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Abstract

A growing disparity between supercomputer computation speeds and I/O rates means that it is rapidly becoming infeasible to
analyze supercomputer application output only after that output has been written to a file system. Instead, data-generating
applications must run concurrently with data reduction and/or analysis operations, with which they exchange information via
high-speed methods such as interprocess communications. The resulting parallel computing motif, online data analysis and
reduction (ODAR), has important implications for both application and HPC systems design. Here we introduce the ODAR
motif and its co-design concerns, describe a co-design process for identifying and addressing those concerns, present tools that
assist in the co-design process, and present case studies to illustrate the use of the process and tools in practical settings.
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I. Introduction

Computer architect Gene Amdahl argued in 1965 that a
balanced computer should support one bit of I/O per second
for each instruction per second (Gray and Shenoy 2000),
which for an exascale computer (one sustaining 10'® op-
erations per second), would mean 10'7 bytes per second
(B/s). While applications have changed a great deal since
1965, the fact that exascale computers will support I/O rates
of little more than 10'° B/s is striking. This large disparity
between compute and I/O speeds—a disparity that has
grown substantially over the past decade—makes it in-
creasingly infeasible for programs to output large quantities
of computed data for later analysis. Either analyses must be
performed online (i.e., while the application is running) or
data reduction computations must be performed, again
online, to downscale the data written to disk. The result is a
new parallel program structure, or motif (Asanovic et al.,
2000), online data analysis and reduction (ODAR).

The ODAR motif has broad implications for both high-
performance computing (HPC) applications and HPC
systems. Application developers must carefully balance the
costs and information content that results when data are
produced via different methods. High-performance com-
puting system architects need to consider ODAR concerns
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when designing and configuring programming models, li-
braries, runtime systems, and storage systems. Understanding
and addressing these concerns require a co-design process so
that different aspects of application and system design can be
considered and optimized simultaneously. In response, the
co-design center for Online Data Analysis and Reduction
(CODAR) (Foster et al., 2017), part of the US Department of
Energy’s Exascale Computing Project (ECP), has worked
closely with ECP applications (Alexander et al., 2020a) and
technology projects on ODAR co-design questions.

In the sections that follow, we (1) introduce the ODAR
motif, its importance for HPC, and the co-design questions
that it raises for HPC applications and systems; (2) propose a
co-design process for applications that use the ODAR motif;
(3) describe tools that can assist with the execution of this co-
design process; (4) present case studies of this co-design
process in various practical settings; and (5) discuss lessons
learned from these studies about the co-design process.

2. Background

As motivation for the HPC application motifs and co-design
studies considered in this article, we review briefly both the
challenges associated with online data analysis and re-
duction and the need for a co-design approach to tackle
those challenges.

Our focus in this article is an important subset of the entire
ODAR design space—coupling simulations to analysis and
reduction routines via adaptations that allow their current I/O
to be made available for other applications to use for online
reduction, analysis, and two-way coupling. In all cases
discussed in this article, the analysis and reduction routines
could be run either online or off-line. Thus, only minimal
changes were required to the simulation and analysis codes.

Other optimizations not considered in this article, such as
zero-copy coupling, can require that data structures and
concurrency levels in all codes match. Requirements can
also be substantially different for computational steering
and when machine learning methods incorporated into a
simulation require high-frequency analysis and feedback.
Such challenging problems that may require substantive
changes to the application and simulation code are outside
the scope of this article.

2.1. Challenges in online data analysis and reduction

An early motivation for online data processing was to vi-
sualize the results of a computation as it was running
(Beazley and Lomdahl 1996; Foster et al., 1999; Johnson
et al., 1999). Because of difficulties in running multicom-
ponent applications on earlier HPC systems, data might be
communicated to a specialized visualization computer. As
data volumes grew, online processing became even more
important and distributed computing less attractive. New

structures then emerged in which data were generated and
processed on the same system, a subset of online processing
often referred as in situ processing (Ma et al., 2007; Insley
et al., 2007; Klasky et al., 2011; Bauer et al., 2016; Larsen
et al., 2017; Childs et al., 2020).

The following example may give more of a sense of why
online analysis and reduction are so important in exascale
computing. A high-resolution (3 km) climate simulation
model running on an exascale computer may maintain an
internal state of around 80 TB and update that state twice per
second, for an aggregate state update rate of 160 TB/s (R.
Jacob, personal communication). Even at a sustained output
rate of 1 TB/s (already infeasible, given that the model would
then output 86 PB per compute day, leading to capacity limits
and making subsequent analysis extremely difficult), only
0.6% of those data could be output to secondary storage.

