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Abstract—Exascale computers will offer transformative capa-
bilities to combine data-driven and learning-based approaches
with traditional simulation applications to accelerate scientific
discovery and insight. These software combinations and integra-
tions, however, are difficult to achieve due to challenges of coor-
dination and deployment of heterogeneous software components
on diverse and massive platforms. We present the ExaWorks
project, which can address many of these challenges: ExaWorks
is leading a co-design process to create a workflow Software
Development Toolkit (SDK) consisting of a wide range of work-
flow management tools that can be composed and interoperate
through common interfaces. We describe the initial set of tools
and interfaces supported by the SDK, efforts to make them eas-
ier to apply to complex science challenges, and examples of their
application to exemplar cases. Furthermore, we discuss how our
project is working with the workflows community, large com-
puting facilities as well as HPC platform vendors to sustainably
address the requirements of workflows at the exascale.

I. INTRODUCTION

The coupling of traditional High Performance Computing
(HPC) with new simulation, analysis, and data science ap-
proaches provides unprecedented opportunities for discovery
but also creates new application and infrastructure challenges.
Several Exascale Computing Project (ECP) [1] workflows ex-
emplify this new reality [2], [3]: a heterogeneous combination
of applications, Machine Learning (ML) models, and “glue”
code, running on heterogeneous compute nodes, orchestrated
by a scalable workflow system. These workflows require spe-
cialized workflow management software which are currently
available to only certain large and specialized inter-disciplinary
teams. The gap between capability and requirements will be-
come more acute with scale and sophistication. Furthermore,
“bespoke” approaches to workflow development have resulted
in many inflexible, tightly integrated, and stove-piped software
solutions. An explosion in the number of independent solutions
is making development and support of workflows increasingly
unwieldy, expensive and unsustainable.

Several technical and non-technical challenges impede the
creation of portable, repeatable, and performant workflows. On
the technical side, workflow management systems (WMS) and
complex workflows are difficult to port and maintain which
hinders usability, portability and ultimately adoption. On the
non-technical side, myriad WMS exist which often try to pro-
vide complete and end-to-end capabilities, resulting in dupli-

cated general capabilities but missing specialized functionality.
The lack of coordination, high-quality specialized and broadly
usable common components, has resulted in a disjoint work-
flows community that tends towards building ad hoc solutions
rather than adopting and extending existing solutions. The
complex workflows landscape demands an open community-
based approach to address these challenges.

The ECP ExaWorks project was created in response to these
challenges and is addressing both technical and non-technical
aspects. We are co-designing the ExaWorks SDK comprised of
scalable workflow tools that can be combined to enable diverse
teams to produce scalable and portable workflows for exascale
applications. We do not aim to replace the many workflow so-
lutions already deployed and used by scientists, but rather to
provide a well-defined and scalable SDK that provides both
common and interoperable APIs, as well as well-tested work-
flow technologies, to both the user and workflow communities.
Most importantly, the SDK will enable sustainability via the
creation of a continuous integration and deployment (CI/CD)
infrastructure so that software artifacts produced by participat-
ing teams will be easier to port and maintain. SDK components
will be usable by other WMSs thus facilitating software con-
vergence in the workflows community. The ExaWorks SDK
is intended to provide scalable technologies while moving to-
wards sustainability, re-usability, and adoption:

1) Re-usability and Composability: we are partnering with
the workflow community to define natural integration points
between workflow technologies and begin to define common
APIs and reference implementations for capabilities imple-
mented in many workflow systems.

2) Sustainability: the ExaWorks SDK will be included in
the Extreme Scale Software Stack (E4S) [4], a community ef-
fort to provide open-source software packages for developing,
deploying and running scientific applications on HPC plat-
forms. E4S provides from-source builds and containers of a
broad collection of HPC software packages.

3) Adoption: we are building comprehensive SDK docu-
mentation, with user-facing examples and tutorials, that will
facilitate adoption of workflow technologies by developers.

ExaWorks is also a community-driven project. Our vision
is to create an open process and community curated SDK for
workflows: first define interfaces for logical workflow com-



ponents and then bootstrap the ExaWorks SDK by adapting
a set of existing WMS components currently being leveraged
by ECP applications.

