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Abstract

To enable personalized cancer treatment, machine learning models have been developed to predict drug response as a
function of tumor and drug features. However, most algorithm development efforts have relied on cross-validation within a
single study to assess model accuracy. While an essential first step, cross-validation within a biological data set typically
provides an overly optimistic estimate of the prediction performance on independent test sets. To provide a more rigorous
assessment of model generalizability between different studies, we use machine learning to analyze five publicly available
cell line-based data sets: National Cancer Institute 60, ancer Therapeutics Response Portal (CTRP), Genomics of Drug
Sensitivity in Cancer, Cancer Cell Line Encyclopedia and Genentech Cell Line Screening Initiative (gCSI). Based on observed
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experimental variability across studies, we explore estimates of prediction upper bounds. We report performance results of a
variety of machine learning models, with a multitasking deep neural network achieving the best cross-study generalizability.
By multiple measures, models trained on CTRP yield the most accurate predictions on the remaining testing data, and gCSI
is the most predictable among the cell line data sets included in this study. With these experiments and further simulations
on partial data, two lessons emerge: (1) differences in viability assays can limit model generalizability across studies and (2)
drug diversity, more than tumor diversity, is crucial for raising model generalizability in preclinical screening.

Key words: drug response prediction; deep learning; drug sensitivity; precision oncology

Introduction
Precision oncology aims at delivering treatments tailored to
the specific characteristics of a patient’s tumor. This goal is
premised on the idea that, with more data and better com-
putational models, we will be able to predict drug response
with increasing accuracy. Indeed, two recent trends support this
premise. First, high-throughput technologies have dramatically
increased the amount of pharmacogenomic data. A multitude
of omic types such as gene expression and mutation profiles
can now be examined for potential drug response predictors.
On the prediction target side, while clinical outcomes are still
limited, screening results abound in preclinical models that
mimic patient drug response with varying fidelity. Second, deep
learning has emerged as a natural technique to capitalize on
the data. Compared with traditional statistical models, the high
capacity of neural networks enable them to better capture the
complex interactions among molecular and drug features.

The confluence of these factors has ushered in a new gener-
ation of computational models for predicting drug response. In
the following, we provide a brief summary of recent work in this
field, with a focus on representative studies using cancer cell line
data.

The National Cancer Institute 60 (NCI60) human tumor cell
line database [1] was one of the earliest resources for anti-
cancer drug screen. Its rich molecular characterization data have
allowed researchers to compare the predictive power of different
assays. For example, gene expression, protein and microRNA
abundance have been shown to be effective feature types for
predicting both single and paired drug response [2, 3]. In the
last decade, new resources including Cancer Cell Line Ency-
clopedia (CCLE) [4, 5], Genomics of Drug Sensitivity in Cancer
(GDSC) [6] and Cancer Therapeutics Response Portal (CTRP) [7,
8] have significantly expanded the number of screened cancer
cell lines. Drug response prediction has moved beyond per-drug
or per-cell line analysis [9, 10] to include integrative models
that take both drug and cell line as input features. Community
challenges have further inspired computational approaches [11,
12]. A wide range of new machine learning techniques have
been explored, including recommendation systems [13], rank-
ing methods [14, 15], generative models [10, 16], feature anal-
ysis [17], network modeling [18], ensemble models [19–23] and
deep learning approaches [24–28], with some incorporating novel
design ideas such as attention [29] and visual representation
of genomic features [30]. A number of excellent review articles
have recently been published on the topic of drug response pre-
diction, with substantial overlap and special emphases on data
integration [31], feature selection [32], experimental comparison
[33], machine learning methods [34], systematic benchmarking
[35], combination therapy [36], deep learning results [37] and
meta-review [38].

Despite the tremendous progress in drug response predic-
tion, significant challenges remain: (1) inconsistencies across
studies in genomic and response profiling have long been

documented [39–42]. The Genentech Cell Line Screening
Initiative (gCSI) [43] was specifically designed to investigate the
discordance between CCLE and GDSC by an independent party.
While harmonization practices help [44–46], a significant level of
data variability will likely remain in the foreseeable future due
to the complexity in cell subtypes and experimental standard-
ization. (2) The cross-study data inconsistencies suggest that a
predictive model trained on one data source may not perform as
well on another. Yet, most algorithm development efforts have
relied on cross-validations within a single study, which likely
overestimate the prediction performance. Even within a single
study, validation R2 (explained variance) rarely exceeds 0.8 when
strict data partition is used [37], indicating difficulty in model
generalization. (3) Without a single study that is sufficiently
large, a natural next step is to pool multiple data sets to learn
a joint model. Multiple efforts have started in this direction,
although the gains to date from transfer learning or combined
learning have been modest [47–49]. (4) It is also unclear how
model generalization improves with increasing amounts of cell
line or drug data. This information will be essential for future
studies to prioritize screening experiments.

