Probing Decision Boundaries in Cancer Data Using
Noise Injection and Counterfactual Analysis

Rajeev Jain*, Ashka Shah¥, Jamaludin Mohd-Yusof?, Justin M. Wozniak?, Thomas S. Brettin®, Fangfang Xia$,
Rick L. Stevens®
* Mathematics and Computer Science, Argonne National Laboratory, Lemont, IL, USA
t Computer, Computational and Statistical Sciences, Los Alamos National Laboratory, Los Alamos, NM, USA
1 Data Science and Learning, Argonne National Laboratory, Lemont, IL, USA
§ Computing, Environment, and Life Sciences, Argonne National Laboratory, Lemont, IL, USA
9 Department of Computer Science, University of Chicago, Chicago, IL, USA

I. OVERVIEW

Advanced analyses and computations based on gene ex-
pressions are prone to errors as they depend on experimental
design, chemical operations/measurements and data analysis.
The assembly and aggregation of such data for creating deep
neural network models may further influence the accuracy of
these analyses. For example, the CANDLE [1] NT3 Bench-
mark uses a table of laboratory-obtained data mapping RNA
expression data to a normal or tumor designation, and is used
to make predictions about given expression samples. In this
work, we use the NT3 Benchmark to study the effects of
injecting bad data at different rates to study the impacts on the
resulting predictions. Our data manipulations include flipping
classification labels (label noise) and introducing noise in gene
expressions (feature noise).

The introduction of either correlated or uncorrelated label
noise results in increased validation loss and reduced valida-
tion accuracy in the base model. When a random Gaussian
noise with varying standard deviation to gene expressions for
all the samples we see validation accuracy declines sharply
indicating a poor fit compared to model with the original data.
We introduce an abstaining [2] version of the model, which
adds an extra abstention class, allowing the model to abstain
when it is not confident of the prediction. This model retains
accuracy while abstaining on progressively higher fractions of
the data as more noise is injected. To identify which features
might be the most susceptible to noise, we perform analysis
with counterfactual examples which selects a subset of x
indices out of the original 60,483 feature set. We find that
using this method as a form of feature attribution identifies
genes that are correlated well with several cancer types in the
existing literature.

The contributions of this work include 1) a methodology
to study model performance on incremental noise injection
to input data and, 2) use of abstention classifiers to combat
noisy data in the NT3 dataset, 3) a technique to highlight the
decision boundary of the NT3 model and identify key genes
for cancer research with counterfactual analysis.

II. BACKGROUND

The NT3 benchmark attempts to separate tumor tissue from
normal tissue using gene-expression-level sample signatures.

The associated deep neural network (DNN) has an input layer
for RNA sequence gene expression. It is a 1D convolutional
network for classifying RNA-seq gene expression profiles into
normal or tumor tissue categories.

The model is trained/tested on the matched normal-tumor
gene expression profile pairs available from the NCI genomic
data commons [3] respectively. The full set of expression fea-
tures contains 60,483 float columns transformed from RNA-
seq FPKM-UQ [4] values. Before our modifications, this
model achieved around 98% classification accuracy. It is also
useful for studying the difference and transformation of latent
representation between normal and tumor tissues. The model
also acts as a quality control check for synthetically generated
gene expression profiles. Many researchers have focused on
the detectability of some differentially expressed genes in
RNA-seq expression results [5]. In a recent study [6] match
lung cancer patients to appropriate treatments. They use DNN
with RNA-seq dataset and “put the burden of learning non-
invertible aspects of noise due to the measurement process
on the neural network model.” They also discuss the ability
of their model to learn and make useful prediction despite
non-random noise. In this work, we focus on studying and
developing a framework for measuring the impacts of varying
degrees of training data errors on the accuracy of the model.

The training data is a simple data table (in CSV format) of
RNA expression values (floats). The prediction target, normal
or tumor tissue, was encoded using an integer value of 0 or
1. The number of RNA values is 60,483 and the number of
training samples was 1120, with 280 samples reserved for
validation.

III. BASIC NOISE INJECTION

This study provides an insight into the amount of error in
the training data (RNA sequence expressions) that is allowable
without any significant loss of accuracy of the model.

A. Experiment configuration

The benchmark runs in this paper used the CANDLE
hyperparameters [7] shown in Table I.