In this paper, we present the initial set of ExaWorks tech-
nologies and PSI/J, a first component API that aims to provide
a unified interface to job schedulers. We then highlight exam-
ples of cross-integrations among the current SDK technologies
and provide highlights from recent application of ExaWorks
technologies to extreme-scale workflows.

II. UNDERSTANDING HPC WORKFLOWS

Before embarking on the ExaWorks project, we conducted
a survey of ECP application teams to understand their work-
flow requirements and challenges. The survey was conducted
in two parts: an online questionnaire and targeted deep-dive
interviews with a subset of teams. In this section we summa-
rize the results and takeaways from this survey [5].

We sent the online questionnaire to 24 ECP applications
teams and the 5 ECP co-design centers. We received responses
from 15 out of the 29 teams. After reviewing these responses
we identified five teams to interview in depth. Our selection
criteria emphasized teams that were developing workflows and
that had either written or were leveraging workflow manage-
ment tools. Our goal here was to broaden our understanding
of these workflows and the tools employed by these teams.

Responses to the survey highlighted that many ECP appli-
cation teams are orchestrating workflows using homegrown
scripts (shell, Python, Perl) and tools like Make. Some teams
reported usage of workflow tools: Airflow, Cheetah, Fireworks,
libEnsemble, Merlin, Nexus, Parsl, and Savannah. Note, we al-
lowed respondents to define “workflow tool” broadly, resulting
in a mixture of general workflow tools and tools under devel-
opment for particular sub-domains in HPC.

We asked teams to describe their workflows. Using these
descriptions we grouped responses into the following motifs:

1) Single simulations: workflows managing a single simu-
lation, composed of various independent tasks, and often
scaling to extreme scale.

2) Ensembles: sets of runs, often statically defined param-
eter studies, parameter sweeps and convergence studies.

3) Analysis: experiment-driven workflows which involve a
mixture of short/small jobs and larger analysis jobs.

4) Dynamic: workflows in which the runs are not known
a priori and that involve co-scheduling of disparate tasks
and orchestration among tasks. Integrated HPC and Ma-
chine Learning workflows are a growing and important
example.

The ensemble motif was the most common motif reported
by survey respondents, and often these ensembles were man-
aged via bespoke scripts. While one might expect that single
simulations would be more common, it is likely that these
teams did not employ workflow systems and were thus less
likely to respond to the survey. Analysis and ML/dynamic
workflows featured in several responses, and even when gen-
eral purpose workflow management systems were employed

by these teams we found that a significant amount of cus-
tomized internally developed infrastructure was still required.

We asked respondents to describe the following aspects of
their workflows and we summarize the responses here;

1) Internal Orchestration: We aimed to understand the
need for tasks in a workflow or single batch job allocation
to interact with one another. Responses indicated use of
such coordination, but limited communication between
tasks — though one responding team utilizes stream-
ing/service oriented workflows where task to task inter-
action was required.

2) External Orchestration: We aimed to understand the
extent to which teams utilized multiple machines, or exe-
cuted workflows across multiple machines. The responses
were evenly divided, with about half of the respondents
indicating that their workflows span systems or that they
would run them in that mode if they had a workflow tool
that makes it possible to do so. In most cases, the use of
multiple systems was driven by the need to scale work-
loads and to reduce computation time, rather than a differ-
entiation based on hardware or data locality. Some teams
described workloads that exceed scheduler job time lim-
its, requiring submission of several batch jobs, and they
considered this as a case of external orchestration.

3) Homogeneous vs. Heterogeneous tasks: In general,
most respondents indicated a large dynamic range of job
sizes. Reasons for this range include: scaling/convergence
studies, simulation vs. analysis jobs, and co-scheduling
of ML and simulation tasks. Unsurprisingly, we found
that teams with more complex and dynamic workflows
reported high levels of task heterogeneity.

The responses and our interviews with teams provided a
strong finding that supporting complex dynamic workflows
across multiple machines/data centers, and porting to new ma-
chines is expensive in terms of developer time. Each clus-
ter, even those that outwardly appear similar (e.g., Linux
OS, Slurm batch scheduler, etc.), require customization in the
workflow. The subset of ECP projects that need to run at mul-
tiple facilities have developed independent abstraction layers
to support these customizations. A key takeaway is that attack-
ing the lower layers of the workflow management stack can
bring increased portability and reduce costs for teams. Finally,
a common theme running through the survey is that develop-
ing robust workflows that are fault tolerant and portable is both
a pain-point and oftentimes a determining factor in whether a
team will adopt a third party workflow technology rather than
creating their own bespoke capability.

