analysis described in § 5.2.1 and govern
aspects ranging from the initial number of exposed individuals with
which the model is seeded (\1) to the reduction in virus transmission
due to individual protective behaviors such as mask wearing (\9).
Model outputs are compared against two empirical data sources ob-
tained through the City of Chicago data portal [19]: 1) daily census
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of hospital beds occupied by COVID-19 patients and 2) COVID-19
attributed death data in and out of hospitals, both for residents of
Chicago.

𝜽 𝝅 (𝜽 ) Description
\1 𝑈 (60, 190) Initial number of exposed (infected but not

infectious) agents at the beginning of the
simulation

\2 𝑈 (0.03, 0.1) Base hourly probability of transmission
between one infectious and one suscepti-
ble person occupying the same location

\3 𝑈 (0, 0.3) Magnitude of seasonality effect
\4 𝑈 (0.5, 1) Per person probability of infection scaling

factor due to ratio of infectious versus sus-
ceptible people in a location

\5 𝑈 (0.2, 0.7) Effective infectivity during isolation in
household

\6 𝑈 (0.1, 0.7) Effective infectivity during isolation in
nursing home

\7 𝑈 (300, 700) Simulation time (hrs) corresponding to
March 27, 2020

\8 𝑈 (0.1, 0.8) Reduction in out of household (OOH) ac-
tivities

\9 𝑈 (0.01, 0.3) Reduction in transmission due to individ-
ual protective behaviors

Table 1: CityCOVID calibration parameters 𝜽 and priors 𝜋 (𝜽 ).

5.1.2 Model Implementation. CityCOVID implements detailed
agent behaviors and individualized disease progression and differ-
entiates the movement of agents to places with how they behave
when colocating with others in those places. For example, agents
may engage in protective behaviors such as wearing a mask or keep-
ing a six-foot distance, thereby reducing viral transmissibility while
participating in activities outside of their homes. CityCOVID con-
tains explicit representations of people and places, implemented
as C++ classes. Places are assigned to a process rank, and persons
move between places, and thus between processes, according to
their hourly activity schedules. When a person is moved between
processes, it needs enough of its state available on the target process
to continue to follow its activity schedule and to transition between
disease states.

The potential performance costs of this model are threefold: 1)
serializing of a person’s state on the source process and deserializing
of that state on the destination process; 2) MPI-related overhead
in transferring the person’s state; and 3) uneven distribution of per-
sons among processes that causes uneven work loads. For the last
factor, processes with less load (i.e., those with fewer persons to
transition between disease states) would be idle waiting for those
with greater loads to finish, resulting in longer runtimes. For 1),
CityCOVID (via ChiSIM [21, 50]) mitigates the cost by caching
person objects and their static attributes on every process that the
person has visited. This minimizes the amount of data transferred
and avoids any overhead associated with the frequent creation of new
C++ objects and the concomitant memory allocation. For 2) and 3),

CityCOVID minimizes the amount of cross-process movement and
load balances the number of persons on each process through graph
partitioning, where each place is a vertex and each edge between
two vertices represents the volume of person movement between
those two places. The edge weight represents the number of persons
that travel between the two places, and a vertex weight the total
number of persons to visit that place. By partitioning this graph into
groups of vertices (places), such that the edge weights connecting
these groups are minimized and the vertex weights are roughly equal
among all the partitions, highly connected places are placed on the
same process, and we avoid any issues caused by uneven computa-
tional load. For the full Chicago scenario used here, the places graph
consists of approximately 1.2 million vertices (places) and approx-
imately 1.9 million edges (trips between places). To partition the
graph, we used the METIS toolkit [43], assigning each place to the
process rank corresponding to its graph partition. This assignment
was performed during the development of the synthetic population
(the collection of agents, places, and activity schedules), external
from any simulation execution. While the agent behavior is itself
stochastic, the number of places that an agent can select from as part
of this behavior is tightly bounded, and thus effective load balancing
using graph partitioning can be performed as a preprocessing step
rather than during the simulation itself.

We also eliminated the time spent reading the input data (ap-
proximately 2.5 minutes on Theta) by caching it after the first read.
The input data reflects the load balancing and assigns persons and
places to particular ranks. Each rank caches the data assigned to it.
Consequently, we ensure that when Swift/T allocates a group of 256
processes for each simulation run that the rank assignment within
each group is repeatable.

