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Abstract—Training modern deep neural network (DNN) mod-
els involves complex workflows triggered by model exploration,
sensitivity analysis, explainability, etc. A key primitive in this
context is the ability to clone a model training instance, i.e.
“fork” the training process in a potentially different direction,
which enables comparisons of different evolution paths using
variations of training data and model parameters. However,
in a quest improve the training throughput, a mix of data
parallel, model parallel, pipeline parallel and layer-wise parallel
approaches are making the problem of cloning highly complex. In
this paper, we explore the problem of efficient cloning under such
circumstances. To this end, we leverage several properties of data-
parallel training and layer-wise parallelism to design DeepClone,
a cloning approach based on augmenting the execution graph
to gain direct access to tensors, which are then sharded and
reconstructed asynchronously in order to minimize runtime
overhead, standby duration, readiness duration. Compared with
state-of-art approaches, DeepClone shows orders of magnitude
improvement for several classes of DNN models.

Index Terms—deep learning; data-parallel training; layer-wise
parallelism; model cloning; state replication

I. INTRODUCTION

Deep learning applications are rapidly gaining traction both
in industry and scientific computing. A key driver for this trend
has been the unprecedented accumulation of big data, which
exposes plentiful learning opportunities thanks to its massive
size and variety. Unsurprisingly, there has been significant
interest to adopt deep learning at very large scale on super-
computing infrastructures in a wide range of scientific areas:
fusion energy science, computational fluid dynamics, lattice
quantum chromodynamics, virtual drug response prediction,
cancer research, etc.

Initially, scientific applications have gradually adopted deep
learning more or less in an ad-hoc fashion: searching for
the best deep neural network (DNN) model configuration
and hyper-parameters through trial-and-error, studying the
tolerance to outliers by training with and without certain
datasets, etc. Often, the lack of explainability, i.e., being able
to understand why a DNN model learned certain patterns and
what correlations can be made between these patterns and the
training datasets was overlooked if the results were satisfac-
tory. While this is acceptable for some industrial applications
(e.g., a misclassification of a picture as a dog instead of cat
is mostly harmless), scientific applications are often mission-
critical and therefore require more rigorous understanding and

confidence in the results. However, with increasing complexity
of the DNN models and the explosion of the training datasets,
ad-hoc methods are not sustainable and limit the applicability
of deep learning.

In a quest to solve this challenge, several more systematic
approaches are beginning to emerge: guided model exploration
where configurations and hyper-parameters are automatically
identified [1], sensitivity analysis [2] that automatically gen-
erates perturbations of the training data and the model states
to find under what circumstances the model loses accuracy
and/or what parts/layers of the DNN model and/or training
samples are the most influential the learning process, ensemble
deep learning [3] that improves the predictive performance of
a single model by training multiple models and combining
their predictions. All these approaches rely on a common
pattern: the need to run many training instances, often by
“forking” an initial training instance that has progressed up to
a point into many parallel alternatives where slight variations
are introduced. We refer to this pattern as cloning.

Cloning involves the notion of replicating the DNN model
state such that three objectives are simultaneously addressed:
(1) introduce as little runtime overhead as possible on the
initial training instance; (2) minimize the amount of time
necessary to construct the replicated training instance (to avoid
wasting core hours; (3) continue training on the replicated
instance as early as possible (to finish the work as early as
possible).

Checkpoint-restart is one approach to achieve cloning in a
straightforward fashion: the DNN model state is checkpointed
by the initial training instance and then used by another fresh
training instance to restart from it. Despite a large class of opti-
mizations that were proposed for checkpoint-restart, especially
in the context of high performance computing (HPC), such
an approach is inefficient for the purpose of cloning for two
reasons. First, checkpointing is treated separately from restart,
which means a suspend-checkpoint-resume-restart cycle is
needed to implement cloning. This misses an opportunity
to overlap and co-optimize the steps of the cycle. Second,
checkpointing is optimized to persist the critical state to
durable storage (e.g., a parallel file system), which has limited
I/O bandwidth and may cause bottlenecks. In the case of
cloning, the critical state is immediately needed for restart,
which means the durable storage becomes an unnecessary
middle man that introduces extra overhead.

Furthermore, with increasing complexity and sizes of DNNU.S. Government work not protected by U.S. copyright



models and training data, a mix of data parallel, model
parallel, pipeline parallel and layer-wise parallel approaches
are emerging to speed-up the training process. In this context,
a training instance is not a single process anymore, but an
entire group of tightly coupled processes that are distributed
across many devices and/or compute nodes of large scale HPC
infrastructures. Such groups of processes collaboratively work
on a shared DNN model state, exhibiting specific properties
and access patterns. Under such circumstances, cloning be-
comes a highly challenging problem.

To address this challenge, we propose DeepClone, a novel
cloning framework specifically designed to bridge the gap
between modern approaches for training DNN models (in par-
ticular data parallelism and layer-wise parallelism) and HPC
infrastructures. We summarize our contributions as follows:

• We introduce several key design principles that underline
the main idea of our proposal: low-overhead, zero-copy
transfer of the DNN model state, large tensor sharding
and reconstruction, asynchronous data transfers over-
lapped with the back-propagation through augmentation
of the execution graph (Section IV).

• We discuss several considerations and algorithms and
provide an efficient implementation of the design prin-
ciples to build DeepClone, the research prototype that
demonstrates our proposal (Sections IV-B and V).

• We evaluate our approach in a series of experiments
that involve two classes of deep learning applications
with several DNN model configurations. Compared with
state-of-art approaches, our proposal shows significantly
better scalability and orders of magnitude less overhead
(Section VI).