The aforementioned salient points informed the scope, prior-
ities and approach of the ExaWorks project (e.g., PSI/J porta-
bility layer for schedulers) which we now discuss.

III. THREE COMPONENTS OF EXAWORKS

The three pillars of the ExaWorks technical approach are
the robust and performant component technologies, APIs for
common workflow components, and the assembly of an open
SDK. We describe each of these pillars below.
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Fig. 1. Flux’s fully hierarchical software framework architecture

A. Exaworks Components Technologies

Balsam [6] provides a hosted platform for orchestrating dis-
tributed workflows via web-accessible APIs or Python SDK.
Users define and manage a collection of HPC execution sites
that automate wide-area data transfers, resource allocation,
and high-throughput, fault-tolerant execution of tasks via pilot
jobs. Since Balsam sites run as user-domain clients communi-
cating with the service over HTTPS, secure deployments are
straightforward across diverse platforms. For instance, Balsam
sites can be installed and run on systems ranging from lap-
tops to DOE supercomputers. Armed with a collection of sites,
clients may then remotely submit tasks to the Balsam API to
distribute workloads in near-real time computing scenarios.

The Balsam site’s user agent is architected as a collection
of platform-agnostic modules (auto-scaling, resource manager
synchronization, pilot jobs, data staging) that interface with
the underlying systems through a set of adapters implement-
ing platform interfaces (Batch Scheduler, MPI Launcher, Com-
pute Resource, Data Transfer Protocol). Balsam sites can be
deployed to new systems by setting the appropriate adapters,
while supporting new HPC schedulers or application launch
paradigms requires minimal implementation of well-defined
interfaces. Pilot jobs dynamically pull workloads from the API
and schedule execution of heterogeneous tasks across available
resources. The service maintains a history of state transitions
for each task, enabling users to register pre-/post-processing
or timeout-/error-handling hooks, which are invoked by the
Balsam site at appropriate stages of the task lifecycle.

Flux [7] is a fully hierarchical workload manager for HPC.
It was born out of growing computing needs for more so-
phisticated scheduling and resource management of larger,
more heterogeneous and dynamic systems at facilities such as
DOE national laboratories. Its fully hierarchical capabilities
have proven to improve scalability and flexibility significantly
through a divide-and-conquer approach that is well-suited for

emerging environments. Jobs and resources are divided among
the Flux instances in the hierarchy and managed in parallel.

Fig. 1. shows the modular architecture of Flux, and also de-
picts how its network can be organized to manage two Flux
instances at different levels of the hierarchy, with a parent Flux
instance and a child Flux instance. The hierarchical design of
Flux provides ample parallelism and flexibility to overcome
emerging workflow challenges (e.g., higher job throughput re-
quirement). Under the hierarchical design of Flux, any Flux in-
stance can spawn child instances to aid in scheduling, launch-
ing, and managing jobs. The parent Flux instance grants a sub-
set of its jobs and resources to each child. This parent-child
relationship can extend to an arbitrary depth and width, creat-
ing many opportunities for parallelization and drastically in-
creasing the scalability of Flux over traditional schedulers that
rely on a centralized scheme. In addition, Flux uniquely pro-
vides two modes of operations: single- and multi-user modes.
Emerging scientific workflows often leverage its single-user
mode whereby hierarchical workload management is provided
in user space within a system-level batch allocation created by
HPC system workload managers, such as Slurm and IBM LSF.
Such a workload-management overlay allows users to set up
their own customized hierarchies and tune scheduling policies
tailored to their workflow.

Parsl [8] is a parallel programming library for Python. Parsl
augments standard Python with workflow constructs to de-
fine dataflow and control semantics. Parsl requires that indi-
vidual workflow components be implemented as Parsl Apps–
annotated Python functions that wrap pure Python code or
Bash commands. By annotating these functions, Parsl knows
that they can be executed concurrently. When apps are in-
voked, Parsl intercepts the call and returns a future in lieu
of a result. Developers can call Apps like any other Python
functions and link together Apps into sophisticated workflows
via standard Python code. Parsl establishes a DAG of depen-
dencies between Apps (based on exchange of data) and sends
apps for execution only when dependencies are resolved.