Decades of work in online data processing has led to
many innovations in data reduction methods, programming
models, communication libraries, and other areas. It has also
exposed challenging questions regarding HPC application
and system design (Ayachit et al., 2016). For example: What
reduction and analysis algorithms best balance potentially
conflicting needs for performance, fidelity, and flexibility in
subsequent offline analysis? How should application,
analysis, and reduction components be mapped across in-
creasingly complex hardware for maximal performance? If
it proves to be more efficient to map different components to
different processors, rather than replicating each component
on all processors in a single program, multiple data (SPMD)
structure, how should the resulting multiple program,
multiple data (MPMD) structures be implemented? How
should component programs exchange information? Does
online data processing demand different memory, com-
munication, and storage system capabilities?

2.2. Online processing as a co-design problem

Many of these questions have implications for multiple
elements of the HPC system, from application to analysis
and reduction libraries, programming libraries, system
software, and HPC systems design. In other words, they are
co-design problems.

The term co-design was first used in embedded systems
to refer to the process of “meeting system-level objectives
by exploiting the synergism of hardware and software
through their concurrent design” (De Michell and Gupta
1997). The term was introduced in the HPC context to refer
to a similar process of hardware—software co-design (see
Figure 1), but it is increasingly used to refer to any design
process that reaches across component boundaries to en-
compass, for example, the design of applications, reduction
and analysis methods, and component coupling methods. In
that context, a co-design problem is one that is not con-
cerned only with optimizing a single program on a single
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Figure |. Co-design process (Barrett et al., 2013).

computer but with developing the understanding of the
interrelationships among the structure and properties of
application, programming libraries, system software, and
other system components. It is in that latter sense of full-
stack design that we use the term in this article.

3. Online data analysis and reduction motif

The ODAR motif is needed most in situations in which the
data generated by one application component, Simulate, for
consumption by another application component, Analyze,
are either too large or the required turnaround time in terms
of analysis response is too short for the data to be exchanged
off-line via the file system. Here and elsewhere, Simulate
and Analyze can be any programs that generate and con-
sume data, respectively, either may both generate and
consume data, such as when two-way coupling is required.
When the file system is the bottleneck, the application
developer must either reduce the size of the data prior to
writing it to storage or run Simulate and Analyze concur-
rently, with data passed via means other than the file system.
In practice, Simulate may generate a range of data that need
to be treated differently.

The ODAR motif can be instantiated in many ways, each
having unique requirements. Thus, a single application may
involve one or more of the components and communication
paths shown in Figure 2. We now describe two important
use cases of the ODAR motif that provide a frame of
reference for co-design opportunities.

3.1. Multicomponent applications

Applications may comprise multiple distinct Simulate
programs (e.g., multiphysics applications) and/or multiple
instances of the same program (e.g., ensemble studies). In

Simulate

‘ Analyze }—»‘ Reduce ‘

Figure 2. Some possible couplings between Simulate, Analyze,
and Reduce components.

the latter case, the number and duration of instances may be
fixed or vary over time. For example, different application
instances may explore different parts of a complex phase
space of molecular dynamics (MD) trajectories; periodi-
cally, results are aggregated and compared, non-interesting
trajectories discarded, and new trajectories initiated (Lee
et al., 2019).

In multicomponent applications, each component may
produce results asynchronously, leading to a need to cache
results until a sufficient amount of data is available for
analysis. Asynchronous coordination structures such as
DataSpaces (Docan et al., 2012) can be useful, as we later
discuss in our CANDLE case study. Specialized analysis
methods such as deep learning may be used to identify
interesting elements in ensembles (He et al., 2019) and to
evaluate the quality of trajectories (Lee et al., 2019).

3.2. Two-way coupling

Another example of the ODAR motif involves two-way
coupling between Simulate and Analyze, as when analysis
output motivates a change to the simulation component: for
example, detection of turbulent flow spurs mesh refinement.
The cases can require rapid data exchange between com-
ponents and thus make optimizing the data layout and
movement among components particularly important.

4. Perspectives on ODAR and co-design

The ODAR motif is a large, complex space, requiring a co-
design process to answer application relevant questions. We
structure our discussion of ODAR co-design questions in
terms of four perspectives.