II. BACKGROUND AND PROBLEM FORMULATION

Deep learning (DL) algorithms are a class of machine
learning algorithms that are based on complex neural networks
with a large number of layers (hence called deep). They have
have been successfully applied in a wide range of tasks: image
recognition, machine translation, forecasting [4].

DL algorithms primarily use an optimizer such as gradient
descent to update the weights: first, the answer to an input is
obtained in a forward pass over all layers. Then, in a backward
pass, the difference (gradients) between the predicted and
actual result (“ground truth”) is used to update the weights
layer by layer in reverse order. This is repeated iteratively for
a large number of training samples until the DNN model has
converged. To speed up the training process mini-batches are
a common optimization: multiple training samples are used in
the forward pass and the resulting average is used for back-
propagation.

Gradient descent is computationally expensive. The explo-
sion of available training data and the need to solve more
complex problems have led to the introduction of deeper
structures with more layers (e.g., complex residual networks
that can be built with 1000+ layers, such as ResNet [5]).
Therefore, gradient descent is more expensive to run not only
because it needs to process more batches, but also because

(a) Data parallelism: DNN model
is replicated, local gradients are
averaged.

(b) Pipeline parallelism: DNN
model is partitioned and dis-
tributed as stages (full layers).

Fig. 1: Data parallelism vs. pipeline parallelism (adapted
from [6])

each batch is more expensive to process. To solve this problem,
distributed DL algorithms have been developed, capable of
scaling horizontally on multiple devices (e.g., multiple GPUs)
and/or compute nodes.

The most widely used technique is synchronous data-
parallel training. It creates replicas of the DNN model on
multiple workers, each of which is placed on a different device
and/or compute node. We denote such workers as ranks, which
is the terminology typically used in high performance comput-
ing (HPC). The idea is to train each replica in parallel with a
different mini-batch, which can be done in an embarrassingly
parallel fashion during the forward pass on all ranks. Then,
during back-propagation, the weights are not updated based
on the local gradients, but using global average gradients
computed across all ranks using all-reduce operations. This
effectively results in all ranks learning the same pattern, to
which each individual rank has contributed. The process is
illustrated in Figure 1a.

Fig. 2: Model parallelism: DNN model is partitioned and
distributed

Model parallelism [7] is another complementary approach
(Figure 2). It works by partitioning the DNN model across
multiple ranks, each of which is running on a different device
and/or compute node. This solves the problem of large DNN
models that do to fit in the memory of a rank, but requires data
transfers between operations and disallows parallelism within
an operation.
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Pipeline parallelism [6] combines model parallelism with
data parallelism by partitioning the DNN model into stages,
each of which comprises one or more layers that are distributed
across the ranks (Figure 1b). These stages form a pipeline that
can process different batches at different times, both during the
forward pass and the back-propagation.

DL algorithms take advantage of multi-core and hybrid
architectures (e.g., CPUs + GPUs) to parallelize the gradient
computation and weight updates. Specifically, once a rank
has finished computing the local gradients for a layer, it
immediately proceeds to compute the local gradients of the
previous layer. At the same time, it waits for all other ranks to
finish computing their local gradients for the same layer, then
updates the weights (based on the average gradients obtained
using all-reduce in the case of data-parallelism). This is called
layer-wise parallelism. An example is depicted in Figure 3
as a DAG (directed acyclic graph): the local gradient of each
layer is a dependency for both the previous layer and the rest
of the operations (all-reduce and weight updates; for now the
reader can ignore shard extraction, which will be explained
later). Once the local gradients are computed, both paths
in the DAG can be executed in parallel. Over time, several
runtimes that implement such ideas have become popular, such
as Tensorflow [8], Caffe [9] and Torch [10].

The combination of synchronous data-parallel training and
layer-wise parallelism has proven especially popular and many
deep learning approaches have introduced support for them:
Distributed Tensorflow, Distributed Torch, etc. Some of these
runtimes can use MPI as the underlying communication layer
that provides an optimized all-reduce implementation, which is
a natural fit for supercomputing architectures. A particular im-
plementation, Horovod [11], has gained significant traction in
production because it can leverage MPI to take advantage of an
optimized all-reduce implementation for high-end networking
infrastructures, while integrating seamlessly with the Python
ecosystem and the high-level machine learning libraries (such
as Keras [12]) that emphasize ease of use and convenience.

In this context, we formulate the problem of cloning as
follows: given N ranks that perform data-parallel training (thus
holding each a full replica of the DNN model) and assuming
that each rank applies layer-wise parallelism, how can we
“fork” the initial N ranks into another set of identical cloned
ranks such that both groups can continue training (potentially
in a different direction), starting from a given training step,
independently of each other.

The challenge in this context is to optimize three objectives
simultaneously: (1) minimize the runtime overhead that the
initial ranks have to suffer due to transferring the DNN model
state to the cloned ranks; (2) minimize the time it takes the
clones to receive the DNN model state (to avoid wasting core-
hours in an unproductive state where they need to wait without
being able to start working); (3) minimize the delay between
the moment when the initial ranks and the clones are beginning
the next training step (in other words, start the clones as soon
as possible so they can finish their work faster).

The combination of layer-wise parallelism and data paral-

lelism introduces significant complexity, but also opens new
opportunities for cloning, which we will discuss next. To keep
the discussion easy to follow, for the rest of this paper we will
focus only on this combination. However, it is important to
remember that our proposal can be easily adapted to include
pipeline parallelism as well. In this case, the problem of
cloning can be formulated as “forking” individual data-parallel
stages rather than whole DNN model replicas.