5.2 Model Exploration Algorithms
5.2.1 Sequential ABC. The initial workflow we constructed was
aimed at parameter estimation of so-called deep model parameters,
those that are not readily observable. For example, the base hourly
probability of transmission between one infectious and one suscepti-
ble person occupying the same location (\2 in Table 1) is difficult
to measure directly. Similarly, the reduction in transmission from
individual protective behaviors, such as wearing a mask and social
distancing (\9 in Table 1), not only is difficult to directly measure
but also can vary over time as behaviors change. These parameters,
along with their joint distributions and uncertainties, can nonetheless
be estimated through simulation-based inverse modeling approaches.

For simulators with intractable likelihoods, approximate Bayesian
computation (ABC) methods, while computationally intensive, pro-
vide the ability to generate simulated posterior distributions of the
model input parameters and, consequently, posterior model outputs
that propagate data and model uncertainties to model results [7].
There are a number of ABC methods and libraries implementing
them [29, 41, 47, 51]. Sequential ABC methods [8, 55, 68] improve
the yield of parameter space sampling compared with one-shot re-
jection sampling approaches. In addition, batch sequential ABC
methods can exploit the concurrency available on HPC resources,
providing the ability to tune the batch sampling size to balance
sample yield and time to solution.
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Figure 3: Application architecture for HVR workflow.

We utilized a batch sequential ABC algorithm [45] implemented
in the EasyABC library [41], and we directly integrated it into an
EMEWS workflow for our initial model calibration. The calibra-
tion was preceded by parameter prioritization analyses using an
efficient global sensitivity method [56], identifying the nine parame-
ters 𝜽 = \1, . . . , \9 most relevant to the empirical data that we were
attempting to match, time series of COVID-19 attributable hospi-
talizations 𝑇𝐻 (𝑡) and deaths 𝑇𝐷 (𝑡) for residents of Chicago, with
corresponding simulation outputs 𝑇𝐻 (𝑡, 𝜽 , b) and 𝑇𝐷 (𝑡, 𝜽 , b), where
b is a random variable encapsulating the random stream for each
simulation replicate. Since one of the primary goals for using the
model results was in creating forecasts, we used an exponentially
weighted error function 𝐿(𝜽 ,𝑇𝑖 ,𝑇𝑖 , 𝑑), 𝑖 ∈ {𝐻,𝐷}, with daily dis-
count rate 𝑑 tuned to 98% and 95% for H and D, respectively, and
averaged over replicates for each 𝜽 (shortened to 𝐿𝑖 (𝜽 ) hereafter).
The ABC algorithm starts by sampling from the parameter priors
𝜋 (𝜽 ) and iteratively creates improved approximations of the poste-
rior distribution of the nine model parameters 𝑝 (𝜽 |𝑇𝐻 ,𝑇𝐷 ) [45]. The
final simulated posterior distribution based on the time period from
the beginning of the epidemic to the initial lifting of the stay-at-home
order in Chicago on June 3, 2020, is shown in Figure 2a.

The diagonal panels in Figure 2a are the marginal distributions
for each input parameter \𝑖 , and the off-diagonal elements show
contour (upper) and scatter plots (lower) of each two-dimensional
parameter subspace \𝑖, 𝑗 . The calibration resulted in two main take-
aways, both associated with agent behaviors during the stay-at-home
period: 1) the reduction in transmission due to individual protective
behaviors (\9) exhibited a pronounced peak at about 90% transmis-
sion reduction (Figure 2a inset 1), and 2) the average proportion
of agent pre-COVID-19 out-of-household activities where agents
instead opted to stay at home during the shutdown (\8) showed
a broader range of values between 40 and 60% (Figure 2a inset
2). While the second result can be compared with empirical data
on mobility based on cellphone data, providing constraints on the
parameter estimation result, the first result encapsulates generally
unobserved dynamics of person-to-person interactions across the
population in response to public health messaging and perceptions
of risk.

As the pandemic progressed, our team sought methods for im-
proving the time to solution for generating parameter estimates.
One such approach was utilizing another sequential ABC algorithm,
IMABC [68], which members of our team implemented as an R
package [51]. IMABC provided two main improvements over the
original ABC algorithm. Because of a more directed sampling ap-
proach, IMABC increased the efficiency of sampling from the City-
COVID parameter space, which sped up algorithm convergence.
The IMABC algorithm and package also included the ability to
continue sampling from a checkpointed algorithm state, that is, to
further refine a previously generated simulated posterior distribution.
This allowed for improved robustness, for example., for restarting
after HPC resource failure, and the possibility for optionally longer-
running calibrations when convergence in the standard timeframe
proved difficult.