The error analysis during training was configured as follows.
The NT3 output float probability (p) is compared against the

Network architecture Training limits

conv [(64, 20, 1), (64, 10, 1)] epochs 100
pool [1, 10] timeout 3600.0
dense [200, 20] Noise injection

classes 2 noise_add true
out_act ‘softmax’ noise_gaussian false
activation ‘relu’ noise_level 0.2
Training settings noise_correlated | true
optimizer ‘sgd’ noise_labels 0.2
loss ‘categorical_crossentropy’ feature_threshold | 0.01
metrics ‘accuracy’ feature_col 11180
batch_size 16

learning_rate 0.002

drop 0.0

TABLE I
HYPERPARAMETERS USED FOR NT3 BENCHMARK IN THIS PAPER.

ground truth Boolean normal/tumor value and assigned a loss
value using categorical cross-entropy.

k
Estandard = - Z t; 108;]91 (1)
i=1
where t; is the target for the current sample, and p; is the
probability of i-th class. In our simple system, this is simply
log(|true_value — p|) for each row, and the row errors are
summed over the whole validation set. This method is noted
for its accommodation of imperfect predictions, while highly
penalizing predictions that are far from the ground truth.

B. Resulting accuracy under noise

We introduce noise into the data in two ways, on the
labels and on the features. For the labels, we consider both
uncorrelated and correlated noise, set by noise_correlated .
For uncorrelated noise, we randomly flip the normal/tumor
labels on a fraction of the samples corresponding to the
noise_level. In correlated label noise, we perform the same
type of label flips, but only on samples where the expression on
a certain gene (set by feature_col) is above a certain threshold
(feature_threshold), so that the prevalence of noisy labels is
correlated with the expression of that gene.

For correlated label noise, there are some factors to consider.
The first is the number of samples in which the gene is
expressed; if the gene is rarely above the threshold, then the
total number of sample eligible for noise injection is small,
and the effective noise added will likewise be small. Second,
we must consider whether the gene is itself correlated with the
normal/tumor label value; if not, then injection of label noise
correlated with that gene is unlikely to confuse the training
process. In this study we choose to inject correlated label noise
on a feature which is highly correlated with the labels and
sufficiently prevalent in the samples.

For feature noise, we again consider two types of noise
injection: increasing the feature values by a fixed percentage,
and introducing Gaussian random noise across the features.

Figure 1 shows the performance of the base model in the
presence of correlated and uncorrelated label noise in the
training set. In both cases, the training accuracy reaches a
minimum at 50% noise but then increases for higher noise
rates. The performance on the validation set (indicative of
the models ability to correctly classify new data) degrades

== Corr Val Acc == Uncorr Val Acc Corr Acc == Uncorr Acc

0.75

0.50

0.25

0.00
0.00 0.25 0.50 0.75 1.00

Label Noise Fraction

Fig. 1. Performance of the base network on correlated and uncorrelated label
noise

significantly above this threshold, as the training is essentially
learning the incorrect pattern. We therefore choose to use an
abstaining classifier, introduced below, which can recognize
the presence of unreliable training data and abstain from
classifying rather than making unreliable predictions.

C. Gaussian feature noise injection with Abstention

For analysis of sensitivity of RNA-sequence to DNN mod-
els, a simple Gaussian noise [8] is added to all the 60,483
normalized RNA sequence gene expression. Standard devia-
tion of noise is increased from O to 0.5 with a step of 0.025 and
a mean set to 0. The minimum and maximum values of gene
sequence expression in the original training data are 0 and 1
respectively. The results in Figure 2 show that the model is
able to achieve validation accuracy and validation loss values
similar to no-noise with a noise of 0.1 (standard deviation or
scale) value. After standard deviation of 0.1 the performance
deteriorates rapidly causing validation accuracy to decrease
and validation loss to increase.

A deep abstaining classifier [2], or DAC, introduced first
for combating label noise, adds an extra class, the abstention
class, to the original DNN and uses a custom loss function
that permits abstention during training. This allows the DAC
to abstain on (or decline to classify) confusing samples while
continuing to learn and improve classification performance on
the non-abstained samples. The custom loss function for an
abstaining classifier is a modified version of the standard cross-
entropy and given by,

1 = prs1

2
where py1 is the probability of the abstention class and « is
the penalty term for abstention.