Parsl implements an extensible runtime model based on
Python’s concurrent.futures.Executor [9] interface as a stan-
dard way of executing tasks and a new provider abstrac-
tion for managing underlying compute resources. The execu-
tor abstraction has proven to be a flexible interface for inte-
gration: Parsl includes three Parsl-specific executors (HTEX,
EXEX, LLEX), a standard Python ThreadPoolExecutor, and
integrations with external task execution systems such as
WorkQueue [10], IPyParallel, Balsam, RADICAL-Pilot, Flux,
Swift/T, and funcX [11]. Parsl’s provider abstraction offers a
Python interface to job schedulers and cloud providers and
currently supports more than one dozen providers, including
Slurm, PBS, LSF, AWS, and Kubernetes.

RADICAL Cybertools (RCT) are capabilities developed
in Python to support the execution of heterogeneous work-
flows and workloads on HPC infrastructures. RCT provides a
workflow engine specialized for the execution of ensembles
(Ensemble Toolkit (EnTK)), a runtime system (RADICAL-
Pilot (RP)), and an interface to batch-systems via RADICAL-
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Fig. 2. RADICAL-Pilot architecture and execution model

SAGA (RS). Here we focus on RP [12], which is a pilot system
designed to address research challenges related to efficiency,
effectiveness, scalability, and both workload and resource het-
erogeneity. RP enables the execution of one or more work-
loads comprised of heterogeneous tasks on one or more HPC
platforms. RP offers: (1) concurrent execution of tasks with
five types of heterogeneity; (2) concurrent execution of mul-
tiple workloads on a single pilot, across multiple pilots and
across multiple HPC platforms; (3) support of all major HPC
batch systems to acquire and manage computing resources; (4)
support of fifteen methods to launch tasks; and (5) integra-
tion with third-party workflow and runtime systems. The five
types of task heterogeneity supported by RP are: (1) type of
task (executable, function or method); (2) parallelism (scalar,
MPI, OpenMP, or multi-process/thread); (3) compute support
(CPU and GPU); (4) size (1 hardware thread to 8000 compute
nodes); and duration (zero seconds to 48 hours).

RP offers an API to describe both pilots and tasks, along-
side classes and methods to manage acquisition of resources,
scheduling of tasks on those resources, and the staging of in-
put and output files. Architecturally, RP is a distributed sys-
tem with four modules: PilotManager, TaskManager, Agent
and DB (Fig. 2, purple boxes). Modules can execute locally or
remotely, communicating and coordinating over TCP/IP. Pilot-
Manager, TaskManager and Agent have multiple components
where some are used only in specific deployment scenarios,
depending on both workload requirements and resource ca-
pabilities. Some components can be instantiated concurrently
to enable RP to manage multiple pilots, tasks and HPC re-
sources simultaneously. This allows to scale throughput and
enables component-level fault tolerance. Components are co-
ordinated via a dedicated communication mesh implemented
with ZeroMQ, which improves overall scalability of the sys-
tem and lowers component complexity.

Swift/T [13] is an MPI-oriented workflow language and run-
time system. Swift/T is designed to enable the execution of
very large numbers of very small tasks across an MPI-enabled
computing system. The tasks could be as simple as short calls
to libraries implemented in compiled code, wrapped in script-
ing languages like Python or R, or packaged as external ex-
ecutables. These tasks can themselves be parallel MPI jobs
launched through various mechanisms. Swift/T has been used
to run ensemble applications on the largest available petascale
supercomputers, such as COVID-19 population model cali-
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Fig. 3. Swift/T architecture and data dependency handling

bration runs on Theta [14] and deep learning workflows on
Summit [15].

Swift/T consists of two components. Its lower-level Tur-
bine runtime [16] provides the MPI-level job launch, stan-
dard library, configuration features, and optional link-time in-
tegration with external scripting languages (Python, R, Tcl,
JVM, Julia). Turbine also wraps around the previously de-
veloped ADLB [17] load balancer, a pure MPI library that
performs work-stealing and task distribution. The higher-level
STC compiler is an optimizing compiler that translates the
functional Swift language constructs into a format for paral-
lel execution and dataflow-controlled progress. As shown in
Fig. 3, users use the Swift language to develop a workflow
program 1 with implicitly concurrent semantics. The Swift/T
compiler (STC) 2 [18] translates that into a format for execu-
tion by the Turbine runtime 3 , which launches the program in
parallel using the MPI implementation, possibly using a sys-
tem scheduler. At run time, the ADLB Server 4 distributes
tasks that are ready to run (sim) to workers 5 , while tasks
that are blocked for data (analyze) are held until their data
dependencies are resolved.