In this study, we seek to provide a rigorous assessment of
the performance range for drug response prediction given the
current publicly available data sets. Focusing on five cell line
screening studies, we first estimate within- and cross-study
prediction upper bounds based on observed response variability.
After integrating different drug response metrics, we then apply
machine learning to quantify how models trained on a given
data source generalize to others. These experiments provide
insights on the data sets that are more predictable or contain
more predictive value. To understand the value of new exper-
imental data, we further use simulations to study the relative
importance of cell line versus drug diversity and how their
addition may impact model generalizability.

Data integration
Pan-cancer screening studies have been comprehensively
reviewed by Baptista et al. [37]. In this study, we focus on
single-drug response prediction and include five public data
sets: NCI60, CTRP, GDSC, CCLE and gCSI. The characteristics
of the drug response portion of these studies are summarized
in Table 1. These data sets are among the largest in response
sample size of the nine data sources reviewed and, therefore,
have been frequently used by machine learning studies.
Together, they also capture a good representation of the diversity
in viability assay for response profiling.

Data acquisition and selection

Of the five drug response data sets included in this study, NCI60
was downloaded directly from the NCI FTP and the remaining
four were from PharmacoDB [44]. We use GDSC and CTRP to
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Cross-study analysis of drug response prediction 3

Table 1. Characteristics of drug response data sets included in the cross-study analysis

Data set Cells Drugs Dose response
samples

Drug response
groupsa

Viability assay

NCI60 60 52,671 18 862 308 3,780,148 Sulforhodamine B stain
CTRP 887 544 6171 005 395 263 CellTiter Glo
CCLE 504 24 93 251 11 670 CellTiter Glo
GDSC 1075 249 1894 212 225 480 Syto60
gCSI 409 16 58 094 6455 CellTiter Glo

a We define a response group as the set of dose–response samples corresponding to a particular pair of drug and cell line.

denote the GDSC1000 and CTRPv2 data collections in Pharma-
coDB, respectively.

The different experimental designs of these studies resulted
in differential coverage of cell lines and drugs. While NCI60
screened the largest compound library on a limited number of
cell lines, CCLE and gCSI focused on a small library of established
drugs with wider cell line panels. The remaining two studies,
CTRP and GDSC, had more even coverage of hundreds of cell
lines and drugs.

There is considerable overlap in cell lines and drugs covered
by the five data sets. A naive partitioning of the samples by
identifier would thus lead to leakage of training data into the
test set by different aliases. Thanks to PharmacoDB’s curation
and integration effort, such alias relationships can be clearly
identified through name mapping.

To create a working collection of samples, we first defined a
cell line set and a drug set. Our cell line selection is the union
of all cell lines covered by the five studies. For drugs, however,
NCI60 screened a collection of over 50 000 drugs that would be
too computationally expensive for iterative analysis. Therefore,
we selected a subset of 1006 drugs from NCI60, favoring Food and
Drugs Administration-approved drugs and those representative
of diverse drug classes. From the remaining four studies, we
included all the drugs. This resulted in a combined set of 1801
drugs.

Drug response integration

For cell line-based anticancer screening, drug sensitivity is quan-
tified by dose–response values that measure the ratio of sur-
viving treated to untreated cells after exposure to a drug treat-
ment at a given concentration. The dose–response values can
be further summarized, for a particular cell–drug pair, to form
dose-independent metrics of drug response.

All five studies provided dose–response data, but with dif-
ferent ranges. To facilitate comparison across studies, dose–
response values were linearly rescaled to share a common range
from −100 to 100.

Dose-independent metrics were more complicated. For
example, whereas GDSC used IC50 (dose of 50% inhibition of cell
viability), NCI60 used GI50 (dose at which 50% of the maximum
growth inhibition is observed). Given the lack of consensus, we
adopted PharmacoDB’s practice to recompute the aggregated
dose-independent metrics for each study from the individual
dose–response values, removing inconsistencies in calculation
and curve fitting [44].

