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Abstract

We present here the ExM (extreme-scale many-task) pro-

gramming and execution model as a practical solution

to the challenges of programing the higher-level logic

of complex parallel applications on current petascale

and future exascale computing systems. ExM provides

an expressive, high-level functional programming model

that yields massive concurrency through implicit, auto-

mated parallelism. It comprises a judicious integration

of dataflow constructs, highly parallel function evalua-

tion, and extremely scalable task generation. It directly

addresses the intertwined programmability and scalabil-

ity requirements of systems with massive concurrency,

while providing a programming model that may be at-

tractive and feasible for systems of much lower scale.

We describe here the benefits of the ExM programming

and execution model, its potential applications, and the

performance of its current implementation.

1 Introduction

Exaflop computers capable of 1018 floating-point

operations/s are expected to provide concurrency at

the scale of O(109) threads on O(106) cores [21].

Such extreme-scale systems will enable and demand

new problem-solving methods that do not follow to-

day’s dominant single-program, multiple data (SPMD)

paradigm but instead involve many (often a time-varying

number of) concurrent and interacting tasks. Writing

correct, scalable programs at this level can be an onerous

task, with significant investment of programmer time re-

quired to make a program run efficiently on hundreds or

thousands of cores. Applications at this scale can have a

development cycle approaching a decade.

For some applications, intricate high-level coordina-

tion logic is necessary; but in other cases, the high-

level coordination pattern is relatively straightforward

and may be expressed as the composition of a num-

ber of computational tasks. In practice, the composition

takes the form of scripted dataflow logic, in which tasks

are linked together through their input and output data

sets; the tasks themselves are developed separately as li-

braries or external programs. Important applications in

methodologies such as rational design, uncertainty quan-

tification, parameter estimation, and inverse modeling all

have this many-task property. Many will have aggre-

gate computing use cases that require exascale comput-

ers. The ExM computing model draws on recent trends

that emphasize the identification of coarse-grained paral-

lelism as a first and separate step in application develop-

ment [13, 22, 23]

Currently, many-task applications are programmed in

one of two ways. In the first approach, the logic asso-

ciated with the different tasks is integrated into a sin-

gle, tightly coupled application using a load balanc-

ing library such as the MPI-based [14] Asynchronous

Dynamic Load Balancing Library, ADLB [11], or the

Global Arrays-based [17] Scioto [7]. They provide a

master/worker system with a put/get API for task de-

scriptions, thus allowing workers to add work dynami-

cally to the system. However, they lack a comprehen-

sive programming model, data model, and other features

required for high-productivity programming. In the sec-

ond approach, a script or workflow is written that invokes

the tasks, in sequence or in parallel, with each task read-

ing and writing input and output files or streams. How-

ever, performance can be poor, because existing many-

task scripting languages are implemented with central-

ized evaluators that cannot sustain the high overall task

rate necessary to efficiently communicate with and uti-

lize O(106) cores.

Our view is that a significant fraction of extreme-

scale applications will require a hierarchy of program-

ming models. Diverse finer-grained parallel models will

still be used to implement core application logic. How-

ever, an implicitly parallel, functional, dataflow-based

programming model is attractive for top-level coordina-

tion logic, because load balancing, fault tolerance and re-

source management fit naturally as application-agnostic

services within the model. As application scale increases

these features are increasingly important, yet more diffi-

cult to implement. We have previous experience work-

ing in this paradigm with the Swift parallel scripting

language [24], which can compose existing programs

into more sophisticated applications such as simulation

or analysis pipelines, parameter sweeps, or workflow

graphs. The contribution of this paper is a comprehensive

strategy to perform such high-level application coordina-

tion at extreme scales with greater programmability.

Previous approaches to workflow execution on high-
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performance resources have involved deploying a toolkit

developed for distributed systems on the target infra-

structure. Software systems relevant for this model

include Dryad [9], Skywriting [15]/CIEL [16], and

Swift [24]. This approach is convenient for the user,

particularly when each task is a distinct executable pro-

gram. The approach faces multiple performance chal-

lenges, however, including the ability to rapidly launch

independent processes [20], manage large numbers of pi-

lot jobs [12], communicate over an emulated TCP net-

work [10], and coordinate data access [26].