4.1. Information-theoretic perspectives

How can we maximize the useful information produced for
a fixed budget of computation time and storage? To answer
this question, the application developer needs first of all to
know which data produced by a computation are most likely
to be needed subsequently. For each data analysis and
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reduction method that may be executed online, the appli-
cation developer will need to understand its impact on data
size, information content, and computational costs. Armed
with what will likely be imperfect knowledge of intended
uses and component performance, the developer must then
decide to output some fields and not others, compress
certain fields, and perform selected analyses online (to avoid
the need to reread data)—all with the goal of maximizing
the useful information stored.

High-performance computing applications often address
these issues via simple heuristics, such as computing sta-
tistical summaries of some fields and performing temporal
or spatial decimation in others. Such simple approaches may
be inefficient, however, and can easily hide important
phenomena, especially as the disparity between computer
speed and I/O rates grows. Alternatively, lossless com-
pression of scientific data can be used, although this method
is rarely effective because the compression ratios are typ-
ically small (Ratanaworabhan et al., 2006), while lossy
compression comes at the risk of potentially losing infor-
mation or introducing systematic errors.

4.2. Resource management perspectives

The ODAR motif can also be viewed from a resource
management perspective. The developer is typically faced
with the problem of allocating limited resources across a set
of heterogeneous Simulate, Reduce, and Analyze compo-
nents. Should one place components on the same resources,
in an SPMD structure, or on different resources MPMD?
How should resource types (CPUs and GPUs) be allocated
to components? Should certain components be placed on a
single node (simplifying implementation, but limiting
performance) or on multiple nodes? Different choices may
make different intra- and intercomponent communication
mechanisms available, each with different performance
characteristics (Choi et al., 2018; Malakar et al. 2015, 2016,
2018).

4.3. HPC systems perspectives

The ODAR motif also has implications for HPC program-
ming models, libraries, system software, and other HPC
system components. These elements have historically been
designed to support primarily SPMD computations, in which
every computer node assigned to an application runs the same
program. ODAR applications can benefit from the ability to
create multiple SPMD computations; manage the placement
of application components; and manage, monitor, and or-
ganize communications among those computations.

The ODAR motif also has implications for HPC hard-
ware and architecture. For example, nonvolatile memory,
intermediate in speed between memory and storage,
can allow for large-scale buffering of data produced by

communicating online components. The quantity, organi-
zation, and programming interfaces of such hardware can
make a big difference to ODAR applications. Understanding
those trade-offs is important for both evaluating portability
and designing future machines.

4.4. Software engineering perspectives

The ODAR motif also has implications for software en-
gineering. In keeping with principles of information hiding
in modular design (Parnas 1972), we want to avoid com-
mitting prematurely to design decisions that may need to be
revisited later. For example, linking application and re-
duction code into a single executable will make it difficult to
experiment later with configurations in which application
and reduction components run on different nodes or to
substitute different data reduction modules. Conversely,
designing for flexibility may incur additional programming
costs and performance overheads.

Data layout choices can have important implications for
performance when coupling applications (Subhlok et al.,
1993) as when the producer and consumer of a data
structure prefer different layouts. In all cases examined in
this study, we treat data layouts within individual appli-
cations as fixed and address any discrepancies during in-
tercomponent communication. However, in the general
case, it can be desirable to be able to vary data layouts within
each application component as part of ODAR co-design.

5. ODAR co-design process

Co-design questions are concerned with understanding trade-
offs among different elements of a multicomponent system. If
I change one component, what demands does that place on a
second? Can [ simplify or accelerate a third component by
changing the behavior of a fourth? A good co-design process
helps expose such dependencies, build understanding of their
implications, and avoid expensive mistakes such as locking
in to a bad design of one component because of inadequate
understanding of dependencies.

5.1. ODAR co-design challenges

Online data analysis and reduction co-design is complicated
by a much larger configuration space than is found in many
conventional application design problems. In the case of a
single application, the number of configurable parameters is
often small, and thus, we can identify good values for
configuration parameters via a mix of performance mod-
eling and experiments (Foster 1994; Hoefler et al., 2011;
Duplyakin et al., 2016; Balaprakash et al., 2018). In con-
trast, consider an ODAR code that couples one or more
simulation, analysis, and reduction applications. In addition
to problem size and computer characteristics, we may be
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concerned with the resources allocated to each component,
their placement, interprocess communication methods,
compression method, compression parameters, analysis
method, and analysis frequency, among other factors. In-
terdependencies among components mean that it is rarely
feasible to optimize each component individually (Shu
et al., 2020); thus, the number of possible configurations
can be many orders of magnitude larger than in the case of a
single application.