Another approach we used for improving parameter estimation
time to solution was to employ metamodels, also known as surrogate
models, for multiobjective optimization, which we discuss next.

5.2.2 Hypervolume Refinement. To complement the uncertainty
estimation in the parameter space provided by the ABC approach,
we also consider finding a set of best parameters matching simul-
taneously both COVID-19 attributable deaths and hospitalizations.
Denote 𝐿𝐷 (resp. 𝐿𝐻 ) : 𝜽 ∈ Θ ⊂ R9 ↦→ R the corresponding cal-
ibration errors where Θ := supp(𝜋 (𝜽 )). Here, given the intrinsic
variability of ABM outputs across runs for the same parameters, the
multiobjective optimization (MOO) problem is to obtain

min
𝜽 ∈Θ

(Eb [𝐿𝐷 (𝜽 )],Eb [𝐿𝐻 (𝜽 )]), (1)

as commonly done for simulation experiments (see, e.g., [40]). In
general, no solution minimizes all objectives at once; instead, the
Pareto dominance relation is used to define optimality. A solution is
said to be optimal (or nondominated) if no other solution is at least
as good for all objectives and strictly better for one. The set of all
optimal solutions in the objective space is called the Pareto front,
and the aim of MOO is to find an accurate discrete representation
of it. Directly solving the MOO problem is out of reach even on the
largest HPC resource because of the large number of runs it would in-
volve. Instead, the Bayesian optimization paradigm is used (see, e.g.,
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[33, 70]), where probabilistic surrogate models of the objectives are
used to sequentially select new evaluations based on an acquisition
function. As surrogates, Gaussian processes are popular for their
ability to provide uncertainty on their prediction (see, e.g., [64]).
For MOO, an adapted acquisition function performing a trade-off
between exploration of unknown regions and exploitation of promis-
ing ones is the Expected Hypervolume Improvement (EHI) [30]. It
is based on the hypervolume metric, that is, the volume added to
the current Pareto front estimation, given a reference point. The ap-
proach is implemented, for instance, in the R package GPareto [13],
but requiring adaptations for the combination of low signal-to-noise
ratio and massive batching enabled by the available concurrency
involved here.

To handle the challenges associated with running hundreds of
noisy simulations at once, we developed the multiobjective Bayesian
optimization loop shown in Figure 1. To both accurately learn the
input-dependent variance and reduce the computational complexity
of GP modeling, we complement the exploitation side of BO by
leveraging replication of runs at the same location. Every design
𝜽 is replicated at least ten times to prevent an overly optimistic
estimation of the Pareto front. Figure 2b depicts where individuals
runs, shown as small black dots, can be much closer to the zero-
error target than estimated means, shown as hollow circles and blue
dots. Based on empirical means and variance of initial evaluations—
provided here by the ABC computations—the first ML phase (ML
Phase 1 in Figure 1) is to build one GP model per objective, with
the DiceKriging package [66]. The optimization of the correspond-
ing hyperparameters is performed in parallel. Note that instead of
global GP models that can predict everywhere, local GP models
can be constructed to predict at specific locations, for example, with
[35]. The advantage of this second option is to be more decentral-
ized. Then the expected hypervolume improvement is optimized
with a multistart approach, since the EHI optimization landscape
is expected to be highly multimodal. Specifically, in ML Phase 2,
a large set of uniformly sampled designs is evaluated, from which
the best candidates constitute starting points for local optimization
in ML Phase 3. The reference point for hypervolume computations
is fixed at (7,7), while the reference Pareto front to improve over
is estimated based on the predicted means at the evaluated designs,
hence filtering out the noise via the GPs. In order to further refine the
current estimate of the Pareto front, part of the evaluation budget is
dedicated to allocating more replication at the corresponding design.
The main part of the simulation budget is for the best candidates
found in ML Phase 3, where the number of replicates depends on the
corresponding EHI value (larger potential of improvement gets more
replicates). Models are updated as new simulation evaluations come
in, until the maximum number of iterations. The result is provided
in Figure 1b, where the initial estimation of the Pareto front (black
dotted line) is overly optimistic. Then it keeps regressing before sta-
bilizing and improving, suggesting that despite noise, the adaptive
scheme evaluates more over the region of interest. By relying on
standard but robust BO components amenable to parallelization, the
HVR workflow thus propels multiobjective BO to whole-machine
scales on ALCF Theta.