Alternatively, the developer may hand-code a work

distribution system using available high-performance

tools, communicating through MPI messaging in dis-

tributed memory or function calls (as in the parallel ver-

sion of the Common Component Architecture [2].) This

approach uses familiar technologies but can be inefficient

unless much effort is spent incorporating load-balancing

algorithms into the application. Moreover, the approach

can involve considerable programming effort if multiple

component codes are to be integrated. Partitioned global

address space (PGAS) [19] language features provide a

partial solution to the data model but do not offer notifi-

cations and other features necessary for the construction

of high-level scripts.

Our approach integrates these two models. First, we

provide a very high-level, naturally concurrent program-

ming model in the previously developed Swift language.

Second, we developed translation strategies to render

Swift semantics into a distributed-memory model, based

on efficient primitives compatible with the highly scal-

able ADLB library – the primary focus of this paper.

2 modFTDock: A sample application

Running many-task applications, efficiently, reliably,

and easily on large-scale machines is challenging. We

present modFTDock [18], a relatively simple application

analyzing protein docking to highlight the challenges. As

shown in Figure 1, modFTDock starts with M input files

and N input parameters. Each of these M×N combi-

nations is processed by the sequential modftdock task.

The resulting docking data is stored and processed later

by tasks merge and score, which produce the requi-

site results. All the application stages communicate only

through their input and output data. Figure 2 illustrates

the simple specification of this dataflow in Swift. Quan-

titative information for a contemporary modFTDock run

is tabulated in Table 1; conceivable future experiments

could be composed of trillions of tasks.

The challenge is to efficiently, reliably, and scalably

coordinate the million tasks generated by the modFT-

Dock application while at the same time using a com-

pact, programmer-friendly specification that can support

the integration of legacy code.

Figure 1: Dataflow schematic for modFTDock. The out-

put sizes are for a single run of an application task.

1 dock score scores[];
2 foreach (p1, i in proteins) {
3 dock result docked[];

4 foreach (p2, j in proteins) {
5 if (i < j) {
6 docked[j] = modftdock(p1, p2);
7 }
8 }
9 scores[i] = score(merge(docked));
10 }

Figure 2: Swift implementation of modFTDock.

3 Swift: A dataflow language to support

many-task applications

The canonical applications for which Swift was orig-

inally designed had most of the sequential computa-

tion code already written and encapsulated as command-

line binaries that needed to be coordinated as a work-

flow. Traditionally UNIX shell scripts have been used to

this end, but Swift was designed to better support run-

ning such applications in distributed and parallel con-

texts, where synchronization, data movement, explicit

task scheduling, and fault tolerance are necessary.

The Swift execution model may be split into two

processes: task generation, which generates concurrent

tasks by interpreting the user dataflow script, and task

execution, which distributes the resulting side-effect-free

leaf tasks and orchestrates their execution. Leaf tasks

may be implemented as procedures and correspond to

library call invocations, or standalone executables, in

which case they correspond to launching a new process.

Leaf tasks themselves may use multiple cores or even

multiple nodes.

To link the above to our sample application, we treat

the components of modFTDock as leaf tasks coordinated

by a Swift script. For modFTDock, the leaf tasks are

single-process executables, with concurrency exposed in

Swift. Data dependencies, task distribution, and data

movement are managed by the system as follows.

Table 1: Statistics for a full modFTDock application run.

Task Number of Tasks Duration (s)

modftdock 1,200,000 1,000

merge 12,000 5

score 12,000 6,000
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In Swift, unlike in shell scripts, all inputs and outputs

of a (side-effect free) leaf task must be explicitly defined,

so that the Swift runtime has enough information to man-

age its input and output. A Swift app function definition

such as the one below converts a standalone executable

(the convert utility) to a Swift function with arguments

and return values (such as image files or int parame-

ters).

app (image out) rotate(image in, int angle) {

convert "-rotate" angle @in @out;

}

We will provide an extension mechanism to allow

functions from other languages to be defined and com-

piled/linked as Swift tasks as well. In addition to these

external functions, functions can also be defined within

Swift, comprising multiple Swift statements.