Complex evaluation metrics are a second complicating
factor. For example, while for a simulation application we
may care only about speed, for a coupled simulation—an-
alysis—reduction application, we will likely also want to
evaluate trade-offs between time spent on data reduction
and the volume and quality of the reduced data.

A third common complicating factor in ODAR co-design
is the need to be sensitive to the varying costs and timescales
of different design decisions. For example, it will typically
be both more costly and time-consuming to alter an I/O
system than an application’s internal logic. We may think of
such considerations as more or less strict constraints on
parameter values.

5.2. Sketch of an ODAR co-design process

Design processes for both general purpose and HPC soft-
ware have been extensively studied and are in many respects
well understood (Curtis et al., 1988; Ousterhout 2018).
Nevertheless, the complicating factors just noted can require
modifications to those processes when co-designing ap-
plications that implement the ODAR motif, as we now
discuss.

The much larger configuration space and the variety of
components to be coupled mean that rarely can one develop
accurate models of all possible design alternatives. Usually,
however, one can identify both major design decisions (e.g.,
online or off-line analysis, data reduction or not, and co-
locate or distribute components) and minor design decisions
(e.g., mapping to cores and communication mechanisms)
and then explore the associated trade-offs in an organized
fashion, as depicted in Figure 3.

First, we define the goal of the co-design process: the
question(s) to be answered (e.g., “how can we use com-
pression to reduce output size?*) and the associated success
metric(s) (e.g., “information content divided by size of
output and change in application time”).

Next, we identify the components to be included in the
application, potential couplings, and free parameters as-
sociated with the component and couplings that may pro-
vide opportunities for configuration. For example, an
application with Simulate and Reduce components may
allow for two alternative coupling strategies: running the
two components in sequence on the same nodes or running
them concurrently on different nodes. Free parameters may

Define question(s)
and success metric(s)

'

Identify components,
coupling(s), free params
'
Characterize performance
of individual components
!

Estimate performance of
coupled system
!

Define, run experiments
to refine estimates
!

Answer question(s) and
evaluate success metric(s)

A

Iterate

Adequate? )
and refine

[ Report co-design results ]

Figure 3. Online Data Analysis and Reduction co-design process,
described in the text, involves the iterative application of
multiple steps.

include number of nodes allocated to each component,
mappings of components to nodes and cores, interprocess
communication methods, compression method used, and
compression parameters.

We then characterize the computational performance of
individual components. Depending on overall goals, this
step may involve just measuring their execution times for
a few different configurations, or we may aim for an ana-
lytical model that relates performance to problem size and
computer characteristics.

We can then estimate the performance of the coupled
system, with a view to identifying advantageous cou-
plings. For example, if simulation and reduction run
concurrently on different node subsets, we may expect
the overall execution time to be the maximum of the
simulation and reduction time on those node subsets, plus
time for coupling communication. If they run consecu-
tively on the same nodes, we may expect the overall
execution time to be the maximum, across all nodes, of
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the sum of the simulation and reduction times. Based on
such estimates, we may decide that some configurations
are impractical.

At this point we are ready to define and run experiments,
as informed by our initial performance estimates, the
overarching questions and evaluation metrics, and con-
straints such as limited computational budget for experi-
ments, an analysis method that runs only on a power-of-two
processors, or a compression method that does not run on
GPUs. While exhaustive search of the resulting configu-
ration space may be impractical, a combination of model
composition and active learning can be used to achieve a far
more efficient search (Shu et al., 2020).

If we feel that we have obtained adequate answers to our
questions and satisfactory values for our success metrics, we
can terminate the co-design process at this point. If not, we
may iterate, for example, by considering modifications to
components to expose more free parameters or refining
performance estimates or models for individual components.

6. Co-design technologies

Online data analysis and reduction co-design can be assisted
by technologies that support exposing co-design opportu-
nities (e.g., by making it easy to explore alternative mappings
of processes to processors, to use alternative communication
mechanisms, or to switch among different data reduction
methods), evaluating the performance implications of co-
design choices (e.g., by quantifying the numerical properties
of a data reduction method or by collecting and analyzing
computational performance data), and running sets of co-
design experiments. We describe here technologies that we
have developed for these purposes.

6.1. Expose co-design opportunities

The complexity and heterogeneity of modern HPC archi-
tectures mean that where computation is performed and how
data are exchanged between processes can have major
performance implications (Choi et al., 2018). We want to
allow programmers to express such choices and to exper-
iment with alternative choices without requiring them to
write entirely machine-specific code. In defining and de-
veloping mechanisms to provide this ability, we must
balance trade-offs between the application developer’s
competing needs for both fine-grained control and sim-
plicity and the capabilities offered by programming libraries
and HPC systems software.