Among these summary statistics, AAC is the area above the
dose–response curve for the tested drug concentrations, and
DSS (drug sensitivity score) is a more robust metric normalized
against dose range [50]. The definitions of these two metrics
were directly borrowed from PharmacoDB, but they had to be

recomputed in this study because PharmacoDB does not cover
NCI60. We used the same Hill Slope model with three bounded
parameters [44] to fit the dose-response curves. We also added
another dose-independent metric, area under drug response
curve (AUC), to capture the area under the curve for a fixed
concentration range ([10−10, 10−4]μM). AUC can be viewed as the
average growth and can be compared across studies. See the
Methods section for the detailed definitions of these metrics.

Results
Response prediction upper bounds

Data sets from different studies often exhibit biases. Apart from
differences in study design (e.g. choice of cell lines and drugs,
sample size), there are two main types of biases associated with
experimentally measured data: bias in molecular characteriza-
tion and bias in response assay. Viewed in the context of a
machine learning problem, these correspond to biases in input
features and output labels. They form the main challenge to joint
learning and transfer learning efforts over multiple data sources.

The first type of bias can be alleviated with feature prepro-
cessing. Specifically, we used batch correction to homogenize
gene expression profiles from different databases and followed
a consistent protocol to generate drug features and fingerprints
(see our previous work [49] and a summary in the Methods
section).

The 2nd type of bias is the focus of this paper. That is, despite
the integration efforts, significant differences in measured drug
response remain. Figure 1 illustrates this heterogeneity with a
common example: the LOXIMVI melanoma cell line treated with
Paclitaxel. This same combination is included by multiple stud-
ies, but it exhibits distinct response curves across replicates as
well as studies. Given the degree of variability in drug response
measurements, it is natural to ask what’s the best prediction
models could do with infinite data. We explored this question
based on within- and cross-study replicates.

Within-study response variability among replicates

Three of the studies (NCI60, CTRP, GDSC) contained replicate
samples where the same pair of drug and cell line were assayed
multiple times. These data allowed us to estimate within-study
response variability as summarized in Table 2. The fact that
these studies used three different viability assays was also an
opportunity to sample the associations between variability level
and assay technology.

Overall, NCI60 had the lowest SD in dose response at 14.5
for an average replicate group after rescaling response values
linearly in all three studies to a common range. To establish
a ceiling for the performance of machine learning models, we
computed how well the mean dose response of a replicate group
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Figure 1. Fitted dose–response curves from multiple studies. This example shows the dose response of the LOXIMVI melanoma cell line treated with paclitaxel. Curves

have been consistently fitted across the studies. Experimental measurements from multiple sources and replicates are not in complete agreement.

Table 2. Dose–response variability among replicates in the same study

Study Samples with
replicates

Replicates per
group

Mean response
SD in group

R2 Explaining response
with group mean

R2 for Samples
with Replicates

NCI60 41.56% 2.62 14.5 0.959 0.931
CTRP 4.09% 2.05 18.8 0.996 0.862
GDSC 2.62% 2.00 21.9 0.996 0.810

would predict individual response values. This resulted in an
R2 score of 0.959 for NCI60. The equivalent values for CTRP and
GDSC were much higher, but only for the fact that they had much
lower fractions of samples with replicates. When we confined
the analysis to just nonsingleton replicate groups, the R2 scores
dropped significantly with GDSC being the lowest at 0.81. While
it’s unclear how well these replicate groups represent the entire
study, we should expect machine learning models to not exceed
the R2 score in cross-validation. This is not a statement on the
capability of the machine learning methods, but the noise level
in the ground truth data that they work with.

Cross-study response variability

For comparing drug response across different studies, dose-
dependent metrics are less useful, because each study generally
has its own experimental concentrations. Instead, we opted for
the three aforementioned dose-independent response metrics:
AUC, AAC and DSS. A key difference between AUC and AAC is
that AUC is based on a fixed dose range, whereas AAC is calcu-
lated for the drug-specific dose window screened in a particular
study. DSS is another metric that integrates both drug efficacy
and potency, with evidence of more differentiating power in
understanding drug functional groups [50].

Using these three metrics, we analyzed cross-study response
variability by focusing on the common subset of cell line and
drug pairs that appear in multiple studies.

Table 3 summarizes two representative cases. In the 1st sce-
nario, we used response values from CTRP to directly predict the
corresponding metrics in CCLE. In this case, the source and target
studies shared a common viability assay. Yet, the raw R2 on all
three metrics were only around 0.6, with AAC being the highest.
In the 2nd scenario, where the target study GDSC used a different
viability assay, the response projections were markedly worse:
the best R2 score was slightly above 0.3 achieved on AUC, and
the other two scores were close to zero.