III. RELATED WORK

Live migration: is a popular approach to transfer the
memory and local storage of a virtual machine (VM) to a
standby replica. If the original instance is kept alive, then this
is equivalent to cloning. In this context, techniques such as pre-
copy [13], [14] and post-copy [15] can be used. Specifically
for the problem of cloning VM images, many alternative
approaches are available: copy-on-write (e.g., QCOW2), fork-
consistent replication systems based on log-structuring [16],
mirroring of I/O operations (both asynchronously [17] and
synchronously [18]). Most of these approaches assume a single
source and destination for the live migration, with relatively
few approaches [19], [20] considering the migration of entire
groups of VMs. Related to live migration of VMs is also
the notion of container [21] and IoT function migration [22].
Although possible to use as cloning mechanisms, such system-
level approaches would incur a high overhead in the context of
DNN cloning, because they transfer a much larger state than
needed.

Checkpointing: is a complementary direction to cloning,
especially if the intermediate states need to be persisted for
later reuse. In this regard, multi-level checkpointing, as adopted
by frameworks such as SCR [23] and FTI [24], is a popular
approach that leverages complementary strategies adapted for
HPC storage hierarchies. VELOC [25], [4] takes this approach
further by introducing asynchronous techniques to apply such
complementary strategies in the background. When the check-
points of different processes have similar content, techniques
such as [26], [27] can be applied to complement multi-level
checkpointing. However, redundancy is detected on-the-fly,
which is an unnecessary overhead in our context (in which
the DNN model replicas are known to be identical).

DNN model checkpointing: The problem of checkpointing
DNN models efficiently is beginning to emerge in deep
learning, where most efforts so far focus on efficient access of
training batches [28], [29], [30], [31]. TensorFlow checkpoints
model to files in its SavedModel format,1 or in HDF5 files
through Keras.2 These file-based methods, while simple and
adapted for single-node training, are becoming a bottleneck
when scaling data-parallel training to a large number of com-
pute nodes. Complex ML workflows that train many models in
parallel need the ability to fork models. Yet to our knowledge,
all existing production ML workflows rely on checkpoints that
are stored persistently into a repository, such as AI Hub3, TF

1https://www.tensorflow.org/guide/saved model
2https://www.tensorflow.org/guide/keras/save and serialize
3https://cloud.google.com/ai-hub
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Hub.4, or DLHub [32]. Although repositories can be designed
to be scalable, the interactions with them incur high I/O
overhead.

DNN model cloning: Cloning a model is a basic operation
provided by Keras,5 however this operation is meant for use
in different scenarios: to create a copy of an in-memory DNN
model (e.g., to enable faster inference) or to replicate a part
of a DNN model (e.g., to create a more complex model based
on repetitive patterns). Compared with checkpoint-restart, such
approaches do not employ persistency techniques and therefore
eliminate the overhead of using durable storage as a middle
man. However, they are subject to a similar cycle: the training
needs to be suspended, the DNN model is cloned, then both
the original and cloned instance are resumed. As explained
in Section I), this missed opportunities for overlapping and
co-optimization. Furthermore, they lack awareness of the dis-
tributed nature of the training process.

Relationship to previous work: Previously, we developed
DeepFreeze [33], an asynchronous checkpointing approach
for deep learning models that specifically targets data-parallel
training. In this context, we introduced principles such as
tensor sharding and augmentation of the execution graph
for asynchronous tensor access. In this work we target the
problem of cloning, which introduces related principles but
with important differences: (1) we complement tensor sharding
with the notion of simultaneous reconstruction; (2) we solve
a different problem facilitated by the augmentation of the
execution graph: zero-copy transfer of tensor shards over the
network (as opposed to in-memory copies required for asyn-
chronous checkpointing); (3) we co-optimize such principles
for different goals and metrics (in particular, standby and
readiness duration).

To summarize, state-of-art techniques that can be used
to achieve cloning for data-parallel DNN training are either
based on checkpointing (and therefore lack optimizations), or
were optimized for other scenarios (cloning of processes, VM
instances and images, containers, etc.) and therefore do not
take advantage of the specific properties of DNN data-parallel
training. To our best knowledge, we are the first to explore
this problem.

IV. SYSTEM DESIGN

A. Design principles

a) Low-overhead, zero-copy transfer of the model state:
Modern machine learning frameworks are composed of a
complex stack of low-level and high-level libraries. Most users
never interact with the low-level libraries. For example, Keras
is a popular high-level Python frontend to Tensorflow. How-
ever, this also makes it difficult to access tensors directly, often
involving high serialization overheads due to large memory
copies (e.g., conversion to numpy arrays). Such overheads
keep adding up: creating a checkpoint involves serializing
high-level Python data structures into files (e.g., using HDF5),

4https://www.tensorflow.org/hub
5https://www.tensorflow.org/api docs/python/tf/keras/models/clone model

which need to be written to a shared storage service such as
a parallel file system. Creating a group of cloned processes
from a checkpoint incurs the same chain of overheads in revers
order: reading the checkpoint (concurrently, which introduces
I/O bottlenecks at scale), extracting the model state as numpy
arrays from it, then initializing the tensors based on these
arrays. Even if shortcuts are possible (e.g., send the numpy
arrays directly between the original and cloned processes),
significant serialization overheads still remain due to the
conversion from low-level to high-level tensor representations.
To mitigate this issue, we propose to avoid serialization alto-
gether, by passing the raw, low-level tensors directly to high-
performance, zero-copy communication libraries (e.g. RDMA,
MPI, etc.). Naturally, this raises technical issues regarding how
to gain efficient access to the low-level representation of the
tensors, as well as correctness considerations, since the tensors
need to remain immutable for the entire duration of the direct
transfers.