6.1.1. Manage process placement. The first capability that
we consider is how to control which processes are placed
where—on what nodes, and even on which processors
within a node. While the HPC community has standard-
ized the Message Passing Interface (MPI) application

programming interface (API) for organizing concurrency
and communications within HPC applications, no equiva-
lent standardization of process mapping constructs exists.
Thus, we have defined a virtual node abstraction and in-
terface to provide fine-grained control, when needed, over
the mapping of application processes to specific hard-
ware processors. While tedious to employ, this interface
provides flexibility and clarity when users need granular
placement of processes from multiple applications, as
shown in Listing 1. We discuss below its implementation in
the Savanna library.

6.1.2. Manage communication methods. Modern HPC sys-
tems support a wide variety of interprocess communication
mechanisms with different performance characteristics,
including MPI, remote direct memory access (RDMA),
transmission control protocol/internet protocol, and shared
memory. By allowing communication mechanisms to be
changed without changes to the application, we expose the
choice of communication mechanism as a free parameter.
We use the ADIOS2 API and library for this purpose
(Godoy et al., 2020). This API abstracts I/O and commu-
nication, so that an application can first be written to per-
form data input and output operations and then configured at
runtime, without any change to the application code, to
access a file system or to communicate over the network via

class SummitNode:

def __init__(self):
[None] * 42 # 42 CPUs
[None] * 6 # 6 GPUs

self.cpu =

self.gpu =
shared_node_layout = SummitNode()

# Create 10 simulation ranks on each socket

for i in range(10):

# Socket 1: cores range 0-20; place sim on 0-9
shared_node_layout.cpul[i] = ’sim:’ + str(i)

# Socket 2: cores range 22-42; place sim on 22..31
shared_node_layout.cpul[22+i] = ’sim:’+ str(10+i)

# Place 2 simulation ranks on each of GPUs 0 and 3
shared_node_layout.gpul[0] = [’sim:0’,
shared_node_layout.gpul[3] = [’sim:10°,

’sim:1°]
’sim:11°]

# Create 4 analysis ranks on cores 38..41 of socket 2

shared_node_layout.cpu[38] = ’al:1’
shared_node_layout.cpu[39] = ’al:2’
shared_node_layout.cpu[40] = ’al:3’
shared_node_layout.cpul[41] = ’al:4’

Listing |. Sample virtual node mapping of simulation and analysis
tasks to the 42 user-accessible cores and 6 GPUs of a Summit

node. This example does not fully populate the node, in order to
evaluate internal interference effects. We place simulation tasks on
the first 10 cores of each socket and use two of the six GPUs, while
analysis tasks are placed only on four cores of the second socket.
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different mechanisms. ADIOS?2 libraries implement these
different behaviors, for example, via the Sustainable
Staging Transport (SST) engine, which uses RDMA
mechanisms, and Strong Staging Coupler engine, which
uses MPI methods for communications.

Application programmers who want to avail themselves
of this flexibility must (re)write their application to use
ADIOS2 APIs. CODAR provides a library of im-
plementations of popular compression techniques that use
ADIOS2 APIs, including SZ (Di and Cappello 2016), ZFP
(Diffenderfer et al., 2019), and MGARD (Ainsworth et al.,
2019), each packaged to expose tunable parameters such as
error tolerance.

As noted earlier, multicomponent applications can mo-
tivate a need for alternative communication structures such
as asynchronous data spaces in which an application may
place many data objects for later analysis. Co-design center
for Online Data Analysis and Reduction has explored the
use of asynchronous coordination structures such as Da-
taSpaces (Docan et al., 2012) for that purpose, for example,
in the Model Store (Wozniak et al., 2018a) data structure.

6.1.3. Programming models and libraries. High-performance
computing programmers often use the MPI API to describe
concurrency and communications in their applications.
However, MPI is an SPMD programming model. Appli-
cations that involve the ODAR motif, and indeed a growing
number of other applications, can benefit from the ability to
create multiple concurrent SPMD computations and to
manage, monitor, and organize communications among those
computations. Such MPMD computations have implications
for both programming models and implementations. These
needs motivated CODAR work on both MPI extensions—

the MPI Comm_launch of Wozniak et al. (2019)—and li-
braries for creating and coupling subcomputations (Mehta
et al., 2019).