In the above analysis, the response values from one source
were straightly used as the predicted response in another source.
This is applicable to cases where the response information in the
target study is unknown. When the target distribution is known,
a mapping function can be used to fit the response values,
as a way to bridge the measurement differences between the
studies. Figure 2 illustrates this with simple linear regression.
This improved the best R2 scores (see the Fit columns in Table 3)
to 0.68 for the mapping from CTRP to CCLE (same assay) and
0.41 going from CTRP to GDSC (different assays). Again, these
numbers only gave rough estimates based on partial data; they
nevertheless calibrated what we could expect from machine
learning models performing cross-study prediction.

So far we have shown that there is greater variability between
CTRP and GDSC than between CTRP and CCLE, but it’s unclear
whether this can be attributed to the difference in response
assay alone. Another difference in drug diversity between the
target studies is at play, with GDSC having far more drugs (249)

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/23/1/bbab356/6370300 by Argonne N

ational Library user on 21 June 2023



Cross-study analysis of drug response prediction 5

Table 3. Dose-independent response variability in identical cell–drug pairs across studies

Source
study

Target
study

Overlapping
cell–drug groups

R2 on AUCa R2 on AAC R2 on DSSb

Rawc Fitd Raw Fit Raw Fit

CTRP CCLE 2339 0.594 0.683 0.641 0.681 0.635 0.670
CTRP GDSC 17 259 0.302 0.409 0.019 0.197 0.006 0.194

aAUC is not a direct complement of AAC. They are defined on different concentration ranges: AUC for a fixed range ([10−10, 10−4]μM) and AAC for study-specific,
tested concentration ranges.b DSS is a normalized variation of AAC defined by Yadav et al. [50].c Raw R2 scores (explained variance) were derived by directly comparing
the corresponding drug response values, for a given metric, on the common experiments with cell-drug pairs shared by the two studies (see scatter plots in Figure 2).d

To account for study bias in experimental response measurement, linear regression was used to fit the response values on the same cell–drug pair between source
and target studies (see regression lines in Figure 2).

Figure 2. Estimating cross-study response variability based on overlapping experimental data. When the same combination of drug and cell line appears in multiple

studies, we can use the reported differences to estimate cross-study response variability. Here we map the AUC values from CTRP to CCLE (left) and CTRP (right) in

the scatter plots with linear regression fit. Orange dots represent experiments involving common drugs shared by CTRP, CCLE and GDSC, reducing sampling bias in

different studies. In both plots, R2 scores are reported separately for the overall fit and the subset with common drugs. Overall, there is greater agreement between

CTRP and CCLE (same assay) than between CTRP and GDSC (different assay).

than CCLE (24). To tease apart these two factors, we narrowed
down to a subset of seven drugs shared by all three studies:
Paclitaxel, Lapatinib, AZD0530, AZD6244, Nilotinib, Erlotinib and
Sorafenib. Scatter plots of response data points involving this
common drug set are highlighted in orange in Figure 2. Linear
regression fit on the subset resulted in slightly higher R2 scores:
0.69 between CTRP and CCLE and 0.44 between CTRP and GDSC,
both on the dose-independent AUC metric. Their unchanging
relationship suggests that the observed cross-study response
variability is more predominantly due to viability assay than
sampling difference.

This comparison between CellTiter Glo (CTRP, CCLE) and
Syto60 (GDSC) does not necessarily generalize to other pairs of
viability assays. NCI60 is another study that used a different
viability assay. When we swapped GDSC for NCI60 in the above
analysis, the overall R2 score from CTRP to NCI60 is 0.67, only
slightly lower than that to CCLE. The R2 score on the common
set among CTRP, NCI60 and CCLE is lower at 0.60, suggesting
that sampled drug diversity also plays a role in the estimate of
cross-study response variability.

Cross-study prediction of drug response

We applied machine learning models to predict dose response.
When evaluated in the context of a single data set, the prediction

performance is dependent on two general factors: the input
features and the model complexity. The models we reviewed
in the introduction section have offered wide-ranging config-
urations on these two factors. Most of these models, however,
stopped at evaluation by cross-validation within a single study.
Given the cross-study variability observed, such evaluation likely
overestimated the utility of drug response models for practical
scenarios involving more than one data sets.

To test how well models trained on one data set could gen-
eralize to another, we went beyond study boundaries and tested
all combinations of source and target sets. This introduced a 3rd
factor impacting model performance, i.e. the distribution shift
between the source and target data sets. To provide a rigorous
assessment of cross-study prediction performance, we applied
three machine learning models of increasing complexity. The
1st two, Random Forest [51] and LightGBM [52], were used as
baseline models. The 3rd one, designed in-house, represented
our best effort at a deep learning solution.