5.3 Machine learning in HPC
Running machine learning workloads in high-performance com-
puting systems is at the core of the technological contributions of
this effort. Our approach is to use Swift/T to coordinate and dis-
tribute in-memory library calls to ML and simulation codes in an
HPC-oriented manner. While this technique had been prototyped ear-
lier [58], the CityCOVID workload effort involved the development
and integration of the following innovations.

5.3.1 Pluggable algorithm workflow control. A key innovation
of EMEWS is the ability to directly incorporate R or Python-based
model exploration algorithms. This is done by defining resident,
or stateful, tasks to encapsulate the logic within iterating, state-
preserving algorithms [60]. These in-memory calls are critical for
ML-based workflows in which numerically oriented modules main-
tain state over long periods but are treated as discrete tasks by the
workflow system. While certain workflow systems are designed from
the ground up to perform numerical procedures such as optimiza-
tion [1, 2], these are generally difficult to extend and reprogram for
arbitrary workflows. We have exploited this capability to implement
a variety of workflows specifically geared toward the concurrency
afforded by HPC resources, both in terms of the number of simulta-
neous simulation tasks and through the mixed use of worker pools to
handle machine learning tasks as well. We used sequential ABC ap-
proaches [45, 68] and HVR [9] for uncertainty quantification (Figure
2a) and calibration (Figure 2b). The ML workloads within the HVR
workflow (Figure 1) were implemented by using R-based paralleliza-
tion via a new doEMEWS adapter for the foreach package [54],
which provides transparent batch dispatching of R code to the worker
node pool (Figure 3). The calibrated model can generate a variety of
epidemiologic outputs, including hospitalizations (Figure 2c), and
zipcode-level infection rates (Figure 2d).

5.3.2 Load balancing and work distribution. From a computer
systems perspective, a challenge for ML-based workflows is man-
aging the differing resource requests from simulation and learning-
based work items. In the CityCOVID/HVR workflow, simulation
tasks require 256 ranks, and learning tasks require 64. The Swift/T
model allows workflows to request tasks on any number of ranks
from 1 to the number of workers allocated to the compute job. These
tasks may optionally request that the ranks for a task occupy con-
tiguous ranks starting at regular intervals or other constraints. For
example, all CityCOVID workflows run the simulations on contigu-
ous ranks starting on ranks such that rank mod 256 ≡ 0. The ML
tasks run independent R interpreters on each node of the system,
each of which uses threads internally to utilize the 64 cores on each
node. The database access tasks call into Python libraries using a sin-
gle core at a time. Thus, Swift/T faces a significant work distribution
challenge.

Swift/T translates workflows into ADLB [49] programs. In the
implementation used by Swift/T, ADLB divides the available ranks
into workers and servers. Any number of servers and workers may
be used, down to a singleton of each. The workers simply perform
work requested from their server. Servers exchange work using the
work stealing approach from Scioto [28], in which empty servers
steal half of the work queue from another server selected at random.
This explains the exponential ramp-up commonly seen in Swift/T
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performance plots. For the CityCOVID workload, we used increas-
ing numbers of servers for increasing run sizes. Servers spent the
bulk of their time looking for contiguous blocks of ranks for MPI
tasks, and this work was easily shared by the work stealing approach.

5.4 Supporting Public Health
We have been using the CityCOVID model to forecast the spread
of COVID-19 in Chicago and have been providing model results to
support city and state public health officials and decision-makers.
From the beginning, the decision-makers we work with have had the
philosophy that their “decisions would be guided by data, science,
and public health experts.” To meet these requirements, decision-
makers recruited data analytics support for understanding the current
COVID-19 situation and epidemiological modeling support for fore-
casting what might happen in the future based on possible NPIs, and
they paired these groups with public health departments.

We have supported the Chicago Department of Public Health
(CDPH) since the early stages of the pandemic, March 2020 [72].
As described in § 5.2.1, we have been able to estimate the extent to
which individual protective behaviors, such as mask wearing and so-
cial distancing, have affected community SARS-CoV2 transmission.
These model-based insights were used by CDPH in their briefings
with Chicago aldermen about the importance of maintaining COVID-
19 mitigation measures in the lead up to the partial reopening on
June 3, 2020.