6.2. Run co-design experiments

A common need in co-design experiments is to run the same
application multiple times while varying parameters such as
compression method, compression parameters, computing
resources, and mapping of application components to
computing resources. This use case is essentially a form of a
parameter sweep, as supported, for example, by Nimrod
(Abramson et al., 1995), but with the parameters that are
varied across experiments being concerned primarily with
system configuration, rather than application inputs. Facing
a need to run many such experiments, we developed the
Cheetah and Savanna tools shown in Figure 4.

Cheetah’s specification format allows a user to provide a
high-level description of a co-design campaign and target
system(s); see Listing 2. Cheetah allows for monitoring of a
campaign as it runs. Once a campaign completes, a per-
formance generation engine can aggregate performance
results from all experiments for user analysis.

Savanna ingests such a specification and manages the
execution of the campaign, translating the specification
into scripts and system scheduler calls that run the cam-
paign and its experiments. It also provides the ability to
compose workflows on different target platforms. By thus
hiding low-level details, such as scheduler options for
orchestrating process placements, these tools allow users
to specify what they want to test, rather than sow testing is
performed.

Workflow
Composition

ADIOS Interface

CHEETAH

Sweep Report
Specification Generation

Engine selection, coupling, reduction

¢4 9

Campaign
Monitoring

Node Config

SAVANNA
Hierarchical, Multi-threaded Runtime Framework

Machine Config

Summit, Theta, Cori, Titan, Linux, ...

Scheduler Interface
PBS, Cobalt, SLURM, IBM LSF

Performance Profiling
TAU

Figure 4. Co-design center for Online Data Analysis and Reduction co-design campaign framework. Cheetah supports the specification
of a campaign; Savanna executes a campaign on a target system. From Mehta et al. (2019).
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class ReactionDiffusion(Campaign):
name = "ReactionDiffusion"

# DEFINE APPLICATIONS
codes = [
("aim",
dict(exe="prod.py", adios_xml_file=’adios2.xml’),

("mean_calc",
dict(exe="m_calc.py", adios_xml_file=’adios2.xml’)

]

# CAMPAIGN SETTINGS
supported_machines = [’1oca1‘,
kill_on_partial _failure = True
run_dir_setup_script = None
runfpostfprocess,script = None
scheduler_options = {’summit’: {’project’:’’}}
app_config_scripts = {’summit’: ’env_setup.sh’}

’theta’, ’summit’]

# PARAMETER SWEEPS
sweepl_params = [
# sweep over list values
ParamRunner (’sim’, ’nprocs’, [2048,4096]),
ParamRunner (’mean_calc’, ’nprocs’, [128]),
ParamCmdLineﬁrg (’sim‘, ’size_per_pe’, 1,
[21M2, 2200 ,24M’]),
ParamKeyValue (’sim’, ’steps’,’settings.conf’,
’steps’, [10,25,50,100]),
ParamADIOS2XML (’sim’, ’producer’,
[ {"ssT": {}} 1), # coupling
ParamEnvVar (’sim’, ’openmp’, ’OMP_NUM_THREADS®,
[1,41),

’engine’,

1

# Create a sweep

sweepl = Sweep (
node_layout = {’summit’: [shared_node_layout] 1},
# see Listing 1 for a node layout example
parameters = sweepl_params, rc_dependency=None

)

# Create sweep group from above sweep.

sweepGroupl = SweepGroup (
"sg-1", walltime=300, per_run_timeout=60,
parameter_groups=[sweepl], launch_mode=’default’

)

Listing 2. A campaign specification file. A campaign is a
collection of SweepGroups, which are collections of sweeps.
SweepGroups group experiments with similar characteristics:
for example, the same number of nodes. A SweepGroup
represents a batch job on the underlying system; associated
properties specify allocation size, wall-time limit, experiment time-
out, and so forth.

6.3. Quantify performance of co-design choices

The application developer may need to consider a variety
of factors when evaluating co-design decisions, from
computational performance to the quality of data produced
by data reduction methods. To assist with such evaluations,
we have developed two tools, Z-Checker and Chimbuko.

6.3.1. Z-Checker: Quantify data reduction quality. Whether a
particular lossy compression method is appropriate for a
given variable in a specific science application depends on
many considerations: not only compression speed and
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Figure 5. Modular and extensible Z-Checker architecture.

compression ratio but also (depending on the application)
measures such as entropy, error distribution, power spec-
trum, and autocorrelation. To enable the systematic and
convenient assessment of such factors, CODAR provides
the Z-Checker tool (Tao et al., 2019), which can be used
both off-line, to produce a detailed report concerning the
performance of a specific compressor on specific dataset,
and online.

