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Abstract— Agent-based models (ABMs) integrate multiple 

scales of behavior and data to produce higher-order dynamic 
phenomena and are increasingly used in the study of cancer. 
However, the complexity of ABMs provides numerous challenges 
to their effective use, mostly related to the relatively high 
computational cost in carrying out the simulation experiments by 
which ABMs are developed, calibrated and used. High-
performance computing (HPC) platforms can address some of 
these computational constraints. We have developed a framework, 
called Extreme-scale Model Exploration with Swift/T (EMEWS), 
that can leverage the computing capabilities of HPC parallel 
architectures by integrating model exploration (ME) modules 
such as machine learning and evolutionary computing methods to 
augment the performance of large-scale simulation experiments. 
EMEWS can be used to aid in the calibration, parameter 
estimation and model exploration of any simulation-model. Herein 
we provide a use case examining the factors and patterns of 
mutational events of oncogenesis in population level simulations of 
a mechanism-based ABM of colorectal cancer (CRC).  
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I. ADAPTIVE MODEL EXPLORATION FOR ABMS 
Agent-based modeling is an object-oriented, discrete-event, 

rule-based, spatially-explicit, stochastic modeling method that 
maps well to biology [1]–[3]. However, the use of agent-based 
models (ABMs) has several challenges [2]–[4]. The current 
development and use of ABMs typically requires the execution 
of many model runs to account for stochastic variation in model 
outputs as well as to explore the possible range of model 
outcomes under alternative parameter settings and experimental 
conditions [2]. The need for adapting such model exploration 
(ME) over time comes up in several situations: design of 
simulation experiments [5], [6], simulation exploration of model 
parameter space either locally or globally, and for simulation 
optimization in which the goal is to find a set of parameter values 
that maximize an objective or achieve satisfactory levels [7]. 
Adaptive ME is made more complex by the stochastic nature of 
the underlying simulations [8]. Currently, the “adaptive” aspect 
of exploring parameter/behavior space is done manually, with 
researchers updating how parameter sets are to be modified for 
the next set of batch runs. This process is a mainstay in the use 
of ABMs, but in practice this approach is only able to sample a 
small fraction of the model’s total parameter space (that subset 
pre-selected by the user). From a practical standpoint 

simulations are generally aimed at finding at least one subset of 
parameter space that will allow sufficient calibration and 
“validation” of the underlying ABM. In such cases there should 
not be a presupposition of the uniqueness of such a solution, and 
it should be recognized that there may be additional, more robust 
or “interesting” regions of parameter space that are not being 
characterized. The limitations of this approach are accentuated 
with increasingly large and complex ABMs; practical and 
computational constraints invariably result in smaller and more 
limited sampling of the range of potentially rich behaviors from 
such ABMs. 

     In order increase the potential benefits from agent-based 
modeling, we have created the Extreme-scale Model 
Exploration with Swift/T (EMEWS) framework [9] EMEWS, 
which is built on Swift/T [10] offers the capability to run very 
large, highly concurrent ensembles of simulations of varying 
types while supporting a wide class of ME algorithms, including 
those increasingly available to the community via Python and R 
libraries. Furthermore, it offers a software sustainability 
solution, in that ME studies based around EMEWS can easily be 
compared and distributed. A central EMEWS design goal is to 
ease software integration while providing scalability to the 
largest scale (petascale plus) supercomputers, running millions 
of ABMs, thousands at a time. Initial scaling studies of EMEWS 
have shown robust scalability [11]. The tools are also easy to 
install and run on an ordinary laptop, requiring only an MPI 
(Message Passing Interface) implementation, which can be 
easily obtained from common OS package repositories. As a 
demonstration of its potential utility we are using EMEWS to 
examine the dynamic patterns of mutational events in an ABM 
of oncogenesis of colorectal cancer that can generate incidences 
of cancer that match epidemiological data from the SEER cancer 
database. 

II. ONCOGENESIS: MECHANISMS TO POPULATIONS 
We assert that cancers as generated from baseline tissue 

dynamics when mutational events lead to dysfunction of normal 
cellular processes, and that the development of cancers is an 
extremely rare event over the sum total of cellular divisions in 
an organ/tissue over the lifetime of an individual. We have 
developed cell-level ABMs that generate dynamically stable 
baseline tissue behavior, where cellular functions/agent rules are 
governed by the presence of a corresponding intact “gene” 
within an array that abstractly represents the genome of the cell.  