b) Large tensor sharding and reconstruction: An im-
portant goal of cloning is to minimize the runtime overhead
it has on an ongoing data-parallel training. Therefore, the
more data each initial rank needs to transfer to the clones,
the higher the runtime overhead. On the other hand, data-
parallel training approaches replicate the model state on each
rank. Therefore, it is not necessary for any of the initial ranks
to transfer the full model state to the clones. Instead, each
tensor can be sliced into a number of shards equal to the
number of ranks. Then, each initial rank can send a different
shard to the corresponding cloned rank. At a later time, each
cloned rank can collect the missing shards from the other
cloned ranks. Using this approach, the initial ranks spend less
time sending data (which reduces runtime overhead), but the
cloned ranks need extra work to recover the full DNN model
state. Note that sharding does not imply the need to create
additional memory copies: since we have direct access to the
raw tensor data, slicing can be achieved simply by adding an
offset to a pointer. Also note that we decided to slice each
tensor individually rather than the model state as a whole.
Although the latter may reduce the number of required data
transfers for the same size (which is usually more efficient), it
also limits further optimizations, which will be discussed next.
Therefore, we have chosen the former sharding approach. In
this case, we need to handle the situation of small tensors, for
which sharding and reconstruction does not pay off because
sending the full tensor is almost as cheap and sending the
shard. For the purpose of this work we adopt a simple solution:
we simply send the full tensor if it is smaller than a predefined
threshold. We also note further possible optimizations, such as
aggregating multiple small tensors in a single message.

c) Asynchronous transfers by augmentation of the
execution graph: We leverage the observation that modern
DNN frameworks like Tensorflow take advantage of layer-wise
parallelism during back-propagation to update the weights of
a layer in parallel with the gradient calculations and averaging
(which is done using all-reduce operations) for the lower
layers. Since layers are typically represented as tensors (multi-
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Fig. 3: Example execution graph augmentation: for each layer,
the local gradient calculation for the lower layers can proceed
in parallel with all-reduce and sharding

.
dimensional arrays), this creates an opportunity to access the
tensors immediately after they have been updated, even if
the back-propagation has not finished yet. Thus, we propose
the idea of augmenting the execution graph with additional
tensor operations that initiate a non-blocking data transfer
immediately after a tensor has been updated (with or without
sharding as needed). An example of how this works is depicted
in Figure 3, where each computation of the local gradients ac-
tivates the previous layer, while in parallel advancing towards
the weight updates and data transfers. Only after the back-
propagation has finished, it is necessary to wait in case the
data transfers have not completed yet. Note that this approach
does not raise safety issues during zero-copy transfers, because
once updated, a tensor is guaranteed to stay immutable until
the next back-propagation (which cannot proceed until all data
transfers have finished). Using this approach, we solve two
problems simultaneously: first, we further reduce the runtime
overhead. Second, we start the cloning as early as possible,
overlapping it with the back-propagation. This in turn enables
the cloned ranks to start as early as possible, which satisfies
our objectives.

B. Zoom on sharding and reconstruction

A key aspect of our proposal is the idea of reducing the
data transfer overhead on the initial ranks by sharding and
reconstructing the tensors on the cloned ranks. To zoom on this
process, we assume the DNN model is composed of an array
of tensors t, each of which is characterized by an id, pointer

to its content (data) and size of data. For an initial rank,
we denote clone[rank] as its cloned counterpart. Similarly,
initial[rank] is the counterpart of a cloned rank. On the
sender side, sharding is a straight-forward approach listed in
Algorithm 1.

Algorithm 1 Each tensor update in the execution graph is
immediately followed by SEND TENSOR

1: procedure SEND TENSOR(t)
2: if t.size > THRESHOLD then . needs sharding
3: s← t.size/no ranks
4: i← rank ∗ s
5: async−send(t.id, t.data+ i, s) to clone[rank]
6: else
7: async−send(t.id, t.data, t.size) to clone[rank]
8: end if
9: n++

10: if n == no tensors then
11: wait−all(async send operations)
12: end if
13: end procedure

However, the same does not hold for the receiver side: the
cloned ranks cannot expect to receive the tensor shards in a
predefined order, which can happen for various reasons: non-
determinism in the execution graph due to parallel directions
progressing at different rates on the initial ranks, optimizations
in the communication libraries (e.g., aggregation and/or re-
ordering of smaller messages), or messages may simply arrive
to the cloned ranks in a different order than they were sent.

Some message passing standards (e.g. MPI) enforce strict
ordering, but this is still not enough to solve the aforemen-
tioned challenge. Therefore, the cloned ranks have no way of
knowing in which order the tensors are “completed” (defined
by the moment when all cloned ranks received their shard).
Without knowing the order of completions, it is not possible
to use optimized collective operations such as all-gather to
reconstruct the tensors in parallel with receiving the shards,
because most implementations require all ranks to call all-
gather in the same order. Alternatively, each cloned rank could
broadcast a shard to the rest of the cloned ranks as soon as it
has received it. However, broadcast is a non-trivial primitive
with its own pitfalls. For example, in MPI it is a collective
operation, therefore it can be used only if everybody else is
listening.

To overcome these issues, we perform the sharding and
reconstruction in two stages: first each cloned rank receives
all its shards, then the whole group performs a series of pre-
defined all-gather operations. This is illustrated in Algorithm 2.