B. Common APIs

PSI/J is a portability layer across different HPC workload
managers allowing workflow developers and users to create
portable workflows with a standard API. Our survey high-
lighted the challenge of porting workflows as one of the
most critical needs for workflow developers and users alike.
We further observe that most modern HPC workflows each
implement their own portability layer, with varying degrees
of testing, generality, and performance. PSI/J aims to focus
effort by pooling into a single layer the collective knowl-
edge obtained from these disparate efforts. PSI/J is com-
posed of both a language-agnostic community-defined spec-
ification [19] and the specification’s language-specific imple-
mentations. The high-level goals of the specification are to be
lightweight, user-space, minimally prescriptive, scalable via
asynchronous operations, general, and extensible to different
systems, schedulers, implementations.

The PSI/J specification is broken into three layers that each
build on one another. The first layer forms the base of the spec-
ification and focuses on supporting the launching and moni-
toring of “local” jobs (i.e., the client is running on the same
system or cluster as the jobs). The second layer builds on the
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first to provide support for “remote” jobs (i.e., the client must
connect over the network, potentially with authentication, to
launch and monitor jobs), managing multiple clusters simul-
taneously, and allowing file staging. The third layer builds on
the previous two to support efficient execution of small jobs
through the “nested”, “pilot job”, or “jobs-in-jobs” paradigm.

As a community, we have focused initially on implement-
ing a PSI/J Python library [20], but implementations in other
languages are encouraged. The Python library contains the set
of core classes defined by the specification, as well as abstract
base classes (ABCs) for components that implement function-
ality specific to different clusters and batch systems. The im-
plementation currently supports local for running on a sys-
tem without a resource manager (e.g., a user’s laptop) as well
as rp and flux for launching jobs under RADICAL-Pilot and
Flux, respectively. Executor implementations for SAGA [21]
and Slurm [22] are also under development.

C. Exaworks Software Development Kit [23]

The ExaWorks SDK aims to make workflow technologies
easier to deploy, build upon in diverse applications, leverage
multiple workflow systems for the same application, and inter-
operate with external systems. This will democratize access to
increasingly hardened, scalable, and portable workflow tech-
nologies, components, and solutions to typical problems.

The SDK is implemented via a community-based approach.
We follow an open community-based design process in which
all artifacts are tracked using an open process on GitHub. We
have defined community policies for inclusion of technologies
in the SDK [24] to ensure minimum standard software quality
practices for reliable deployment and use, modeled on E4S.
We will work with workflows developers to integrate tech-
nologies that meet these policies. For example, we require
that technologies have Docker containers and Spack packages
for deployment. These packaging solutions allow for portable
and reproducible deployment and testing techniques, which
vary considerably among workflow tools. We have defined
a Fork+Pull model-based GitHub development workflow and
and GitHub Actions-based continuous integration testing and
deployment for SDK components.

Importantly, we aim for the SDK to facilitate progressively
advanced levels of interoperation among the tools. We define
three interoperability levels as follows:

• Level 0: Technologies can be packaged together: A
basic container or other deployment system can support
technologies in the same environment.

• Level 1: Technologies can interoperate: A single work-
flow solution can use features from two or more systems
which use tool-specific interfaces.

• Level 2: Sustainable interoperability: Users can per-
form deep customization of workflow system behavior,
choosing from and composing tools that interoperate
through the common APIs.

The next steps for the SDK are to develop and harden deeper
integration of our technologies, to extend our CI/CD pipeline
to Exascale Computing Project (ECP) systems, and to integrate

othre community workflows tools. We expect that a richer
CI/CD pipeline and more examples of deeper integration ex-
amples will significantly facilitate the rapid integration of a
wider range of community workflows libraries and tools into
the SDK. Thus far, we have focused on small-scale interoper-
ation, but we plan to extend our solutions to ensure scalable
integration of the components on pre-exascale and early access
exascale systems for immediate readiness as exascale systems
become available. We also plan to apply our SDK solutions
to ECP and other exascale-relevant workflows including the
ECP ExaAM workflow.