The parallelism in a Swift script is exposed implic-

itly, with the order of execution of Swift statements de-

termined entirely by data dependencies. Multiple state-

ments and subexpressions can execute in parallel, given

no data dependencies and sufficient parallel computing

resources. Consider the following example:

(datafile result) process (datafile in) {

datafile foo; datafile bar;

foo = f(in);

// g and h below can run concurrently with f

bar = g(in);

result = j(foo, h(bar));

}

Each iteration of a foreach loop in Swift runs inde-

pendently, but data dependencies may serialize execu-

tion.

int out[];

foreach f, i in myfiles {

// Each iteration is completely independent

out[i] = readData(process(f));

}

int out[];

foreach f, i in myfiles {

// But these are serialized by data dependencies

if (i > 0) {

out[i] = readData(process2(f, out[i-1]));

} else {

out[i] = readData(process(f));

}

}

The Swift language design ensures that even high-

concurrency programs are deterministic by default [4].

The core Swift language constructs are determinis-

tic; non-determinism can originate only from non-Swift

code. A valid Swift program always produces the same

output (although the ordering of side-effects such as log

messages can vary).

The main feature that enables this property is the use

of write-once variables: each Swift variable can be writ-

ten to only once. Writing twice causes a compile or run-

time error.

Figure 3: Task distribution in the Turbine runtime sys-

tem.

Write-once variables give programming in Swift a

nonimperative programming flavor and eliminate the

possibility of many concurrency bugs. A Swift com-

piler can automatically detect or warn of many classes of

errors such as deadlocks from circular dependencies or

unassigned variables. Including arrays in the language

allows more runtime errors because of the impossibil-

ity of deciding statically whether a particular array index

is modified (cf. the halting problem), but these quasi-

imperative arrays of write-once variables are more ex-

pressive than purely functional alternatives [3] and are

less of a leap for programmers familiar with imperative

languages.

In summary, Swift programs are well suited for ex-

pressing the upper-level concurrency of complex appli-

cations that integrate a variety of other functional com-

ponents (often written in other diverse parallel program-

mingmodels). The Swift runtime provides the scalability

and performance necessary to manage millions of task

definitions and input/output data objects. This allows the

use of distributed memory to store script control vari-

ables and cache user datasets, while resolving the data

dependencies that coordinate independent processes.

4 ExM architecture

We are developing a new implementation of Swift

based on the ExM extreme-scale many-task execution

model. This implementation performs fully distributed

execution of a Swift program with no centralization of

control flow.

The full ExM system comprises a distributed version

of Swift and MosaStore, a distributed in-memory file

system [6]. We discuss only the former in this paper,

which is implemented as two subsystems: the runtime

system (called Turbine) [25] and the Swift-to-Turbine

compiler (called stc).

We think of the intermediate code, the crucial inter-

face between the two, as the instructions for an abstract

workflow machine. The set of runtime system primi-

tives for task management, data management and syn-

chronization is kept as minimal as possible, in order to

make the Turbine runtime as robust and flexible as pos-
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1 main {
2 int x;

3 int y;
4 int z = 1;
5 (x, y) = f(z);

6 if (x != 0) {
7 trace(y);

8 } else {
9 trace(z);
10 }
11 }

Figure 4: Swift script to be compiled by stc.

1 # Main program fragment- starts on a single process

2 proc swiftmain {} {
3 # allocate data in global data store

4 allocate u:x integer
5 allocate u:y integer

6 allocate u:z integer
7 set integer u:z 1

8

9 # post call to f, with input x and output x, y

10 call composite f [ u:z ] [ u:x u:y ]

11

12 # post call waiting until conditional expression evaluated

13 rule [ u:x ] if-0 [ u:x u:y u:z ]
14 }
15

16 # This program fragment executes sometime after x is written

17 proc if-0 { u:x u:y u:z } {
18 set v:x [ get integer u:x ]
19 if {v:x} {
20 call builtin trace [] [ u:y ]
21 } else {
22 call builtin trace [] [ u:z ]

23 }
24 }

Figure 5: Generated Turbine intermediate code. Each

fragment is sequentially evaluated, with each call com-

mand creating an asynchronous task.

sible. Figures 4–7 illustrate how Swift code is translated

into intermediate code for Turbine’s consumption.