Although not optimal, this approach has several advantages.
First, it is compatible with the MPI standard, respecting the
strict ordering requirements for collective all-gather opera-
tions. Therefore, it can take advantage of optimized imple-
mentations for a large variety of platforms. Second, the order
of the all-gather phase can be pre-defined to match the order in
which the tensors are accessed during the forward pass of the
next training step, starting with the lower layers first. Using
this approach, the all-gather phase can be overlapped with the
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Algorithm 2 Each cloned rank runs RECEIVE TENSORS
before continuing the data-parallel training in a potentially
different direction

1: procedure RECEIVE TENSORS
2: n← 0
3: while n < no tensors do
4: recv(id) from initial[rank]
5: t← tensors[id]
6: if t.size > THRESHOLD then
7: s← t.size/no ranks
8: i← rank ∗ s
9: recv(t.data+ i, s) from initial[rank]

10: else
11: recv(t.data, t.size) from initial[rank]
12: end if
13: n++
14: end while
15: for t ∈ tensors do . in access order of forward pass
16: if t.size > THRESHOLD then
17: all−gather(t.id, t.data) . performed in place
18: end if
19: end for
20: end procedure

forward pass, which enables the cloned ranks to start and finish
earlier. Due to additional complexity, we did did not explore
this particular optimization in this work, but it is important to
note it as a future work opportunity.

Also interesting to note is the general nature of the problem
we aim to solve in the specific context of tensor sharding
and reconstruction: the need to run the same set of collective
operations in different order on each rank and have them
progress independently of each other as soon as all ranks
are ready to contribute is a recurring pattern in parallel deep
learning. For example, all-reduce operations needed to aver-
age the local gradients may suffer from similar out-of-order
behaviors. Approaches such as Horovod solve this problem by
designating a leading rank to which all other ranks report when
they finished computing the local gradients for a layer. The
leader then informs all other ranks what all-reduce operation
to run next. At scale, this may put a high burden on the leading
rank, causing it to become a straggler and slow down the entire
group. Therefore, a new flavor of collectives that are tolerant
to such out-of-order behavior may be a better solution. We
note this opportunity for future research.

V. IMPLEMENTATION

We implemented the checkpointing module on top of Ten-
sorflow 2.0, which includes an optimized version of Keras
tightly integrated with it. In this context, we aim for two design
goals. First, we expose an API that is compatible with the
existing callback mechanism in Keras, which enables users
to perform minimal changes to their code in order to use
our approach, therefore aligning to the overall design goal of
Keras, i.e. provide ease of use and convenience at high level.
Second, we isolate the modifications necessary to augment
the execution graph into Keras, which means our approach
works out of the box with an existing binary distribution of

Tensorflow. This is a very important aspect, because many
vendors adapt Tensorflow for their machines by integrating it
with custom low-level libraries (e.g. Intel MKL), making it
challenging if not impossible to modify, recompile and fine-
tune Tensorflow.

To achieve these goals, we adopt a strategy similar to our
previous work [33]. In terms of API, we provide a Python
class that extends the Keras Callback interface and overrides
the on batch begin and on batch end methods. This class can
be configured to initiate the cloning at a given training step,
ignoring all other training steps. When the desired training
step is reached, a boolean tensor flag is set to True by
on batch begin. This will activate the code responsible to run
Algorithm 1. Then, after the training step was completed, it
resets the boolean tensor flag to False and returns control to
the main loop of model.fit. The user simply needs to invoke
model.fit with this class added to the list of callbacks.

In order to augment the execution graph, we intercepted
the apply gradients method of the the base optimizer class
of Keras (keras.optimizer v2.OptimizerV2). This method is
responsible for building the execution graph for the weight
updates. We injected an additional “if” node after each tensor
update to test whether the boolean tensor flag is set, in which
case we run a custom Tensorflow operation that captures the
pointer to the tensor and forwards it to Algorithm 1. Using
this approach, our proposal is compatible with a majority of
optimizers that do not customize the apply gradients method.

To forward the tensor pointers to our algorithms with
minimal overhead, we developed TMCI6 (Tensor and Model
Checkpoint Interface). TMCI is a lightweight library written
in C++ and Python that simplifies the interaction between
Keras and Tensorflow for the purpose of direct access to the
raw content of the tensors. To this end, TMCI’s underlying
implementation consists of two custom save/load Tensorflow
operations written in C++.7 Like any Tensorflow operation,
TMCI’s operations can be executed on their own, or inserted
into the execution graph. When invoked, they forward their
arguments to a specified backend. For the purpose of this work,
we developed a custom C++ backed that relies on MPI to
provide an implementation for save/load based on Algorithm 1
and Algorithm 2. Eventually, we plan to integrate this backend
with the VELOC [25] checkpointing system.

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup

Our experiments were performed on Argonne’s Theta super-
computer, a 11.69 petaflops pre-Exascale Cray XC40 system
based on the second-generation KNL Intel Xeon Phi 7230
SKU. The system has 4392 nodes, each equipped with 64 core
processors (256 hardware threads), 16 GB of high-bandwidth
MCDRAM (300-450 GB/s), 192 GB of main memory (DDR4
RAM, 20 GB/s), and a 128 GB SSD (700 MB/s). The

6https://xgitlab.cels.anl.gov/sds/tmci
7https://www.tensorflow.org/guide/create op
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interconnect topology is based on Dragonfly with a total
bisection bandwidth of 7.2 TB/sec.

The system was configured to run in caching mode (MC-
DRAM caches DRAM at hardware level). Durable storage
is provided by the Lustre parallel file system (aggregated
bandwidth 250 GB/s), which is mounted using POSIX. The
node-local SSDs are accessible as a local ext4 mount point.
For the purpose of our experiments, they were disabled.