IV. INTEGRATION EXAMPLES

The ultimate goal of the ExaWorks SDK is to enable various
components to be adopted and combined to meet use cases.
Towards this goal we have prototyped integrations between
SDK tools to validate the feasibility of this approach and to
enhance these tools with new capabilities.

Parsl + Flux: Parsl’s standard executors are not designed
to schedule tasks based on resource requirements. To provide
this capability we integrated Parsl and Flux such that Parsl can
leverage Flux’s scheduling features and support applications
with varying resource requirements. To do so, we implemented
Parsl’s standard executor interface in Flux as shown in Fig. 4b.

Flux + RADICAL-Pilot: We extended RADICAL-Pilot
(RP) to support Flux as an alternative backend system to place,
launch, and manage tasks across allocated resources. The del-
egation of these costly operations to Flux helps to reduce RP
runtime overheads. RP can increase the overall task throughput
by launching multiple Flux instances within the same job allo-
cation and using them concurrently [25]. RP starts with boot-
strapping its components in the job allocation, then it launches
Flux instances and schedules tasks on them for execution. Flux
schedules, places and launches tasks on compute nodes via its
daemons. RP Executor tracks task completion, and communi-
cates this information to RP Scheduler, based upon which RP
Scheduler passes more tasks to Flux for execution.

Parsl + RADICAL-Pilot: We integrated RP and Parsl, as
shown in Fig. 4a, to provide a new scalable runtime in Parsl
that is capable of managing and executing heterogeneous tasks
efficiently. We designed this integration based on the structural
adapter pattern [26]. The adapter pattern allows Parsl and RP
to communicate seamlessly using efficient object conversion
at execution time. Our performance characterization of RP-
Parsl [27] showed that the overheads of RP-Parsl are small and
invariant to the number of tasks, and number/type of resources.

Swift/T + Flux: We have designed an integration be-
tween Swift/T and Flux. Previously, we have developed
techniques for managing large numbers of small to medium-
sized MPI jobs: Comm_create_group() [28] and
Comm_launch() [29], and we recognize that these features
could be extended by tapping into Flux’s abilities to handle
a workload consisting of hierarchical or nested parallelism.
For example, Swift/T could be used to specify the outermost
parallel program, and parallel simulations could run inside
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Fig. 4. Integration architectures: (a) Parsl + RADICAL, (b) Parsl + Flux and (c) Swift/T + Flux

it. More complex structures are also possible. This model is
depicted in Fig. 4c where Swift/T runs inside a Flux instance.

V. USE CASES AND APPLICATIONS

We outline exemplar use of ExaWorks technologies in ECP
applications and in extreme-scale COVID-19 research.

A. Representative Applications

We are working with several ECP application teams to un-
derstand requirements and apply ExaWorks technologies.

Cancer Distributed Learning Environment (CANDLE)
is a deep learning (DL)-oriented cancer application suite for
exascale. It consists of three key software products: Bench-
marks, Libraries, and Supervisor [30]. The Benchmarks are
a collection of relatively small, self-contained cancer applica-
tions, such as predicting the presence of a tumor in an RNA
expression sample. The Libraries are a collection of tools to
support DL, including configuration, I/O, checkpoint/restart,
and analysis methods. Supervisor is the workflow compo-
nent of CANDLE and is built on Swift/T. Supervisor work-
flows include flat bag-of-tasks cases, hyperparameter opti-
mization (HPO), and more advanced data-oriented investiga-
tions [15]. The workflows allow the Benchmarks and Library
features to be easily plugged in and run on a wide range of pre-
exascale resources. For example, a new HPO idea could easily
be applied to CANDLE-compliant Benchmarks for evaluation,
and new CANDLE-compliant Benchmarks (or other DL mod-
els) can easily be developed and run at scale.