Baseline machine learning performance

The first baseline performance using Random Forest is shown in
Table 4. Each cell in the matrix represents a learning and evalua-
tion experiment involving a source study for training and a target
study for testing. The prediction accuracy for dose response was
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assessed using both R2 score and mean absolute error (MAE).
Again, the range for drug response values was unified across
studies to be from −100 to 100.

As expected, the diagonal cells have relatively high scores for
they represent cross validation done on the same data set. We
are more interested in the nondiagonal values because they are
less likely to be an artifact of overfitting. The nondiagonal cells of
the matrix are color coded as follows: green for R2 > 0.1, red for
R2 < −0.1 and yellow otherwise. As we mentioned in the data
setup, since each cross-study validation experiment involved
training multiple models and filling out a matrix of inference
results, we limited ourselves to a subset of drugs from NCI60.
For the remaining five studies, all cell lines and drugs were
included. As for input features, we used cell line gene expression
profiles, drug chemical descriptors and molecular fingerprints.
For details on feature processing, see the Methods section.

Random Forest models trained on CTRP, NCI60 and GDSC
achieved moderate cross-study prediction accuracy. CTRP-
trained models performed the best, scoring the highest cross-
study R2 of 0.45 when CCLE was used as the testing set. CCLE-
trained models had less generalization value and the ones
trained on gCSI did not generalize at all. This was not surprising
as gCSI had the smallest number of drugs and thus prone to
overfitting.

LightGBM is a gradient boosting version of tree-based learn-
ing algorithm and is generally considered superior to Random
Forest. Here, the LightGBM models outperformed Random Forest
for most of the cells (Table 5). However, in the Random Forest
matrix, the diagonal values were generally comparable to other
cells, suggesting there was little overfitting (with the exception
the gCSI row). In contrast, each diagonal cell in the LightGBM
matrix was better than other cells in their row or column.
This was consistent with the view that cross-validation within
a study was an easier task than cross-study generalization.
Overall, the average improvement in R2 for corresponding cells
between Random Forest and LightGBM models was 0.35 for the
diagonal values and 0.19 for the cross-study comparisons.

Deep learning performance

Deep learning models generally performed on par or slightly
better than LightGBM. We experimented with a variety of neural
network model architectures, and our best prediction accuracy
was achieved by a multitasking model that we called UnoMT.
Figure 4 shows an example configuration of the UnoMT model
where, in addition to the central task of predicting drug response,
the model also tried to perform a variety of auxiliary classifica-
tion and regression tasks (see Methods for details). These multi-
tasking options allowed the model to use additional labeled data
to improve its understanding of cell line and drug properties.

The best performance achieved by deep learning is shown
in Table 6 with three additional prediction tasks turned on: cell
line category (normal versus tumor), site and type. On average,
the cross-study R2 improved 0.11 over LightGBM models, and the
model did nearly perfectly on the additional tasks such as cancer
type prediction (not shown). On models trained on CCLE data,
deep learning offered the most pronounced improvement. While
the within-study R2 was nearly identical to that of LightGBM,
the models were able to, for the first time, generalize to NCI60,
CTRP and GDSC to a moderate degree. The improved cells in
Table 6 compared with both Tables 4 and 5 are highlighted in
bold. Stacking LightGBM and deep learning models resulted in
marginal improvement in cross-validation accuracy but did not
improve cross-study generalizability.

Predictive and predictable cell line data sets

Used as training sets, each of the five cell line studies was ranked
by how predictive they were of the remaining four cell line
studies. Used as testing sets, each of the five cell lines studies
were ranked by how predictable they were, using the other four
cell line studies as training sets. By multiple measures (average,
median and minimum R2), machine learning algorithms trained
on CTRP yield the most accurate predictions on the remaining
testing data sets. This ranking was consistent across the results
from all three machine learning models. By average and median
R2 on deep learning results, the gCSI data set was the most
predictable cell line dataset, and CCLE was a close second.

How model generalizability improves with more data

Experimental screening data are expensive to acquire. It is thus
critical to understand, from a machine learning perspective,
how additional cell line or drug data impact model generaliz-
ability. Data scaling within a single study have been previous
explored [53]. In our cross-study machine learning predictions,
we observed that the models with poor generalizability tended
to have been trained on a small number of drugs (CCLE and gCSI).
To study the relative importance of cell line versus drug diversity,
we conducted simulations on CTRP, the most predictive dataset
of the five. We varied the fraction of randomly selected cell lines
and kept all the drugs, and vice versa. The results are plotted in
Figure 3.

