
ExM: High-level Dataflow Programming for Extreme-scale
Tim Armstrong, Justin M. Wozniak, Michael Wilde, Ketan Maheshwari, Daniel S. Katz, Matei Ripeanu, Ewing Lusk, Ian T. Foster

Motivation: Many-Task Applications
Simple in some dimensions:
 • Coarse-grained task parallelism: tasks are function
 calls, command-line executables, with serial or
 fine-grained parallelism inside
 • Can express high-level logic with single-assignment
 variables and structured control flow

Challenging in others:
 • Irregular parallelism: needs load balancing & task priorities
 • Extreme scale (10,000+ cores) with distributed memory
 • File system often used for input, output &
 intermediate data
 • Legacy or closed-source code in many languages
 • Limited time budget, no parallel programming gurus

• Parameter sweeps
• Iterative optimization
• Branch and bound

Example Applications MosaStore File System
 • Parallel FS's: unsuited for small reads/writes, many files
 • POSIX "intermediate file system" uses aggregated memory of
 cluster nodes to store data [5]
 • Data caching, batching of small operations
 • Cross-layer optimization with hints [6][7]: file placement,
 replication, data-aware task scheduling, block-size, etc

Project Status
• Simple benchmarks on 10,000+ cores with high utilization [2]
• Language stack working end-to-end with real Swift programs:
 simulated annealing, branch-and-bound Sudoku solver
• Compiler optimization reduces runtime ops. 5x-10x [2]
• MosaStore with cross-layer optimization gives speedups of
 20-40% on data-intensive workloads
• Work on FS/language integration in progress
• Many language features missing
• Much tuning, optimization, etc, remains to be done
• Fault tolerance, energy-awareness to be explored further

Swift Programming Language
Mix of functional and imperative ideas
 • Close correspondence between imperative script and Swift
 • Single-assignment variables, deterministic by default

Hierarchical programming model
 • Wrap C functions, command-line apps as Swift functions
 • First-class file, Binary Large OBject variables

Implicit, global-view parallelism
 • All statements in block can execute asynchronously
 • Asynchronous tasks executed in data dependency order
 • Transparent task & data movement between cluster nodes

int X = 100, Y = 100;
int A[][];
int B[];
foreach x in [0:X-1] {
 foreach y in [0:Y-1] {
 if (check(x, y)) {
 A[x][y] = g(f(x), f(y));
 } else {
 A[x][y] = 0;
 }
 }
 B[x] = sum(A[x]);
}

Start

Outer Loop
Bodies

Inner Loop
Bodies

check

if-then-else

f

g

sum

...
Task

Spawn

Task

...

T F

Data
wait/write

Data

Execution trace of script (arrays omitted)Structured control flow in Swift

M. Parisien, T. Sosnick, T. Pan, K. Maheshwari

ModFTDock: Protein Docking in Swift

dock_score scores[];
foreach p1, i in proteins {
 dock_result docked[];
 foreach (p2, j in proteins) {
 if (i < j) {
 docked[j] = modftdock(p1, p2);
 }
 }
 scores[i] = score(merge(docked));
}

TA, DK, IF: University of Chicago JW, MW, KM, DK, EW, IF: Argonne National Laboratory MR: University of British Columbia

.

Application Measured Required
Tasks Task Dur. Tasks Task Rate

Power-grid Distribution 10,000 15 s 109 6.6× 104/s
DSSAT 500,000 12 s 109 8.3× 104/s
SciColSim 10,800,000 10 s 109 105/s
SWAT 2,200 120 s 105 8.3× 103/s
ModFTDock stages: dock
modmerge
score

1,200,000 1,000 s 109 103/s
12,000 5 s 107 2× 105/s
12,000 6,000 s 107 166/s

Quantitative description of applications and required
performance on 1 million cores

ExM is supported by the United States Department of Energy, Office of Advanced Scientific Computing Research, under X-Stack Grant DE-SC0005380.

[1] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz, I. T. Foster, "Swift: A language for distributed parallel scripting," Parallel Computing 2011
[2] J. M. Wozniak, T. Armstrong, M. Wilde, D. S. Katz, E. Lusk, I. T. Foster, "Swift/T: scalable data flow programming for many-task applications," in submission, SC'12
[3] J. M. Wozniak, T. Armstrong, E. L. Lusk, D. S. Katz, M. Wilde, and I. T. Foster, “Turbine: A distributed memory data flow engine for many-task applications,” SWEET’12
[4] E. L. Lusk, S. C. Pieper, and R. M. Butler, “More scalability, less pain: A simple programming model and its implementation for extreme computing" SciDAC Rev. 2010
[5] S. Al-Kiswany, A. Gharaibeh, and M. Ripeanu, “The case for a versatile storage system,” SIGOPS '10
[6] E. Varanaithan, S. Al-Kiswany, L. Costa, M. Ripeanu, Z. Zhang, D. Katz, M. Wilde, "A workflow aware storage system: an opportunity study," Proc. CCGrid 2012
[7] S. Al-Kiswany, E. Vairavanathan, A. Barros, et. al. "The case for cross-layer optimizations in storage: a workflow-aware storage system." In submission, SC '12

ExM Language Stack

Turbine Dataflow Engine [3]

Control
Flow

Load
Balancing

Rule
Engine Server

Server

Task
Execution

…
…
…
…

…
…
…
…

Process

Task flow

Rule
Engine

Legend • Shared data store
• Single-assignment variables
• Data structures (e.g. hash tables)
• Data-dependent task launching
• Commutative data operations for
 language-level determinism

ADLB Load Balancer [4]
• MPI-based
• Highly scalable: 100k+ cores
• Task priorities

8

Application Processes

ADLB Servers

put/get

Data Flow
Expressions

External
Functions

Swift
Script

Data
Definitions

Turbine
Code

Memory
Management

Task / Data
Dependency

Library
Access

Turbine
Execution

Interpreter

mpiexec

Turbine
libraries

ADLB

User
Libraries

STC

Semantic
Analysis

Optimization

Code
Generation

• Compile-time error checking
• Custom intermediate representation for dataflow programs
• Standard optimization techniques reduce communication

STC Optimizing Compiler [2]

System utilization for batch of 100s independent
tasks on Blue Gene/P Intrepid [2]

Optimizations Rule Store Load Subscr ibe Inser t Lookup
Unoptimized 52422 42646 78470 113905 5871 11445
+ Cfp + DCElim 52422 41629 77454 112857 5871 11445
+ Const share 52422 30174 77454 112852 5871 11445
+ Fwd data-flow 4114 4681 12272 15437 5871 10645
+ Unroll loops 4014 4643 12111 15213 5871 10595

Runtime operation counts in simulated annealing run by
optimization level. Each row includes prior optimizations [2]

Further reading http://exm.xstack.org

[1] describes original Swift language and implementation
[2] describes ground-up ExM reimplementation

ADLB architecture Evolution of ADLB scalability