In terms of deep learning software, we use Horovod v.0.19.2
and Tensorflow v.2.0, which comes with its own optimized
implementation of the Keras library. Tensorflow was pre-
compiled with optimized KNL support by taking advantage
of Intel’s Math Kernel Library (MKL) and Intel’s own Python
distribution.

B. Methodology

To evaluate our proposal, we run a series of experiments
that involve an even set of nodes, each of which is running a
single MPI rank that consists of a multi-threaded Tensorflow
instance (two intra-threads and 128 inter-threads for a total
of 256 units of parallelism, the maximum available on the
node). This corresponds to the optimal settings for the Theta
pre-Exascale machine according to our previous findings [34].

We divide the ranks into two equal groups corresponding
to the initial and cloned ranks, each with its own sub-
communicator used by Horovod. Halfway through the training
process, the initial ranks start the cloning process, after which
both groups continue the training process independently of
each other.

Throughout our evaluations, we compare three approaches
that can be used to achieve cloning:

PFS-HDF5: This approach realizes cloning by means
of checkpointing. Specifically, after half of the training steps
are completed, rank 0 (chosen by convention, all ranks hold
a full replica of the model state) saves the model using
model.save weights. This is done by registering a callback,
which intercepts on batch end events and counts until half
of the training steps have completed. Then, rank 0 sends a
message to rank 1 (chosen as the leader of the standby ranks),
which releases a barrier all standby ranks are waiting at. This
enables all the standby ranks to proceed reading the checkpoint
concurrently and continue training independently of the initial
ranks.

Mpi4py-P2P: An alternative to checkpointing is a di-
rect transfer of the model state between the ranks in the
on batch end callback after half of the training steps were
completed. To this end, we implement a peer-to-peer ap-
proach where each rank i obtains the model weights using
model.get weights, then sends them to rank i+1 using mpi4py.
Unlike the case of PFS−HDF5, the standby ranks are receiving
the model state at the same time the initial ranks are sending
it. Furthermore, there is no contention because each rank is
interacting with a different rank.

DeepClone: This is our proposed approach that hooks
directly into the execution graph to capture the content of
the tensors immediately after they were updated based on the

average gradients during back-propagation. The tensors are
sharded and sent to the cloned ranks in a non-blocking fashion,
while the cloned ranks reconstruct them later.

These approaches are compared based on three metrics,
corresponding to the three objectives introduced in Section II.

Runtime overhead: This metric evaluates the runtime
overhead caused by cloning for the initial group. Specifically, it
measures how much slower the training step at which cloning
occurs and the following one are compared with the average
of the rest of the training steps. It is necessary to measure two
training steps, because in the case of PFS−HDF5, rank 0 is
checkpointing at the end of the training step while the rest of
the initial ranks move on. Therefore, rank 0 lags behind in
the next iteration, causing a slowdown for the whole group.
In the case of Mpi4py−P2P, all initial ranks are sending the
model state at the end of the training step. Therefore, they all
contribute equally to the slowdown. In the case of DeepClone,
there is no overhead at the end of the training step. However,
the extra non-blocking send operations embedded into the
execution graph (of all initial ranks), although lightweight,
may cause interference. This metric is important because it
evaluates the direct impact of cloning on the initial ranks,
which ideally should be undisturbed by it. Lower values
indicate lower impact.

Standby duration: This metric evaluates the time during
which the cloned ranks need to be alive to receive the model
state before they can continue the training process. In the case
of PFS−HDF5, this is the time needed to read the checkpoint
concurrently from the PFS on all cloned ranks. The cloned
ranks do not need to be alive while rank 0 is writing the
checkpoint. In the case of Mpi4py−P2P, this is the time needed
by all cloned ranks to receive the model state. Note that
unlike the case of PFS−HDF5, the cloned ranks need to be
ready to receive the model state as soon as the initial ranks
begin sending it, i.e., immediately after the training step when
cloning is initiated. In the case of DeepClone, the cloned ranks
need to be ready to receive the tensor shards immediately after
the back-propagation has started and can progress after they
finished reconstructing the full model state from the tensor
shards using all-gather. This metric shows for how long the
cloned ranks need to be alive but are unproductive, i.e. they
consume core-hours without progressing with the training. It
needs to be minimized.

Readiness duration: This metric measures how long it
takes from the end of the training step for which cloning
is initiated until the cloned ranks are ready to continue the
training process. In the case of PFS−HDF5, this is the time
it takes rank 0 to checkpoint plus the standby duration. In
the case of Mpi4py−P2P, this coincides with the standby
duration. In the case of DeepClone, this is the delay due to
the asynchronous send operations progressing in parallel with
the back-propagation, plus any additional delays due to all-
gather operations. This metric is an important complement
to the standby duration and also needs to be minimized: the
sooner the cloned ranks are ready to continue training, the
faster they will complete their work.
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C. Applications

1) CANDLE NT3: CANDLE [35] (Cancer Distributed
Learning Environment) is a project that aims to combine the
power of Exascale computing with deep learning to address
a series of loosely connected problems in cancer research.
Each such problem is driven by a series of benchmarks. One
such direction (Pilot 1) aims to predict drug response based
on molecular features of tumor cells and drug descriptors.
In this context, we study on NT3 [36], which consists of a
1D convolutional network for classifying tissue, expressed as
gene sequences, as normal or tumorous. This type of network
follows the classic architecture of convolutional models with
multiple 1D convolutional layers interleaved with pooling
layers followed by final dense layers. The optimizer used by
NT3 is SGD (stochastic gradient descent). The training data
size for this benchmark is ≈ 600 MB, which includes 1120
training samples. NT3 is a representative example of a model
with a small number of layers, each of which can grow to
huge sizes in the order of GiB.