Models trained on a small fraction of cell lines but all
drugs could still quickly approach the full model performance,
whereas models trained on limited drug data suffered from low
accuracy and high uncertainty. In either case, it was far more
difficult to predict response in a target dataset using a different
viability assay (GDSC) than one with the same assay (CCLE).
Inferred upper bounds (dotted lines) were loosely extrapolated
from direct mapping results based on data intersection using
the best dose-independent metric from Table 3.

When the numbers of samples were fixed, the model perfor-
mance was not particularly sensitive to feature selection. Our
previous work showed that deep learning models could still train
well with a high dropout ratio of 0.45, suggesting redundancy
in both cell line and drug features [49]. Here we also performed
data-driven feature selection. Models trained with the top 1000
cell line features and top 1000 drug features, identified based on
feature importance scores on a 1st round of training with Light-
GBM, had no loss in generalizability. Models trained with the top
100 cell line features and top 100 drug features reached 90% peak
generalizability from CTRP to CCLE and 85% generalizability
from CTRP to GDSC.

Methods
Feature selection and processing

Drug response is modeled as a function of cell line features
and drug properties. We used three basic types of features in
this study: RNAseq gene expression profiles, drug descriptors
and drug fingerprints. Drug concentration information was
also needed for dose–response prediction. The gene expression
values were the batch-corrected RNA-seq measurements from
the NCI60, GDSC and CCLE. Because CTRP and gCSI data sets did
not provide RNA-seq data, these data sets were assigned gene
expression values from CCLE based on cell line name matching.
CCLE has molecular characterization data for more than 1000
cell lines [5], which cover the CTRP and gCSI cell line sets. Log

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/23/1/bbab356/6370300 by Argonne N

ational Library user on 21 June 2023



Cross-study analysis of drug response prediction 7

Table 4. Baseline cross-study validation results with Random Forest

Table 5. Baseline cross-study validation results with Random Forest

Table 6. Baseline cross-study validation results with Random Forest
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Figure 3. Impact of cell line or drug diversity on model generalizability. Models trained on partial CTRP data are tested on CCLE and GDSC. Shades indicate the SD of

the cross-study R2. (A). Models trained with all CTRP drugs and a fraction of cell lines. (B). Models trained with all CTRP cell lines and a fraction of drugs.

transformation was used to process FPKM-UQ normalized gene
expression profiles [54]. Batch correction was performed using a
simple linear transformation of the gene expression values such
that the per-dataset mean and variance was the same for all
data sets [49]. To reduce the training time, only the expression
values of the LINCS1000 (Library of Integrated Network-based
Cellular Signatures) landmark genes [55] were used as features.
Our previous work on systematic featurization [49] found no
superset of LINCS1000 (including the full set of over 17 000 genes
or known oncogene sets) that clearly outperformed LINCS1000.
Drug features included 3838 molecular descriptors and 1024
path fingerprints generated by the Dragon software package
(version 7.0) [56]. Drug features/fingerprints were computed
from 2D molecular structures downloaded from PubChem [57]
and protonated using OpenBabel [58].

Drug response metrics

Data-driven prediction for drug response is based on the hypoth-
esis that the interaction between tumor and drug treatment can

be modeled as a function of three factors: the cancer genomic
system, the compound chemical structure and the drug concen-
tration. When the 1st two factors are given, it is further assumed
that the rate-limiting step in the killing of cancer cells is the
binding of the drug to a target receptor in the cells.

Intuitively, a higher concentration x would lead to a larger
fraction of receptors bound to the drug molecules or a lower
fraction y of surviving cancer cells. At the same time, a fraction
E∞ of the cancer cells are not susceptible to the drug regardless
of the drug dose. This dose–response relationship can be worked
out based on thermodynamic equilibrium of the bound drug–
target complex, and we adopted the three-parameter Hill Slope
equation below used in PharmacoDB [44].

y(x) = E∞ + 1 − E∞

1 +
(

x
EC50

)HS (1)
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Figure 4. An example configuration of the multitasking drug response prediction network (UnoMT). The network predicts a number of cell line properties (tissue

category, tumor site, cancer type, gene expression autoencoder) as well as drug properties (target family, drug-likeness score) in addition to drug response.

EC50 is the drug dose at which half of the target receptors
are bound (half-maximal response). Both EC50 and E∞ depend
on cancer cell and drug properties. The Hill Slope coefficient HS
quantifies the degree of interaction between binding sites.