We have also supported the Illinois Department of Public Health
through the Illinois Governor’s COVID-19 Modeling Task Force
(IGCMTF) [52]. The IGCMTF includes four modeling groups, in-
cluding Argonne, that are applying various epidemiological model-
ing approaches to understand COVID-19 spread and explore what
can be done to reduce the spread.

For interacting with public health officials, we established a
weekly/biweekly routine that consists of 1) calibrating the model
based on the most recent data; 2) designing and running experiments
with the model to forecast effects on the spread by varying scenario
parameters; 3) compiling and analyzing the model outputs from thou-
sands of simulations; 4) applying quality control/assurance checks,
which include independent subject matters experts such as epidemi-
ologists, to the assumptions and results and identifying possible
anomalies; 5) applying causal analysis to explain why the results
came out as they did; and 6) reporting the results in a structured
format that public health officials can easily discern and understand
the implications. A standardized set of charts and graphs is provided
in as succinct a form as possible and presented in live forums to
public health officials by the modelers.

Since the fall of 2020 and continuing through today, questions
have focused on the effects of vaccination programs and, more
recently, the effects of variants of concern, in other words, mutations
that, for example, result in increased disease severity, transmissibility,
and vaccine escape. The fine-grained nature of the CityCOVID
model allows us to track which variant an individual agent has
been infected with and follow the disease course and subsequent
transmission of that individual, where parameters unique to that
variant can be adjusted. Our group continues to calibrate and run the
model and report results to public health officials regularly.

6 HOW PERFORMANCE WAS MEASURED
6.1 What applications were used to measure

performance
All software was built with GCC 7.3.0 with the Cray MPI wrap-
pers for Theta as appropriate. The CityCOVID model is based on
the RepastHPC 2.3.1 agent-based modeling system and the ChiSIM
Chicago model 0.4.2. The workflow system was Swift/T 1.4.3, which
was linked to interpreters in Python 3.8.2.1, R 3.6.0, Tcl 8.6.6, and
Cray MPI. All Python and R libraries used were the latest compatible
with these interpreters as of October 1, 2020. The R library size to
perform these optimizations contains 112 packages totaling 321 MB.
In order to improve the performance associated with numerical oper-
ations in the machine learning tasks, an external R with Cray LibSci
v.20.03.1 providing vendor-optimized BLAS/LAPACK libraries was
also used.

6.2 System and environment where performance
was measured

All experiments were run on the Theta system at the ALCF. Theta
is a Cray XC40 with 4,392 compute nodes, each with an Intel KNL
7230 (Xeon Phi), aggregating 11.7 petaflops in total. Each node
has 64 compute cores with access to 16 GB of high-bandwidth in-
package memory, 192 GB of DDR4 RAM, and 128 GB of SSD.
The system interconnect is a dragonfly network. The system has
Lustre and GPFS filesystems; we used Lustre for software installa-
tions and GPFS for application data. We used the vendor-provided
Cray MPICH 7.7.17.

6.3 How performance was measured
The technical details of our workflow solution are as follows. The
workflow runs as a single job allocation in the Cobalt scheduler on
Theta. The Swift/T runtime runs as a single MPI program across
all nodes and evaluates the logic of the Swift workflow. Tasks in
the workflow such as the invocation of R code snippets (the ML
algorithms) or MPI-enabled libraries (CityCOVID/C++) are placed
in a distributed task queue in the ADLB library underlying Swift/T.
Even database accesses are represented as Python code snippets
(via Psycopg2); thus, they do not block the progress of the overall
workflow. MPI tasks are launched by Swift/T using MPI 3.0 features
developed previously [78].

Performance was simply measured by using the clock libraries
available in the programming models used and reported in log files.
The precision of our measurements need be accurate only to the
nearest second to describe the performance. The overall performance
metric of our workflow is delivering high utilization to the compute-
intensive ML and ABM modules.

7 PERFORMANCE RESULTS
In this section, we present five types of performance results: an
illustration of a full-scale run on Theta (§ 7.1), strong-scaling results
for full-system scale (§ 7.2), time to solution results for the learning
tasks (§ 7.3), communication and messaging rates (§ 7.4), and ABM-
specific performance results (§ 7.5).
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Figure 4: Utilization timeline on 4,098 nodes of Theta consisting of ML and simulation phases.