2) ResNet-50 Family: ResNet is a family of DNN where
the layers learn residual functions with reference to the input
layers, instead of learning unreferenced functions. This allows
ResNet to train extremely deep neural networks with 150+
layers, which was difficult prior to its introduction due to
the problem of vanishing gradients [5]. Thanks to this break-
through, ResNet became a highly popular image classification
benchmark. In this paper, we study two variants with 50 and
152 layers, called ResNet-50 and, respectively, ResNet-152. In
addition, we also study a related intermediate learning model
with 121 layers, DenseNet-121 [37]. All three models have
standard implementations shipped with Keras. We use the
same optimizer as for NT3, i.e., SGD. As training data, we
use the ImageNet dataset [38], which is ≈ 200 MB large
and includes 100,000 samples. The training set of each rank
is randomly sampled from the training data. This family of
learning models is a representative example of a model with
a large number of layers, each of which is small (at most in
the order of MiB), which is the exact opposite of NT3 and
therefore complements well our study.

D. Results

We use three configurations for the NT3 model by modifying
one of the huge layers that can grow in the order of GiB. We
refer to these configurations as NT3.A, NT3.B and NT3.C. For
the rest of the models, we keep the standard configuration as
implemented in Keras. The application parameters are listed
in Table I.

TABLE I: Model configurations

Model Shorthand Batch size Layers Mutable size
NT3 variant 1 NT3.A 20 10 600 MiB
NT3 variant 2 NT3.B 20 10 1.1 GiB
NT3 variant 3 NT3.C 20 10 1.7 GiB

ResNet-50 R50 32 50 91 MiB
DenseNet-121 D121 32 121 27 MiB

ResNet-152 R152 32 152 223 MiB

For all configurations, we run a total of 20 training steps.
The cloning is started by the initial ranks at step 10. Each rank
logs the duration of each training step and additional events
specific to each of the compared approaches that makes it
possible to extract the metrics introduced in Section VI-B.
The average duration of each training step under normal
circumstances (without cloning) is referred to as the Baseline.

1) Scalability for increasing group size: Our first series of
experiments studies the scalability of the three approaches for
an increasing group size. Specifically we experiment with 2,
4, 8 nodes corresponding to 1, 2, 4 initial ranks and an equal
number of cloned ranks.

First we study the NT3 benchmark (Figure 4). As can be
observed, the runtime overheads for PFS−HDF5 and Mpi4py
are close for all configurations. The explanation for this effect
is the large serialization overhead incurred by Keras to convert
tensors from their internal representation into numpy arrays.
This accounts for the majority of the runtime overhead. A
slightly higher overhead is visible for PFS−HDF5, which is
expected because writes to HDF5 are usually slower than
direct MPI messages. These results are also interesting from
a different perspective: despite the fact that PFS−HDF5 only
writes a single checkpoint file (and therefore only one rank
is lagging behind), a single straggler is enough to slow down
the whole group to a comparative level with the case when all
ranks experience delays, which is the case of Mpi4py. On the
other hand, DeepClone reduces the runtime overhead at least
by a factor of 25x, both because it eliminates the serialization
overhead (thanks to direct access to the tensors) and because it
overlaps the MPI communication with the back-propagation.
Also interesting to note is how the runtime overhead decreases
for increasing numbers of nodes, which can be attributed
to tensor sharding. This underlines the importance of tensor
sharding in achieving high scalability, especially when the
tensors are large in size.

Regarding standby duration (Figure 4b), large differences
can be observed between the three approaches. Surprisingly,
in the case of PFS−HDF5, reading the tensors back from
a HDF5 file incurs a much lower overhead compared with
writing. However, the downside is the fact that all ranks need
to read the same file concurrently, which may introduce I/O
bottlenecks at scale. This effect is already visible at small
scale: the standby duration slightly increases for an increasing
number of nodes. This is not the case for Mpi4py, which has a
much more stable behavior. However, the standby duration
is much higher in this case, which is expected given that
the cloned ranks need to be ready to receive as soon as
the training step has ended, therefore paying for the runtime
overhead too. In the case of DeepClone, the tensors are sent
as soon as they are ready during the back-propagation, which
results in a standby duration that is at least as long as the
back-propagation. For an increasing number of nodes, the
scalability of the back-propagation is largely determined by
the scalability of the all-reduce operation, as the forward pass
is embarrassingly parallel. This effect is also visible for the
Baseline, which is higher than the standby duration by a
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Fig. 4: CANDLE-NT3: Scalability of cloning for NT3.C (1.7 GiB model size) for increasing number of nodes.
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Fig. 5: ResNet-50: Scalability of cloning for R50 (97 MiB model size) for increasing number of nodes.

constant. Therefore, we can conclude that the standby duration
is almost equal to the duration of the back-propagation, which
makes the behavior of DeepClone highly predictable.