The Turbine runtime system currently is built on top

of MPI, running on a cluster with all communication be-

tween components using messages. Using MPI made

it easy to port to several cluster architectures, including

IBM Blue Gene/P, Cray, and SiCortex systems. The MPI

processes are divided among three roles: ADLB servers

that manage the task queue and data store, Turbine rule

engines that track data dependencies and execute inter-

mediate code, and workers that exclusively execute leaf

tasks. Typically the bulk of processes are workers, since

the bulk of computation occurs in leaf tasks.

5 Implementation progress and challenges

Currently, we have a working compiler and runtime

system for the core of the language, including functions,

loops and recursion, conditionals, arrays, and structs. We

are focusing now on scalability, running Swift scripts on

tens of thousand of cores.

A number of challenges arise in making the Turbine

interpreter scale. ADLB provides a strong base on which

1 # int A[];

2 allocate container u:A integer # container with int keys

3

4 # A[0] = 1;

5 allocate t:0 integer
6 set integer t:0 1

7 container insert imm u:A 0 t:0
8

9 # A[f()] = g();

10 allocate t:1 integer
11 call composite g [ t:1 ] []

12 allocate t:2 integer
13 call composite f [ t:2 ] []
14 container insert future u:A t:2 t:1

15

16 # trace(A[0]);

17 allocate t:3 integer
18 # t:4 is a reference, stored as integer

19 allocate t:4 integer
20 container lookup ref imm t:4 u:A 0
21 dereference int t:3 t:4

22 call builtin trace [] [ t:3 ]
23

24 # cleanup operation: decrement container writer count

25 container decr writers u:A

Figure 6: Generated Turbine intermediate code for array

operations, with corresponding Swift lines in comments.

to implement task distribution, but a naive approach to

task generation can put unnecessary strain on load bal-

ancing and data dependency management processes. A

naive foreach loop, without throttling or loop splitting

could create hundreds of thousands of tasks simultane-

ously, swamping ADLB. Long data dependency chains

between tasks in the runtime also occur with a naive ap-

proach. Static analysis is necessary to defer task creation

until data is ready and to coalesce tasks if possible.

Swift’s data model also presents challenges, with data

potentially shared by many tasks. With load balancing

any data must remain accessible to tasks after relocation.

Turbine provides a global data store for this purpose.

Primitive data types such as numbers or strings are stored

directly in the data store. Arrays and structures also re-

side in the data store as Turbine containers, a dictionary

data type, with linked containers supporting more com-

plex data structures. Containers are specialized to sup-

port language-level determinism. Inserts and lookups to

containers must be commutative with each other to sup-

port distributed evaluation, meaning lookups must often

wait for matching insertions to occur, and lookups must

eventually fail if an array cell is never written. Hence,

the interpreters need to reach a consensus on when a con-

tainer is closed (i.e., no more writes will occur). To this

end, we use static analysis in the compiler and special

reference counting operations in Turbine. For scalabil-

ity, Turbine supports distributed containers, with the con-

tainer split between data servers by index range.