7.1 System utilization at full scale
Figure 4 shows a full-scale run of the HVR workflow on 4,098 nodes
of Theta. Each colored phase corresponds to a phase shown in Fig-
ure 1. Two optimization iterations are shown from the beginning of
a run.

A key performance challenge of this workflow is juggling the
2,040 MPI simulation tasks generated by the workflow, each a 256-
core execution. As parameters for these tasks emerge from the HVR
algorithm, this work must be rapidly distributed. Additionally, there
are constraints on the task placement, since the MPI task should
occupy contiguous cores across whole nodes to support fast com-
munication and a data caching strategy used by CityCOVID. Never-
theless, the worker utilization across the two optimization iterations,
including the learning and simulation tasks, is 84%. This is a good
result considering that the Swift/T workflow scheduler operates at
the rank granularity, and that 128 server ranks were distributing short
(sub-minute), multi-process tasks to 262,144 worker ranks.

The plot shows fine-grained load levels for the MPI-based sim-
ulation phase. As shown, the workflow rapidly ramps up as the
simulation phase begins and ramps down more slowly as tasks exit.
The first phase takes 9.4 minutes, whereas the second phase takes
5.9 minutes, demonstrating the benefit of the caching strategy. The
ML task utilization is not measured directly; rather, we measure the
overall time to solution in the following.

7.2 Strong scaling
The next key metric of our workflow is demonstrating strong scaling
for a given problem as the computing allocation size increases. We
ran the same workflow parameters on Theta in job node counts
257, 513, 1,025, 2,049, and 4,098. We then measured the overall
time to solution and calculated the corresponding task rates. This
corresponds to 2 nodes or 128 ranks of ADLB servers (§ 5.3.2) for
the largest case, and 1 node or 64 ranks of ADLB servers for the
other cases. The remaining nodes were allocated as ADLB workers.

As shown in Figure 5, the time to solution and simulation rate
both accelerate to full scale on Theta, and the likelihood of further
scaling is encouraging. In our smallest case the workflow takes 5
hours and 54 minutes on 257 nodes, but at 4,098 nodes it completes
in under 44 minutes!

Further utilization improvements could be possible with asynchro-
nous HVR algorithms, enabling overlap between workflow phases.
The Swift/T programming model supports arbitrary data dependen-
cies, enabling such patterns; and the flexibility of being able to
directly integrating Python and R code will facilitate such algorith-
mic investigations.

7.3 ML phase scaling
Here we report the scaling results for the ML phases. The ML phase
uses the novel doEMEWS module to distribute R-based workloads
via Swift/T single-node task distribution. For each run size up to full
system scale, the number of tasks produced in each ML phase is the
same. Thus, the most important metric is time to solution per phase.

In Figure 6 we report the average time per phase for the ML
workload. The most time-consuming phase is the kriging model
(ml-km) phase, which takes 177 seconds on 256 worker nodes and
only 19 seconds on 4,096 worker nodes. The least time-consuming
phase is the Pareto front improvement phase (ml-parEHI), which
takes 147 seconds on 256 worker nodes and 19 seconds on 4,096
nodes. As shown in the plot, scaling efficiency drops off at the larger
scales because the system runs low on tasks to execute, allowing the
task distribution and task runtime imbalance overheads to negatively
impact utilization.

7.4 Messaging rates
Workflow variables in Swift/T are stored on the task servers and
accessed as in a distributed hash table over MPI. Over the whole
workflow, in the 4,098-node run the system performed 722,485
retrieves in 2,619 seconds, an aggregate rate of 276 data reads per
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Figure 5: Overall time to solution and strong-scaling plot for HVR workflow.

second. During the peak period of the first simulation ramp-up,
shown in Figure 4 near minute 13, the system performed 148,854
read accesses in 12.5 seconds, for a rate of 11,908 reads/second.
This workload was spread over 128 task servers, for a rate of 93.0
accesses per second.

7.5 ABM-specific performance results
Within the HVR workflow, each CityCOVID model ran for 69 simu-
lated days (1,656 hours), corresponding to approximately 5 × 109

agent-hours. The significance of this metric is that it tracks how
many hours agents had the potential to colocate with other agents
and spread or be exposed to COVID-19. At the 4,098-node scale and
after the input data caching had occurred, 1,020 concurrent simula-
tions were launched and completed in 5.9 minutes. This corresponds
to the simulation of 1.3 × 1010 potential transmissions/second. The
runtime of the CityCOVID model could potentially be improved
by parallelizing disease transmission and disease state transitions,

Figure 6: Time to solution for ML phases by node count.

either by exploiting intraprocess parallelism (threading) or reimple-
menting disease states and disease state transitions to be more GPU
amenable. Both of these potential improvements are complicated by
the necessity of logging disease states and transitions and thus could
require a parallel logging capability. We have begun exploring how
to leverage GPUs in an agent-based modeling toolkit with our work
on Repast4Py [22], our next-generation distributed ABM toolkit in
Python.