With this model, we consistently fit the dose–response data
from all the studies. Examples of the resulting dose–response
curves are shown in Figure 1. This enabled the derivation of
three dose-independent response metrics for comparing across
experiments that used different dose levels:

• AUC:for [10−10, 10−4]μM, a fixed dose range.
• AAC: for the measured dose range in a study (same defini-

tion in PharmacoDB).
• DSS:same to DSS1 in PharmacoDB.

DSS is similar to AAC but is potentially more robust as it tries
to calibrate the intended dose range of the drug. Specifically, it
aggregates the response over the range where the drug response
R exceeds an activity threshold Amin [50]:

DSS ∼
∫

R>Amin

R(x)dx (2)

Evaluation metrics

In this study, we chose two commonly used metrics to evaluate
the performance of machine learning models. MAE measures
the mean absolute difference between the observed responses yi

and the predicted responses ŷi. R2, also known as coefficient of
determination, measures the explained variance as a proportion
of the total variance.

MAE =
∑

i

|yi − ŷi| (3)

R2 = 1 −
∑

i (yi − ŷi)2∑
i (yi − y)2

(4)

R2 was additionally used to evaluate the response variability
levels within and across studies. This was done by examining
the observed response values on the overlapping drug and cell

line groups from different experimental replicates or studies.
For example, a high R2 score would suggest good agreement
among the multiple measurements and thus low variability in
experimental data.

Machine learning

Three different machine learning algorithms were evaluated in
this study: Random Forest, LightGBM and deep neural networks.
The cell line prediction error for all methods was assessed using
the MAE and Scikit-learn [59] definition of R2 value, which is
equal to the fractional improvement in mean squared error
(MSE) of the method compared with the MSE of the prediction
method that outputs the average response of the test set, inde-
pendent of dose, gene expression and drug features. In the diago-
nal cells in the matrices (Tables 4–6), mean values of 5-fold cross-
validation partitioned on cell lines are reported. For cross-study
analysis, the entire selected set of source study data were used
to train the model, and the nondiagonal cells report test metrics
on the whole-target data set. The Random Forest models were
trained using the default Scikit-learn implementation (version
0.22). The LightGBM models were trained using the Scikit-learn
implementation with the number of trees set to be proportional
to the number of drugs included in the training set.

Deep learning

The reported deep neural network is based on a unified model
architecture, termed Uno, for single and paired drug treatment.
This architecture was extended from a previously developed
neural network called ‘Combo’ [3] to simultaneously optimize
for feature encoding and response prediction. Cell line and drug
features first pass through their separate feature encoder sub-
networks before being concatenated with drug concentration
to predict dose response through a 2nd level of subnetwork.
In the multitasking configuration of the network (UnoMT), the
output layers of molecular and drug feature encoders are fur-
ther connected with additional subnetworks to predict auxiliary
properties. All subnetworks have residual connections between
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neighboring layers [60]. The multitasking targets include drug-
likeness score (QED [61]) and target family for drugs, and tissue
category (normal versus tumor), type, site and gene expression
profile reconstruction for molecular samples. Not all labels were
available for all samples. In particular, tissue category and site
applied only to the Cancer Genome Atlas (TCGA [62]) samples
but not the cell line studies. We included them, nonetheless,
to boost the model’s understanding of gene expression profiles
(data downloaded from the NCI’s Genomic Data Commons [63]).
The drug target information was obtained through ID mapping
and SMILES string search in ChEMBL [64], BindingDB [65] and
PubChem databases. The binding targets curated by these sites
were then mapped to the PANTHER gene ontology [66]. In total,
326 out of the 1801 combined compounds had known targets for
the exact SMILES match. A Python data generator was used to
join the cell line and drug features, the response value and other
labels on the fly. For multitasking learning, the multiple partially
labeled data collections were trained jointly in a round-robin
fashion for each target, similar to how generative adversarial
networks (GANs) [67] take turns to optimize loss functions for
generators and discriminators.

Discussion
In this study, we sought to understand the performance of drug
response prediction models in a broader context. We hypothe-
sized that the observed R2 score barrier of 0.8 [37] might partly be
a result of variability in drug response assay. Indeed, we found
that the measured dose–response values differed considerably
among replicates in a single study. In the case of GDSC, this
variability in terms of SD was more than 10% of the entire
drug response range. Practically, this meant that, if we used one
response value as prediction for another from the same cell–
drug–dose combination, we would only obtain an average R2 of
0.81. The cause for this variability is not well understood, but
experimental protocol likely plays a big role, as evidenced by the
lower variability observed among NCI60 replicates. Standardiza-
tion in experimental design will be key to maximizing the value
of screening data for joint learning.