In Figure 2 we compare the performance of the base
and abstention models. Although the base model is able to
retain good accuracy on the validation set, the abstention
model nevertheless improves on this performance, while again
abstaining on a fraction of the data approximately twice that
of the naive estimate. This is consistent with the notion that

k
P
L(zj) = (1= pr+1)(— tilog ———) + alog
! i ; L = pr41

with only two classes, the base model can perform better by
a factor of two due to “lucky guesses.”

== Base Val Acc == Val Abs

o7s ”\J_\’\/\ /7<

0.50

Abs Val Acc

0.25

0.00
0.0 0.1 0.2 0.3 0.4 0.5

Gaussian Noise Level

Fig. 2. Comparison of validation accuracy and abstention with the base model
in the presence of Gaussian feature noise.

IV. FEATURE ATTRIBUTION WITH COUNTERFACTUAL
EXAMPLES

While the previous results indicate the vulnerability of
models subject to noisy data and the efficacy of an abstention
model to combat noise, they fail to address the issue of how
meaningful the noise injection is on the gene expression data.
Especially in the 60k dimensional space, its unclear what it
means to inject Gaussian noise across all features. Doing this
does not illuminate which genes are most susceptible to noise
or the model’s decision boundary is weak — both of which
would help quantify the error bounds for the NT3 model and
dataset. To address this, we incorporate counterfactual example
generation.

Counterfactual examples are an example-based inter-
pretability technique used by the explainable AI community.
The technique aims to mirror human counterfactual reasoning
by finding a minimal subset of changes to an input example
so that a machine learning model classifies the input into a
different class [9]. The input representation can be text, tabular
or image, and the computation of the counterfactual is simply
an optimization problem — we want to minimize the distance
between the generated example and the original original input,
but maximize the misclassification error.

L(X'|X) = (fi(X') = p1)* + AL (X', X) 3)

Where X is the original input, X’ is the generated counterfac-
tual, ¢ is the desired class for X', f; is the model prediction
on class ¢, p; is the target probability of the desired class, and
L, is the distance function. A is a hyperparameter that tunes
the contribution of the two competing terms[10].
Counterfactual examples can highlight decision boundaries
and provide a picture of which inputs are sensitive to particular
“perturbation vectors” (the difference between the generated
example and the original input). From the perturbation vectors,
we select features that surpass a certain threshold and label
these genes as important for classification since they require
a large change in the original value to flip the class for the
counterfactual. We use this technique as a rough version of

feature attribution that suits our use case. We note that many
existing feature attribution techniques exist for neural networks
that rank or provide a quantitative estimate for the importance
of features in a model. This includes LIME, Shapley Values,
Leave One Out, as well as others. However, for our purposes
we are only interested in identifying a set of of important
genes rather than the effect of each gene. Because our feature
space is 60k dimensions, we opt for a simpler technique that
runs more efficiently since it is simply an optimization of an
objective function.

original input: 0 [[9.993843e-01 6.157171e-04]]
counterfactual: 1 [[0.18591303 0.814087]

original input: 1 [[0.16047956 0.8395205 1]
counterfactual: 0 [[0.81750506 0.18249498])

TP

nnnnn 20600 0000 w0000 0000 0000

Feature Index

Fig. 3. Two examples of input samples, counterfactuals and perturbation
vectors. Perturbation vectors (green) tend to be relatively uniform low random
noise or sparse.

We generate counterfactual examples for each sample in
the NT3 dataset using the Alibi Explain Python library [10].
We set p; = 0.9 and A = 0.1. An example of the generated
perturbation is shown in Figure 3. Due to the sparsity of the
perturbation, we hypothesize that the features correlated to
spikes in the perturbation vector may have some biological
meaning related to the sample’s cancer type.

A. Experiment Configuration

Perturbation vectors were separated by class and clustered
into groups using KMeans clustering with sklearn. The input
samples corresponding to the two largest clusters became the
targets for the noise injection. We used the centroid of each
cluster as a representation of all perturbation vectors in the
cluster, so that genes that have large spikes in the centroid are
likely to have large spikes in most of the perturbation vectors
in the cluster (Figure 5). For each centroid, we select genes
that surpass ¢ * the maximum magnitude in the vector, where ¢
is a threshold fraction we varied from 0.5 to 0.9. For the two
largest clusters, the fraction of targeted samples was varied
from 10% to 90% of the whole cluster. Noise was injected by
simply adding the indices of perturbation vector that exceeded
the threshold to the corresponding sample. The label is kept
the same for these targeted samples. We see that for a trained
NT3 model without abstention, this does in fact lead to steeper
degradation of accuracy compared a random set of 20 indices
with Gaussian noise injection (Figure 4). Finally, we note that
these genes also correspond to important markers for cancer
in literature.