Colmena [2] is an open-source Python framework for ML-
steering of simulation campaigns at scale. Colmena allows de-
velopers to define multi-fidelity simulations—either computa-
tional or ML surrogates—for determining properties. Colmena
further allows users to define the control logic used to select
which which simulation and ML tasks to execute when, as
well as implementations of those tasks. Colmena allows for
different steering functions to be defined and used to orches-
trate the campaign, typically these functions are themselves

ML algorithms that are repeatedly trained and applied. Col-
mena manages the complexity of task dispatch, results colla-
tion, ML model invocation, and ML model (re)training, using
Parsl to execute tasks on HPC systems. Colmena has been
used to drive electroltye design campaigns spanning an enor-
mous design space and using thousands of nodes on the Theta
supercomputer. The ML-guided steering approach is able to
accelerate discovery of molecules by several orders of magni-
tude when compared with unguided searches.

Exascale Additive Manufacturing (ExaAM) is building
a complex workflow to simulate a laser melt-pool additive
manufacturing build process. The workflow is composed of
several application codes, each capturing a different scale or
physics of the problem. The initial ExaAM challenge problem
is comprised of five phases: a full-build continuum model to
set initial conditions, a hi-fidelity melt pool model that cap-
tures powder bed fusion, a detailed microstructure-scale so-
lidification model, a polycrystal property model, and finally a
continuum model that leverages the AM process-aware mate-
rial model from the detailed fine-scale simulations. Each stage
feeds information to the next stage, and iteration can occur
across stages. Some stages leverage CPU’s and others GPU’s.
Several stages are themselves small workflows typically lever-
aging the ensemble motif. A nuance of the model is that it fol-
lows the additive process, which means that it is possible to
parallelize computations over space and time by dividing the
build process into layers and then breaking the laser path into
segments for each layer. Thus, the ExaAM workflow requires
integration of multiple physics applications and when executed
at full scale will require complex orchestration of many sub-
workflows. Initial integration of ExaWorks SDK technologies
has shown that improvements in throughput are possible with
minor changes to existing scripts. The ExaAM and ExaWorks
teams have identified additional stages in the workflow that
could benefit by incrementally integrating ExaWorks SDK ca-
pabilities to improve portability and performance.
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The winner and two of three finalists of the SC20 Gordon
Bell Special Award for COVID-19 competition leveraged Ex-
aWorks technologies. We believe that this is a demonstration
of the effectiveness of the use of high-quality scalable work-
flow building blocks to create sophisticated dynamic work-
flows that can leverage leadership-class supercomputers. All
four COVID-19 award finalists involved workflows, and three
of them used ExaWorks technologies. Each team developed
their own tailored workflow solutions, leveraging ExaWorks
technologies at key points, to enable scalability while reducing
the developer time needed to support the scale and magnitude
of these research efforts.”

For example, the winner of the award addressed the chal-
lenge of evaluating a potentially huge set of “biologically in-
teresting” conformational changes by creating “a generaliz-
able AI-driven workflow that leverages heterogeneous HPC
resources to explore the time-dependent dynamics of molec-
ular systems.” This workflow used DeepDriveMD and com-
ponents from the ExaWorks SDK. It combined cutting-edge
AI techniques with the highly scalable NAMD code to pro-
duce a new high watermark for classical MD simulation of
viruses by simulating 305 million atoms. The ORNL Summit
system was able to deliver impressive sustained NAMD sim-
ulation performance, parallel speedup, and scaling efficiency
for the full SARS-CoV-2 virion. AI helped identify interesting
conformational changes that were explored further in detail to
understand the important molecular changes that occur due to
the “jiggling and wiggling of atoms.”

Flux was used by another finalist doing drug design to pro-
vide the scalable backbone of Livermore’s Rapid COVID-19
Small Molecule Drug Design workflow. The use of Flux pro-
vided an unprecedented level of composability of workflow
systems in such a way that highly complex campaigns such
as drug design are easily architected in a timely fashion.

The third finalist adopted Swift/T to develop a highly scal-
able epidemiological simulation and machine learning (ML)
platform. The workflow was a complex structure of City-
COVID, a parallel RepastHPC agent-based modeling simula-
tion of the 2.7 million residents of Chicago, interspersed with
batteries of ML-accelerated optimization tasks. Integrating the
complete CityCOVID and ML epidemiological modeling plat-
form was aided by multiple Swift/T design features. The sim-
ulation itself is a stand-alone C++ module that, in this case,
ran on 256 cores and communicated internally with MPI. In-
voking large, concurrent batches of such runs efficiently is one
of the main capabilities of the Swift/T runtime, which invoked
the simulator repeatedly through library interfaces.