The Z-Checker architecture is shown in Figure 5.
Support for I/O libraries such as HDFS5, NetCDF, and
ADIOS2 makes it easy to assess data in different formats.
The analysis kernel applies a battery of analysis modules to
a supplied data file to characterize both its inherent prop-
erties and the behavior obtained when a specific compressor
is applied to its contents.

The data properties that Z-Checker characterizes are all
closely related to compressibility and enable deep under-
standing of how hard it is to compress supplied data. The
reports characterize how well a specific compressor will
perform on the data by quantifying more than 30 metrics
garnered from user requirements across a wide range of
domains.

A visualization engine, Z-server, can be used to display
analysis results online, while libpressio (Underwood et al.,
2020) provides a uniform and efficient interface to com-
pressors, making it easy to integrate new (lossy or lossless)
compressors into the Z-Checker framework.

6.3.2.  Chimbuko: Study performance of MPMD
applications. Performance measurement tools such as TAU
(Shende and Malony 2006) are often used to diagnose
performance problems in individual HPC applications with
an SPMD structure. However, applications that implement
the ODAR motif often have an MPMD structure and thus
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communication.

require performance analysis tools that can handle multiple,
concurrent streams of performance data. It is also desirable
for such tools to enable identification of performance
anomalies in large trace data volumes, in order to avoid
repeated performance analysis runs at exascale.

Inevitably, online data analysis and reduction of perfor-
mance data are required; and thus not only do exascale ODAR
applications require new measurement methods, but those new
methods require ODAR techniques. If each core of an exascale
system generates interesting trace events at just 1000 Hz, then
on 1 million cores we need first to process 1 billion events per
second and then to identify and communicate anomalies in this
event to application scientists in understandable forms. The
CODAR Chimbuko tool (Ha et al., 2020), a performance
analysis framework, seeks to address these requirements.
Building on TAU’s profiling machinery, Chimbuko imple-
ments distributed in situ methods for detecting anomalies in
trace event data generated on many nodes; see Figure 6.
Chimbuko can reduce the overall cost of performance analysis
by allowing developers to identify multiple trace data
anomalies in a single run, rather than requiring multiple runs to
study different performance hot spots. A visual analytics in-
terface allows for the interrogation of performance anomalies
at runtime (Ha et al., 2020; Xie et al., 2019).

7. Co-design case studies

We use examples to illustrate the breadth of co-design
questions that can be motivated by the ODAR motif.

7.1. Online data reduction and analysis: Gray-Scott

Our first study uses the Gray-Scott reaction—diffusion
benchmark code (Sims 2020) to determine the best lossy
compressor that preserves a domain-specific quantity of

Figure 7. Gray-Scott V variable after 10,000 steps: 2D slice at
X = 128, Experiment |. From Yakushin et al. (2020).

interest. This situation mimics the requirements of appli-
cation scientists to meet their science objectives when using
lossy compressors. Depending on the science to be per-
formed with the compressed data, the scientist might choose
a compressor in part based on its ability to smooth the data,
rather than add artifacts.

The Gray-Scott case study was configured as in Yakushin
et al. (2020), and our goal is to compress the simulation
output, while preserving local maxima extracted using the
Feature Tracking Kit (FTK) (Guo et al. 2020; Guo et al.
2021). Figure 7 shows the V variable after 10,000 timesteps
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for one configuration and shows the extreme variability we
need to preserve in the compressed data.

The general workflow, shown in Figure 8, comprises
multiple components: output from Simulate is passed both
to FTK (FTK1) for feature extraction and to a compressor
(Comp); the compressed data are passed both to the store
and to a decompressor (Decomp), which passes the de-
compressed data to a second FTK (FTK2); a Check com-
ponent then compares the features obtained from the
original and decompressed data. With lossless compression,
the features obtained would be identical. In this co-design
study, the Check component’s output is written to disk. As a
simulation advances in time, the nature of the compressed
output and thus the compressor configuration required to
achieve a particular threshold change. Online monitoring of
compression quality with feedback to the compressor (as
shown by the dashed line) may be required in order to
achieve the necessary output quality at each timestep.