Model accuracy with counterfactual noise injection for class 0, cluster 1

104

0.8 1

0.7

0.6

Accuracy

0.5 1

0.4
—8— accuracy
0.3 4 cluster accuracy
—8— accuracy with Gaussian noise
0.2 { —®— cluster accuracy with Gaussian noise
T

T T T T T T T T
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Noise fraction in cluster

Fig. 4. Accuracy and cluster accuracy as a function of fraction of injected
noise for counterfactual class O, cluster 1. The threshold for the perturbation
vector was set to 0.5, which resulted in 20 filtered indices. Random Gaussian
noise is injected in 20 random indices for comparison.

Perturbation Vectors for counterfactual class 1, cluster 1

semple 8

|
WMH [T T

Feature index

Fig. 5. Examples of perturbation vectors in cluster O for counterfactual class
0. Plotted with the centroid in orange, this shows consistency in spikes for the
centroid and each perturbation vector. The red highlighted index corresponds
to PLOD?2.

B. Interpretability of Perturbation Vectors

The decision boundary of all the RNA expression data at
which a sample changes from having tumor to not having
tumor is identified by each of the perturbation vectors. Here,
we try to find out some overexpressed RNA protein identified
in clusters described in Section IV-A. With a threshold value of
75%, several gene symbols were identified as overexpressed —
ten are listed in Table II. The PLOD?2 gene, found in multiple
clusters is one major cancer identifiable gene, that is recently
confirmed to be an unfavorable prognostic marker in renal,
liver, lung, cervical and stomach cancer. PLOD?2 is considered
to be the highway of cancer cell-migration as per a 2017
article: [11]. LRTM1, RGSS5, TP53113, MANIBI, TRRAP and
TP53113 have been found overexpressed and linked to studies

Symbol Ensmbl Cancer Symbol Ensmbl Cancer

PLOD2 ENSG00000152952 | Multiple GP9 ENSG00000169704 | Multiple

LRTMI ENSG00000144771 | Urothelial TRRAP ENSG00000196367 | Ovarian

RGS5 ENSG00000232995 | Lung ZNF736P11Y | ENSG00000215537 | Unknown

TP53113 ENSG00000167543 | Renal SYN3-AS1 ENSG00000236054 | Unknown

MANIBI | ENSG00000177239 | Bladder TP53113 ENSG00000167543 | Bone
TABLE II

OVEREXPRESSED GENES USING A THRESHOLD OF 75% OF MAXIMUM
AMONG ALL CLUSTERS DETAILED IN SECTION IV-A

of urothelial, lung, renal, bladder, ovarian and bone cancer
respectively. The TP53113 gene inhibits tumor cell growth
when overexpressed.

V. DISCUSSION

The notion of counterfactuals allows us to identify the
minimal set of perturbations guaranteed to result in the mi-
gration of a sample across the local decision boundary of a
trained classifier. Due to the relative sparsity of points (~ 1k
points in a ~ 60k dimensional space) it is difficult for such
noise to affect training, since the resulting points can often be
accommodated by a new decision boundary. That is, the same
perturbation that will result in an incorrect prediction with a
trained classifier will not result in an observable reduction in
performance during training. Nevertheless, the correspondence
between the genes which appear in the counterfactuals and
those known to be significant in cancer supports the notion
that the classifier is indeed discovering a relevant manifold
within the high-dimensional space.

In contrast to perturbations on the data, perturbations on the
labels are essentially guaranteed to generate interspersed data
points, leading to blurring of the decision boundary and, in the
case of the DAC, high abstention in the intermediate ranges
of noise injection. In this case the abstaining classifier can be
an indicator of poor label quality by flagging sets of samples
for abstention rather than erroneously classifying them.