Another challenge was generating and coordinating the large
number of single-node optimization tasks, each of which used
vendor-optimized multithreaded math kernels. These single-
node tasks were calls to a range of R libraries, dispatched via a
custom R parallel backend. This extended the notion of work-
flow composability, a key theme of the ExaWorks project, into
the algorithmic control of the simulation and learning through

external algorithms developed in “native” ML languages R and
Python. This was implemented using the resident, or stateful,
task capabilities of Swift/T and the associated EMEWS algo-
rithm control framework.

VI. BUILDING A WORKFLOWS COMMUNITY

In collaboration with the NSF-funded WorkflowsRI project,
we are hosting a series of workflows community summits that
aim to bring the diverse workflows community together.

The first summit brought together 48 international partic-
ipants representing many WMSs, with the goal to identify
crucial challenges in the workflows community. The summit
considered six broad themes: FAIR workflows, training and
education, AI workflows, exascale challenges, APIs and inter-
operability, and developing workflow community.

The second summit [31] focused on technical approaches
for realizing many of the challenges identified in the first
summit. It included 75 workflows developers and focused on
three core topics: defining common workflow patterns and
benchmarks, identifying paths toward interoperability of work-
flow systems, and improving workflow systems’ interface with
legacy and emerging HPC software and hardware.

VII. A VISION FOR THE FUTURE

Workflow system software will become necessary compo-
nents of HPC software stacks. Including workflow require-
ments in the procurement/requirements process for future HPC
platforms and Cloud environments will aid efforts to establish
community standardization around workflow APIs. This will
require user and facility community engagement around defin-
ing common APIs, and eventually, widely used and shared im-
plementations. Encouraging adoption of these common APIs
in the user community while advocating for workflow require-
ments to enter directly into the procurement processes at facil-
ities, will lay the foundation for workflow developers to build,
maintain, and support their workflow technologies in partner-
ship with the facilities and private sector. This will enhance
the sustainability of workflow system software. Of course, for
this adoption and partnering to occur, common workflow APIs
and reference implementations must be widely ported and ex-
tensively tested to meet user expectations.

PSI/J represents an initial effort towards this goal, in that
it is scoped to achieve both adoption by bespoke workflow
developers (i.e., small teams of domain scientists), inclusion
in workflow tools (starting with the ExaWorks SDK), and be
tested widely across many facilities and cloud providers. The
focused scope of PSI/J may allow for it to be included as a
requirement in future procurements, with the possibility of it
becoming a standard API provided for both users and work-
flow system developers.

Partnering with industry, including cloud vendors, is a key
aspect of a plan to sustain a workflows SDK beyond its current
ECP funding. Cloud vendors are increasingly providing work-
flow capabilities as well as HPC capabilities. The commercial
ModSim community involved in engineering and product de-
velopment, are rapidly moving to leverage cloud capabilities
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in their software platforms. It is therefore important that the
HPC community engage with both HPC system integrators, as
well as cloud vendors, to socialize and propagate performant
workflow technologies.

We will release a first version of the SDK in 2021 and then
periodically release new versions as capabilities are added.
Subsequent releases will include increasing use of ECP contin-
uous integration capabilities and deployments on additional fa-
cilities. PSI/J development and releases will continue as more
backends are added and it is deployed and tested at data cen-
ters. We will be co-organizing community workshops and in-
vite the wider community to participate. Finally, all ExaWorks
development activities will continue to be hosted on GitHub
and are open for community participation.

We have made concrete progress at creating an SDK of
workflow technologies focused on exascale workflow require-
ments. Our focus on establishing a rigorous continuous in-
tegration and deployment workflow, as well as our engage-
ment with DOE facilities, is a key part of our vision to cre-
ate a community curated workflows SDK. Our vision is lofty;
our mandate is lucent: instantiate and grow ExaWorks into
a community-owned and guided body that can contribute de
facto standards for HPC and Cloud workflows, host refer-
ence implementations of common APIs, and curate an SDK
of industrial strength components focused on running scalably
on the most powerful HPC platforms available. Succeeding at
this vision will depend as much on technical capabilities as on
engagement with stakeholders. We invite the workflows com-
munity to participate and collaborate with us as we work to
make this vision a reality.
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