The results above can be well correlated with the readiness
duration, depicted in Figure 4c. For PFS−HDF5, the readiness
duration includes the time to write the checkpoint and read it
back in all cloned ranks, which becomes comparable to the
readiness duration of Mpi4py (in which case it overlaps with
the standby duration). A slightly higher overhead is visible
for PFS−HDF5, for the same reason the runtime overhead is
slightly higher: writes to HDF5 are more expensive than direct
MPI messages. Recall that the runtime overhead is calculated
as the average increase of the two training steps following the
training step for which cloning is performed (to account for
the effect of stragglers). This is why the readiness duration is
not equal to the sum of the runtime overhead and the standby
duration. However, it is roughly equal to the double of the
runtime overhead plus the standby duration, which makes the
readiness duration easy to predict for both PFS−HDF5 and
Mpi4py. In the case of DeepClone, we observe a negligible
readiness duration that is up to 35x less than in the other
two approaches. This underlines the importance of starting
the cloning as early as possible. Furthermore, these results
also confirm the observation that the standby duration almost
overlaps with the back-propagation, which implies that our
approach incurs a low all-gather overhead to reconstruct the
tensors from shards (as this is the main source of possible
delays experienced by the cloned ranks after receiving the
tensors).

The results for ResNet−50 are depicted in Figure 5. Unlike
the case of NT3, a significant difference is visible for a

single initial rank and a single cloned rank (two nodes). In
this particular setting, we observe higher overheads for our
approach compared with Mpi4py. This outlier case may happen
because there is no all-reduce communication happening,
therefore embedding a large number of non-blocking send
operations of tiny sizes directly into the execution graph
has less opportunities to take advantage of synchronization
overheads between the layers. To mitigate this case, we will
investigate in future work the possibility of embedding a
smaller number of send operations that aggregate such small
tensors into larger messages.

However, as soon as the group size is larger than a
single rank, the trend is very similar to the case of NT3.
Specifically, both the runtime overhead and the readiness
duration of DeepClone are negligible and more than 20x/10x
less than PFS−HDF5/Mpi4py. Again, the standby duration of
DeepClone almost overlaps with the back-propagation, despite
a much higher number of tensors of comparatively much
smaller sizes. This underlines the importance of avoiding
many all-gather operations for small tensors, which introduces
unnecessary overheads.

Another interesting observation can be made when compar-
ing PFS−HDF5 with Mpi4py: unlike the case of NT3, Mpi4py
has significantly lower overhead compared with PFS−HDF5,
which can be explained by the much lower performance of
reading and writing small fields into an HDF5 file compared
with sending and receiving small MPI messages.

2) Scalability for fixed group size and variable model:
Our next series of experiments focuses on the scalability of
the three approaches for the largest number of nodes (8 nodes,
4 initial ranks, 4 cloned ranks).
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Fig. 6: Scalability of cloning for a fixed number of nodes (8) and different model configurations (NT3.C and R50 already
depicted previously)

First we study the NT3 benchmark, depicted in Figure 6a.
As expected, with increasing model size, all metrics increase
proportionally for all three approaches. Unlike the case of
NT3.C, the runtime overhead of PFS−HDF5 is slightly less
than for Mpi4py for both NT3.A and NT3.B. However, this does
not lead to a lower readiness duration. This is an interesting
observation, because it shows that the effect of stragglers is
less pronounced when the model is smaller. Also interesting
to note is the stability of Mpi4py: when the size of the model
doubles, the corresponding runtime overhead, standby duration
and readiness duration double too. In the case of DeepClone,
we observe a much better scalability: the runtime overhead
for NT3.A and NT3.B is between 17x-23x lower compared
with PFS−HDF5 and Mpi4py, which grows to 25x for NT3.C.
This shows that the gap between our approach and the other
two approaches is growing for an increasing model size. A
similar trend is visible for the readiness duration: we observe a
reduction of 14x-22x compared with PFS−HDF5 and Mpi4py,
which grows to 35x in the case of NT3.C. This is also
confirmed by the standby duration: as the model size increases,
the standby duration as a fraction of the Baseline decreases
too.

Next, we study D121 and R152 from the ResNet family,
as depicted in Figure 6b. Both feature a relatively small size
but many more layers and tensors compared with R50. In
this case, it is interesting to observe the dramatic increase
in runtime overhead for PFS−HDF5 when the number of
tensors increases: it is more than double the runtime over-
head of Mpi4py, which does not hold for R50, where the
runtime overhead was less than double. This confirms the
high overhead of reading and writing many small tensors into
HDF5 format compared with sending small MPI messages.
The HDF5 overhead is also visible when observing the trend
exhibited by the standby and readiness duration. On the other
hand, DeepClone introduces a much smaller runtime overhead
(up to 17x) and readiness duration (up to 75x), confirming that
it scales well with an increasing number of layers and tensors,

thereby not overburdening the execution graph with many
small send operations. In fact, the gap between DeepClone
and the other approaches is growing for an increasing number
of layers.

VII. CONCLUSIONS

In this paper, we studied the problem of efficient cloning of
data-parallel training instances that are subject to layer-wise
parallelism. This is an important pattern in a wide range of
deep learning workflows: model exploration, sensitivity analy-
sis, ensemble searches. To this end, we proposed DeepClone,
a cloning framework that introduces innovation at several
levels: low-overhead, zero-copy transfer of the DNN model
state, large tensor sharding and reconstruction, asynchronous
data transfers overlapped with the back-propagation through
augmentation of the execution graph. We demonstrated the
benefits of DeepClone for several deep learning applications
and model configurations that cover a wide spectrum: large
and small tensors, few and many layers, large and small
mutable model state, etc. Under such circumstances, our
approach shows much better performance and scalability, re-
ducing runtime overhead and readiness duration by two orders
of magnitude. This underlines the importance of addressing
cloning as a dedicated pattern, rather than relying on other
approaches like checkpoint-restart to achieve the same result.
Encouraged by these results, we plan to explore in future work
several aspects we left as open questions, such as the problem
of co-optimizing a set of collective communication patterns
that may be called out-of-order on different ranks, as well as
how cloning can complement checkpointing approaches.
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