
Productive composition of extreme-scale
applications using implicitly parallel dataflow
Michael Wilde,∗‡ Justin M. Wozniak,∗‡ Timothy G. Armstrong,† Daniel S. Katz,‡ Ian T. Foster∗†‡

∗ Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA
† Dept. of Computer Science, University of Chicago, Chicago, IL, USA

‡ Computation Institute, University of Chicago and Argonne National Laboratory, Chicago, IL, USA

I. INTRODUCTION

In every decade since the 1970’s, computer scientists have
re-examined dataflow-based execution models, hoping the pro-
gramming productivity benefits these models promise can be
realized on practical hardware platforms to implement useful
applications. Based on the recent Swift/T implementation of
“implicitly parallel functional dataflow” (IPFD) for extreme-
scale systems, we believe that the dataflow model can now
provide significant software productivity benefits for develop-
ing the upper levels of petascale and exascale applications. We
believe dataflow models can also yield significant secondary
benefits in verifiability, reliability, and energy savings – areas
that are closely related to overall systems development pro-
ductivity at extreme scale. We discuss here the opportunities
for software productivity at these scaled presented by the use
of IPFD, and the research and development efforts needed to
realize these benefits.

II. DRIVERS FOR LARGE-SCALE MANY-TASK
APPLICATIONS

Exaflop computers are expected to provide concurrency at
the scale of O(109) threads on O(106) cores. Such extreme-
scale systems will enable and demand new problem-solving
methods that do not strictly follow today’s dominant single-
program, multiple data (SPMD) paradigm but instead involve
many (often a time-varying number of) concurrent run-to-
completion tasks. These tasks may themselves be the invo-
cation of multi-core or multi-node programs, and may have
possibly complex inter-task data dependencies. Such applica-
tions have been recently described as ”many-task” in nature.

Writing correct, scalable programs at this level can be an
herculean task, with significant investment of programmer time
required to make a program run efficiently and verifiably on
hundreds of thousands of cores. Applications at this scale
could have a development cycle approaching a decade.

For some applications, intricate high-level coordination
logic is necessary; but in other cases, the high-level coordina-
tion pattern is relatively straightforward and may be expressed
as the composition of a number of computational tasks. In
practice, the composition takes the form of scripted dataflow
logic, in which tasks are linked together through their input
and output data sets; the tasks themselves are developed sepa-
rately as libraries or external programs. Important applications
in methodologies such as rational materials design, uncertainty

quantification, parameter estimation, and inverse modeling,
and the analysis of complex datasets such as climate models
and social network graphs all have this many-task property.
Many will have aggregate computing use cases that require
exascale computers.

III. CURRENT APPROACHES TO MANY-TASK APPLICATION
DEVELOPMENT

Currently, many-task applications are programmed in one
of two ways. In the first approach, the logic associated with
the different tasks is integrated into a single, tightly coupled
application using a load balancing library which allows tasks
to add work dynamically to the system. This lacks a compre-
hensive programming model, data model, and other features
required for productivity. In the second approach, a script or
workflow is written that invokes the tasks, in sequence or in
parallel, with each task reading and writing input and output
files. Here, performance can be poor, because existing many-
task languages are implemented with centralized evaluators
that cannot sustain the high overall task rate necessary to
efficiently utilize O(106) cores.

IV. APPLYING IPFD USING SWIFT

As application scale increases these features are increasingly
important, yet more difficult to implement. We and our users
have significant experience working in this paradigm with
the Swift parallel scripting language [1], which can compose
existing programs into more sophisticated applications such as
simulation or analysis pipelines, parameter sweeps, or work-
flow graphs. Our experience with real applications suggests
that IPFD provides a comprehensive strategy to perform such
high-level application coordination at extreme scales with
greater programmability.

The approach we advocate here integrates these two models.
First, we provide a very high-level, naturally concurrent pro-
gramming model in the previously developed Swift language.
Second, we developed translation strategies to render Swift
semantics into a distributed-memory model, based on efficient
primitives compatible with the highly scalable ADLB library
– the primary focus of this paper. Swift’s IPFD computing
model draws on recent trends that emphasize the identification
of coarse-grained high-level parallelism as a distinct and early
step in application development [2].



Applications relevant to the DOE mission-science portfolio
that have been developed in Swift include large-scale power
grid simulation; analytic diagnostics of high-resolution climate
models; simulation and live analysis of x-ray scattering results
from the Advanced Photon Source; materials design using
parallel ensembles of molecular dynamics simulations tools
like NAMD and LAMMPS; and multi-scale subsurface flow
modeling. Important DOE application suites like the NWChem
suite, while not programmed in Swift, exhibit a high-level
structure quite amenable to the IPFD model.