VI. SUMMARY

We presented results for the performance of both the base
NT3 Benchmark and with the addition of the abstention class
in the presence of various types of injected noise. For higher
noise levels, the ability of the base network to correctly predict
the normal/tumor classification (as measured by the validation
accuracy) degrades significantly. Use of the abstaining classi-
fier allows the model to learn when the labels have become
unreliable and abstain from providing a prediction in that case.
Such noise analysis studies would help set error tolerance for
actual experimental measurement of RNA-seq gene expression
profiles. We used counterfactual examples to understand the
decision boundaries “from normal to tumor” and did further
analysis to identify specific overexpressed genes. We showed
that some of the genes identified by counterfactual analysis
are known to correlate with various types of cancer, supporting
the validity of the trained models, and believe that other genes
found here might serve as a good starting point and even lead
to new discoveries in the area cancer research.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

REFERENCES

J. M. Wozniak, R. Jain, P. Balaprakash, J. Ozik, N. Collier, J. Bauer,
F. Xia, T. Brettin, R. Stevens, J. Mohd-Yusof, C. G. Cardona,
B. V. Essen, and M. Baughman, “CANDLE/Supervisor: A workflow
framework for machine learning applied to cancer research,” BMC
Bioinformatics, vol. 19, no. 18, p. 491, 2018. [Online]. Available:
https://doi.org/10.1186/s12859-018-2508-4

S. Thulasidasan, T. Bhattacharya, J. Bilmes, G. Chennupati, and
J. Mohd-Yusof, “Combating label noise in deep learning using absten-
tion,” in Proceedings of the 36-th International Conference on Machine
Learning, 2019.

“NCI web site,” https://gdc.cancer.gov/.

“GDC Documentation HTSeq-FPKM-UQ web site,”
https://docs.gdc.cancer.gov/Encyclopedia/pages/HTSeq-FPKM-UQ/.

L. Wang, Y. Xi, S. Sung, and H. Qiao, “RNA-seq assistant: machine
learning based methods to identify more transcriptional regulated genes,”
BMC Genomics, vol. 19, 2018.

K. Wnuk, J. Sudol, K. B. Givechian, P. Soon-Shiong,
S. Rabizadeh, C. Szeto, and C. Vaske, “Deep learning with
implicit handling of tissue-specific phenomena predicts tumor dna
accessibility and immune activity,” bioRxiv, 2019. [Online]. Available:
https://www.biorxiv.org/content/early/2019/04/18/229385

“Candle pilot]l nt3 hyperparameters.”
“Numpy Documentation
https://numpy.org/doc/stable/reference
dom/generated/numpy.random.normal.html.
A. Van Looveren and J. Klaise, “Interpretable counterfactual explana-
tions guided by prototypes,” arXiv preprint arXiv:1907.02584, 2019.

J. Klaise, A. V. Looveren, G. Vacanti, and A. Coca, “Alibi explain:
Algorithms for explaining machine learning models,” Journal of
Machine Learning Research, vol. 22, no. 181, pp. 1-7, 2021. [Online].
Available: http://jmlr.org/papers/v22/21-0017.html

web site,”

/ran-

H. Du, M. Pang, X. Hou, S. Yuan, and L. Sun,
“Plod2 in cancer research,” Biomedicine & Pharmacother-
apy, vol. 90, pp. 670-676, 2017. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0753332217310636

VII. ACKNOWLEDGMENTS

This material is based upon work supported by the U.S. De-
partment of Energy, Office of Science, under contract number
DE-AC02-06CH11357. This research was supported by the
Exascale Computing Project (17-SC-20-SC), a collaborative
effort of the U.S. Department of Energy Office of Science
and the National Nuclear Security Administration.

This research used resources of the Oak Ridge Leadership
Computing Facility, which is a DOE Office of Science User
Facility supported under Contract DE-AC05-000R22725. This
research was supported by the Exascale Computing Project
(17-SC-20-SC), a collaborative effort of the U.S. Department
of Energy Office of Science and the National Nuclear Security
Administration.

(The following paragraph will be removed from the final
version.)

This manuscript was created by UChicago Argonne, LLC, Op-
erator of Argonne National Laboratory (“Argonne”). Argonne,
a U.S. Department of Energy Office of Science laboratory,
is operated under Contract DE-AC02-06CH11357. The U.S.
Government retains for itself, and others acting on its behalf,
a paid-up nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, distribute copies
to the public, and perform publicly and display publicly, by
or on behalf of the Government.