8 IMPLICATIONS
The implications of the success of this workflow applications are
broad. Here we describe the implications for COVID-19 modeling
and public health, as well as for data science, learning, and simula-
tion in the HPC space.

8.1 COVID-19 modeling and public health
Public health departments need guidance for prioritizing interven-
tions in the context of limited resources and empirical data uncer-
tainties. Through our regular meetings with city, county, and state
stakeholders during the COVID-19 pandemic, we have first-hand
experience in the dynamic nature of evolving mitigation priorities
and the need for the detailed modeling that CityCOVID provides
to rapidly coevolve. CityCOVID can simulate specific and realistic
NPIs closely resembling those being considered by public health
officials and can thereby guide local policy and intervention develop-
ment. By integrating high-performance epidemiological simulation
with large-scale machine learning, we have developed a generaliz-
able, flexible, and performant analytical platform that can meaning-
fully support evidence-based decision-making during a public health
crisis.

Furthermore, the COVID-19 pandemic has highlighted a number
of issues, including drastic health inequities. Reducing COVID-19
morbidity and mortality will likely require an increased focus on the
social determinants of health, given their disproportionate impact
on populations most heavily affected by COVID-19. The detailed
data-driven modeling approach that CityCOVID represents, coupled
with the HPC solution developed here, has the potential to provide
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the robust exploration of underlying factors and reveal promising tar-
geted interventions to reduce these observed inequities. The melding
of advanced simulation, machine learning, and high-performance
computing enables an in silico laboratory for identifying gaps where
additional empirical data are needed and facilitates hypothesis gen-
eration.

8.2 Convergence of data science, learning, and
simulation for HPC

This application demonstrates the capability and need to bring HPC
closer to diverse scientific communities, including the public health
sector. By using detailed local data as a starting point to parameterize
and calibrate simulations and produce actionable analyses (i.e., from
observational data to scenario outputs documented in an integrated
Postgres database), we applied Theta as the numerical engine at
the center of a data pipeline. This made the overall workflow more
relevant to our public health collaborators and demonstrated the
capability of the system to be an integral part of the decision-making
process.

From a computer systems perspective, the complex integrations
and high performance achieved here demonstrate that applications
written in high-level workflow languages and mathematical systems
can be executed at large scale. Additionally, they can be closely inte-
grated with previously developed MPI-based scientific applications
that are scalable in themselves. We also demonstrated that very large
(thousands) ensembles of MPI program executions can be run on the
system without negatively impacting the scheduler or other users by
tapping into the capabilities of MPI, via the high-level model offered
by Swift/T.

We expect that data+learning+simulation workflows will become
more tightly integrated in the near future. As shown in Figure 4,
learning is already half of the job. The capabilities shown here are
initial steps to more general-purpose HPC-enabled decision-support
platforms that can rapidly assess and forecast the course of disease
outbreaks and other crises. We expect that incorporating real-time
data streams and weather-forecast-like automated steering will drive
further enhancements and increase the performance and robustness
of the results obtained.

In the broad ME context of Gaussian process-based Bayesian
optimization, parallel infill criteria have been developed to benefit
from parallelism of modern architectures. Yet, most of these works
cannot be directly transposed to HPC scale. More work is needed
to leverage existing methods to scale GPs with millions of fixed
observations to the sequential framework. Thus, developing algo-
rithms that are specifically geared toward and can take advantage
of HPC resources has the potential to advance computational sci-
ence and open up previously unexplored areas of statistical research.
There are trade-offs to consider, such as between accurately select-
ing the optimal points for a given task and the time it takes to make
this selection at the specified accuracy. Besides the ability to tackle
more complex problems with an increasing number of variables,
higher concurrency raises challenges in coping with consideration
of synchronous versus asynchronous algorithms. Support for asyn-
chronous algorithms (see, e.g., [42]) is a promising perspective for
future work.
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