V. SCALING THE SWIFT IPFD MODEL

Until 2009, Swift had limited applicability to extreme-scale
applications. The leaf tasks of a Swift script could only be
complete application programs, and Swift’s Java implementa-
tion could only sustain about 500 task invocations per second.
In 2010, a new version

Swift/Turbine [3], now known as Swift/T, was created that
addressed both of these limitations. Swift/T enabled ordinary
in-memory functions to be called as leaf dataflow tasks, and
the task rate was increased to what is now at the time of this
writing over 14M tasks per second (as measured recently on
Blue Waters at 2K nodes / 64K cores). We expect that the
current engine is capable of much more speed on an even
larger number of nodes. Swift/T programs are executed as
MPI applications using enhanced versions of the ADLB load
balancer, and can thus fully leverage the native interconnect
and high speed RDMA transports of extreme-scale systems.

VI. EXTREME-SCALE APPLICATIONS WILL BE HYBRIDS

Our view is that a significant fraction of extreme-scale
applications will require a hierarchy of programming models.
Diverse finer-grained parallel models will still be used to im-
plement core application logic. However, an implicitly parallel,
functional, dataflow-based programming model is attractive for
top-level coordination logic, because load balancing, fault tol-
erance and resource management fit naturally as application-
agnostic services within the model.

The IPFD model readily supports parallel leaf tasks (i.e leaf
tasks written in models such as MPI and OpenMP). Both such
models have been executed in Swift and Swift/T. For example,
the SciCol graph-based simulation model/optimizer employs
OpenMP leaf tasks, and parallel multi-node MPI applications
like NAMD, CP2K, and LAMMPS have been used as leaf
tasks in molecular dynamics applications.

The Swift many-task model has recently been extended
to the realm of accelerators. The GPU-enabled Many-Task
Computing framework from IIT has been integrated with
Swift. Applications such as protein structure prediction[2]
are being ported to GPUs for execution on Blue Waters and
Stampede using this framework.

VII. EXTREME APPLICATIONS WILL BE MULTILINGUAL

The above need for hybrid execution and programming
models within large-scale applications is driven in large part by
the natural evolution within the DOE mission sciences to build

on top of the largest functional units of software reuse possible.
We expect that applications will be most productive when
they leverage large community codes packaged as libraries
and compiled application programs.

The same forces will drive the requirement for extreme-
scale applications to be written in (and thus to integrate) a
diverse set of languages. Leaf codes for simulation will con-
tinue, we expect. to be coded in C/C++, Fortran, and perhaps
a growing set of PGAS and global-view languages such as
Chappell, X10, and UPC. However, many codes will employ
languages like R for statistical and data analysis and to perform
the logic of algorithms like uncertainty quantification, branch-
and-bound, or of intelligent, dynamic ensembles. Languages
such as Python will play a major role in fields like biology
(BioPython) and as high-productivity interfaces to numerical
libraries (such as NumPy).

These trends will require that an IPFD language for high-
level composition integrate a diverse set of languages. Swift/T
has begun this process by enabling leaf tasks to be written in
C/C++, Fortran, R, and Python. These capabilities are already
proving useful in coding genetic algorithms into intelligent
simulation ensembles for x-ray scattering applications.

VIII. RESEARCH NEEDED TO REALIZE THIS VISION

The following research problems must be addressed to en-
able the IPFD model, using Swift or other future programming
methods, to achieve productivity breakthroughs in extreme-
scale application development and support.

1) Improve the ease of inter-language calls and flow gen-
eration

2) Develop the tools to visualize and tune scaling
3) Extend the programming model to handle speculative

execution, efficient dynamic result reduction, and more
powerful loop constructs such as “for-most-of”, or
“until-N-results”, inspired by workflow models

4) Provide more language bindings e.g. for Python-based
dataflow specification.

5) Integrate with structured dataset formats
6) Support rich logging and debugging for high-level tools.
7) Control and aggregate the level of detail of provenance

data recording

Acknowledgments: This work was supported in part by the
U.S. Dept. of Energy, Office of Science, Office of Advanced
Scientific Computing Research, under Contract DE-AC02-
06CH11357.

REFERENCES

[1] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford,
D. S. Katz, and I. Foster, “Swift: A language for
distributed parallel scripting,” Parallel Computing, vol. 39,
no. 9, pp. 633–652, September 2011. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167819111000524

[2] M. Wilde, I. Foster, K. Iskra, P. Beckman, Z. Zhang, A. Espinosa,
M. Hategan, B. Clifford, and I. Raicu, “Parallel scripting for applications
at the petascale and beyond,” Computer, vol. 42, no. 11, pp. 50–60, 2009.

[3] J. M. Wozniak, T. G. Armstrong, M. Wilde, D. S. Katz, E. Lusk, and
I. T. Foster, “Swift/T: Scalable data flow programming for many-task
applications,” in Proc. CCGrid, 2013.