Cells are exposed to a stochastic but bounded degree of DNA 
damage per time step, which the cell can repair at a certain rate 
assuming intact genes governing those functions. Simulations 
are run over decades of simulated time; genetic damage 
accumulates over time, leading to loss of functions, which 
eventually result in the development of cells that display the 
Hallmarks of Cancer [12]. Since each instance of the ABM 
represents an individual person, this approach is able to link 
cellular-genetic events/functions to individual patient 
trajectories to population scale data. We have applied this 
modeling approach to discover new genetic drivers of breast 
cancer oncogenesis [13], the transition from premalignant 
lesions to breast cancer [14], the selective fitness hierarchies 
involved in oncogenesis and inflammation [15] and the 
differences between sporadic CRC and CRC arising from 
inflammatory bowel disease [16], [17]. This latter work involves 
the gastrointestinal oncogenesis agent-based model (GIOABM). 
The GIOABM incorporates “genes” that govern functions 
critical for normal tissue dynamics that are also implicated in the 
development of colorectal cancer (APC, Beta-catenin, PIK3CA, 
DCC, E-cadherin, K-Ras, TGF-beta, p53, telomerase, C-src, 
SMAD4, and BRAF) grouped by general function to reflect 
those biologic behaviors regulated by each gene: dysregulated 
proliferation, increased DNA damage or decreased DNA repair, 
failure of apoptosis, and uninhibited motility. The GIOABM 
generated tumors in both the wild-type population and colitis 
population that matched known epidemiologic rates retrieved 
from the SEER database and extrapolated from existing 
epidemiologic studies on ulcerative colitis patients, respectively 
(Figure 1).  

 
Figure 1: GIOABM matching of SEER incidences of sporadic CRC and 
extrapolated incidences of inflammatory bowel disease related CRC. 

However, in order to generate cancer rates matching those 
seen in reality it was necessary to change the baseline DNA 
repair capacity over time. While this is expected, as it is well 
known (though poorly understood) that the human body’s ability 
to repair DNA damage diminishes with age, it represented an 
artificial fitting parameter within the GIOABM.  Therefore, the 
GIOABM was modified to explore patterns and network 
topologies of genetic events governing impaired DNA repair 
capacity that could generate output matching SEER data.  

III. GIOABM EXPLORATION WITH EMEWS 
The synthetic genome of the GIOABM was modified to 

posit up to 10% of the genome as being able to adversely affect 
the ability of cells to repair DNA damage, and further posited an 
additional two hierarchies of controlling genes “upstream” to the 
effector genes. Search across the various perturbations of this 
network structure represented a computationally intensive task, 

and therefore we employed an adaptive model exploration 
algorithm,  using the Python DEAP [18] evolutionary algorithm 
(EA) library, within the EMEWS framework to increase the 
efficiency of the search. Here we describe results from our 
scaling performance runs. 

 
Figure 2: Scaling study results for EMEWS GIOABM calibration workflow on 
IBM Blue Gene/Q. 

Performance results: The EMEWS framework was 
configured to fit model outputs with ulcerative colitis rates from 
the SEER database.  The workflow was deployed on the IBM 
Blue Gene/Q Mira at the Argonne Leadership Computing 
Facility at Argonne National Laboratory.  Results are shown in 
Figure 2.  For each increasing core count (a power of 2, minus 2 
EMEWS control cores), we increased the problem size (a 
product of candidate parameter combinations and number of 
stochastic variations) to make use of the increased processing 
concurrency. For each problem size, some total number N of 
simulation tasks were generated and completed by EMEWS, 
which terminated after some number of seconds T.  The reported 
task rate is N/T.  For core counts 14 - 16,382, the number of 
iterations within the model exploration algorithm was 4, 
sufficient for benchmarking.  For core count 65,534, our 
capstone run, we ran 100 iterations, a plausible number for 
producing a convergent result. The capstone case ran 6,024,000 
simulations in just under 22 minutes for a task rate of 4,570 
simulations/second. 

IV. FUTURE WORK 
Based on the robust performance results, we are currently 

tuning the DEAP-based EA algorithm to find solution 
convergence in the GIOABM parameter space. We will 
calibrate the model across the different SEER time points to 
determine whether the additional network topologies and 
hierarchical structure introduced into the GIOABM is sufficient 
to generate the characteristic SEER curves. In addition, we will 
compare the EA approach with other ME algorithms to better 
understand the statistical properties of and computational 
requirements for exploring large-scale mechanism-based ABMs 
of biological systems. 
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