When we moved beyond single studies to compare drug
response values across studies, the variability increased. This
phenomenon has been discussed by numerous previous studies
[39–42] from a statistical consistency perspective. In this study,
we approached it from a machine learning angle. Using the best
available integrative metrics, we compared dose-independent
response values across different studies. We arrived at rough
upper bounds for how well models trained on one data source
could be expected to perform in another. These numbers
depended on whether the source and target studies used the
same cell viability assay. In the case of identical assay, the R2

ceiling was estimated to be 0.65 between CTRP and CCLE. In the
case of different assays, it was markedly lower, at 0.31, between
CTRP and GDSC.

These estimates put the recent progress in machine learning-
based drug response prediction into perspective. We suggest
that cross-study evaluation be used as an additional tool for
benchmarking model performance; without it, it’s difficult to
know how much of the model improvement is generalizable.
We illustrated this point with systematic characterization of
cross-study performance using three different machine learning
approaches. For example, going from a simple Random Forest
model to LightGBM trained on CTRP, accuracy improved over
220% judging by cross validation R2. However, the improvement
on model generalization to CCLE was only 24%. In some cases,

extrapolation error actually increased as within-study perfor-
mance improved. For an opposite example, the deep learning
models made only marginal improvement over LightGBM in
within-study performance, but the cross-study improvement,
averaged 0.11 in R2, was much more appreciable. This may be
somewhat counterintuitive since neural networks are known to
be overparameterized and prone to overfitting. However, as we
have demonstrated with a multitasking model, the high capacity
of deep learning models could be put to work with additional
labeled data in auxiliary tasks.

Drug screening experiments are costly. How should we pri-
oritize the acquisition of new data? A recent study showed
with leave-one-out experiments that drug response models had
much higher error when extrapolating to new drugs than new
cell lines [25]. This is consistent with our finding. The models
that did not generalize well tended to have been trained on
data sets with fewer drugs (CCLE and gCSI). Further, when we
withheld samples from training drug response models, we found
that the loss of drug data was significantly more crippling than
that of cell lines.

In addition to increasing the number of screened drugs, a
careful selection based on mechanistic understanding or early
experimental data may also help. As we have seen in 4, 5, 6,
models trained on CTRP generalize well and this was not limited
to studies with the same viability assay. A good example is
the NCI60 column: as the target study, NCI60 used a different
viability assay from both CTRP and GDSC, yet CTRP’s prediction
accuracy was notably higher than GDSC’s. This may have to
do with CTRP’s design of an Informer Set of 481 compounds
that target over 250 diverse proteins, covering a wide range of
cell processes linked to cancer cell line growth [8]. Some probe
molecules had no known protein targets but were selected for
their ability to elicit distinct changes in gene expression profiles.

Taken together, this suggests that it would be beneficial for
future screening studies to prioritize drug diversity. Given the
vast design space of potentially active chemical compounds,
estimated to be in the order of 1060 [68], intelligent methods that
can reason about molecule classes are needed.

Conclusion
Precision oncology requires precision data. In this article, we
reviewed five cancer cell line screening data sets, with a focus
on drug response variabilities within and across studies. We
demonstrated that these variabilities put constraints on the
performance of machine learning models, in a way not obvious
to traditional cross-validation within a single study. Through
systematic analysis, we compared how models trained on one
data set extrapolated to another, revealing a wide range in pre-
dictive power of both study data and machine learning methods.
While deep learning results are promising, future success of
drug response prediction will rely on the improvement of model
generalizability. Experimental standardization and prioritization
in drug diversity will also be key to maximizing the value of
screening data for integrative learning.

Data availability
The integrated data files from this study are available in the
Predictive Oncology Model & Data Clearinghouse hosted at the
National Cancer Institute (https://modac.cancer.gov/assetDetai
ls?dme_data_id=NCI-DME-MS01-8088592).
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Key Points
• Cross-validation in a single study overestimates the

accuracy of drug response prediction models, and dif-
ferences in response assay can limit model generaliz-
ability across studies.

• Different machine learning models have varying per-
formance in cross-study generalization, but they gen-
erally agree that models trained on CTRP are the most
predictive and gCSI is the most predictable.

• Based on simulated experiments, drug diversity, more
than tumor diversity, is crucial for raising model gen-
eralizability in preclinical screening.
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