Logically, all Swift variables are values, rather than

references; but for efficiency we want to avoid doing ex-

cessive copies-by-value, particularly of arrays. Copying

references, however, introduces the problem of garbage
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1 int A[]; int B[];
2 A = constructArray();

3 foreach x, i in A {
4 B[i] = f(x);
5 }

1 proc swiftmain {} {
2 allocate u:A integer
3 allocate container u:B integer

4 call composite constructArray [ u:A ] []
5 # wait until u:A closed

6 rule [ u:A ] foreach:0 [ u:B u:A ]
7 }
8

9 proc foreach:0 { u:B u:A } {
10 # iterate over array sequentially

11 set dict:A [ enumerate u:A dict ]
12 dict for {v:i u:x} dict:A {
13 container incr writers u:B
14 rule [] foreach:0:body [ u:B ]
15 }
16 }
17

18 proc foreach:0:body { u:B u:x v:i } {
19 allocate t:0 integer

20 statement call composite f [ t:0 ] [ x ]
21 container insert imm u:B v:i t:0
22 container decr writers u:B

23 }

Figure 7: Swift script with foreach loop to be compiled

by stc, with the corresponding intermediate code. Sim-

ple sequential iteration over the loop is shown, but more

performant implementations of iteration are possible for

large containers or pipelined execution

collection. Various techniques exist for distributed

garbage collection [1]; distributed reference counting is

the most straightforward candidate for Swift but can be

inefficient. Most Swift variables are not needed beyond

the lifetime of a procedure stack frame, so we anticipate

that escape analysis [5] should be sufficient to keep the

reference counting overhead manageable.

In general, static analysis techniques in the compiler

will be important for scalability and performance, with

efficiency of individual runtime operations playing a sec-

ondary role. Often a naive approach to compilation re-

sults in severe inefficiencies, such as repeated redundant

lookups of variable values or other inefficient usage pat-

terns of the Turbine runtime.

The current Turbine design with processes divided

into three roles has been easy to scale up, but it may even-

tually prove to limit the efficiency of task distribution.

Past work on building extremely efficient task-parallel

runtime systems (for example, Cilk [8]) has tended to

use a symmetrical design, where each process cooperates

equally in load balancing and task execution, with work

stealing providing load balancing. Shifting to this model

could reduce internode communication by keeping tasks

and data local except when load balancing occurs.

6 Performance results

In this section, we demonstrate the ability of the ExM

task distributor to run a synthetic user application that

performs nontrivial script logic. This benchmark uses an

algorithm similar to a recursive search and emulates user

work at the leaf function calls.

We wrote a Swift script to evaluate the nth Fibonacci

number fib(n) according to the recursive formulation

fib(0) = 0; fib(1) = 1; fib(n) = fib(n− 1)+fib(n− 2).

In the Swift model, these recursive calls generate a

data-dependentworkflow to be evaluated among the con-

trol flow components in the runtime system. As the

workflow progresses, many recursive procedure invoca-

tions are triggered, exercising the control flow functions

of Turbine. At the base cases n = 1 or n = 0, leaf tasks

sleep for 10 seconds to emulate user computation time.

We ran this benchmark on the IBM Blue Gene/P In-

trepid at Argonne National Laboratory. Intrepid has

40,960 nodes of 4 cores each. We used varying core

counts, with one MPI process per core, with the work-

load and number of leaf tasks increased by increasing

the input parameter n. We obtained a utilization result by

dividing the user time (time spent in sleep) by the wall

time of the run. Results are shown in Table 2.

Table 2: Detailed statistics for fib runs

Cores n Leaf Tasks Time (s) Util.

4,096 23 46,368 129.0 87.6%

8,192 26 196,418 168.7 87.8%

16,384 27 317,811 217.9 89.0%

32,768 29 832,040 284.1 89.3%

65,536 30 1,346,269 233.3 88.0%

7 Conclusion and future work

We have motivated and described the ExM distributed

execution model for running Swift dataflow applications.

Swift makes it easy to express massive coarse-grained

parallelism, and ExM can execute Swift applications

with extreme scalability. While much work remains to

complete and validate the full Swift language on ExM

and to achieve exascale performance targets, the system

will soon be capable of supporting real scientific appli-

cations. We will use current petascale systems to extend

testing to the 160K core range and to simulate ExM’s

performance at over 1M core concurrency. We believe

ExM’s many-task execution model and distributed hier-

archical data model makes it well suited to address the

resilience and energy-aware load balancing that will be

required at the exascale. We will evalute these potential

benefits as the implementation proceeds.
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