Cheetah and Savanna were used to experiment with
many different configurations, including SZ (Di and
Cappello 2016; Tao et al., 2017; Liang et al., 2018; Zhao
et al., 2020), ZFP (Diffenderfer et al., 2019), and MGARD
(Ainsworth et al., 2020) as alternative compressors.
Application-specific compressors, such as a physics-based
filter and an algorithm that regenerates the simulation state,
could also be used. Figure 9 shows representative results,
where we include the sign of the error. A positive error
indicates that fewer features were detected (the compressor
is smoothing the data), while a negative error indicates that
more features were detected (the compressor introduces
artifacts). As the compression ratio increases, the number of
features detected increases. In some regimes, MGARD
introduces artifacts (negative error), while in other regimes,
it smooths the data (positive error). SZ consistently acts as a
smoother on this dataset and quality metric, while ZFP
introduces artifacts. The relationship between compressor,
compression ratio, and nature of the compressor (smoothing
and/or artifact introducing), however, is not apparent
without a co-design study that cannot be performed at scale
without using the ODAR motifs.

7.2. Multiphysics code coupling: WDMApp

The development of a whole-device model (WDM) is
critical for the science of magnetically confined fusion
plasmas (Aymar et al., 2002). The WDMApp application
being developed in ECP couples multiple physics codes
implementing different models and approximations (XGC,
GENE, and GEM), a separate coupler, and data analysis and
reduction components. We report on two co-design studies,
one aimed at understanding the appropriate fraction of
available nodes to allocate to each code and alternative code
placements, and the second investigating approaches to
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Figure 9. FTK error versus compression ratio, Gray-Scott,
experiment |, V, step = 10,000. From Yakushin et al. (2020).

coupling an analysis with the XGC code. We also discuss
data reduction issues.

7.2.1. Coupling of simulation codes. In this first study, we
explored the optimal allocation of resources for each
component in a coupled simulation, placement of compo-
nents on resources, and intercomponent data exchange
mechanisms. We use a miniapp composed of two instances
of the XGC code, one configured to simulate the edge of the
fusion reactor and the other to simulate the core. (The
primary differences between this miniapp and WDMApp
are that WDMApp can use other core codes and implement
the coupler as a separate process.) We use ADIOS for
communication and can switch coupling approaches to
exchange data via the GPFS storage system, node-local
NVME when simulations run on the same node, or
ADIOS’s SST, which uses RDMA for communication.
We have used the miniapp to investigate a wide variety of
resource allocation options. In one study, we investigated the
impact of task placement on performance. When using fluid-
based coupling (Dominski et al., 2018), 3D charge density
and potential fluctuations data are exchanged in the overlap
region of the codes, once per Runge—Kutta step (four times
per simulation timestep in our implementation). We deter-
mine that the coupled code can be over 20% faster when
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task-based graph embedding is employed to optimize which
MPI ranks are used by each code (Choi et al. 2017, 2018,
2018).

We also investigated optimal resource allocations for each
component for different science problems. In Figure 10, we
demonstrate an edge-core coupling case on 32 Summit nodes
in which 14 GB are exchanged at each iteration. The average
iteration time varies depending on resource allocation
(separate or shared) and ADIOS coupling methods (GPFS or
SST). More details are in Choi et al. (2019).

7.2.2. Analysis and visudlization. Whole-device model sci-
entists commonly want to couple analysis codes to a
simulation to obtain physics results in near-real time—for
example, to detect instabilities that should cause a run to be
halted. We consider here the case of tracer particle analysis,
which enables the detailed understanding of energy flux
focused on the edge, including through the X-point region.
Scaling studies showed that this analysis could account for
more than 30% of total runtime on 64 Summit nodes, which
motivated the co-design question of whether alternative task

placements could reduce that cost—or, alternatively,
whether new analysis methods were needed.

To investigate this question, we used CODAR tools to
adapt the application so that the XGC and tracer particle
analysis components could run on the same or different
nodes, and investigated the performance achieved with
different configurations. We show some performance results
in Figure 11. We determined that when running XGC on 64
nodes, the best configuration for the entire application
placed the tracer analysis on an additional 4 dedicated
nodes. Total analysis time changed little on 4 vs 64 nodes,
due to high interprocess communication costs within the
analysis routine, and thus, as the analysis can run concur-
rently with XGC, the net effect of this reconfiguration is to
reduce the analysis contribution to total cost from 31% to
6%. Furthermore, the benefits of this approach increase as
XGC is scaled to yet more nodes.

7.2.3. Data reduction. XGC can produce 100 PB in a
weeklong simulation on pre-exascale computers, with
output taking about 4% of total runtime. Both numbers will
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Figure 10. Whole-device model miniapp performance, demonstrating XGC edge-core coupling, on 32 Summit nodes with different
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increase considerably on exascale systems. Compression
can reduce I/O volumes but introduces compression costs
and has accuracy implications for common analysis routines
run by WDMApp scientists. As a first step in a compre-
hensive co-design study, we have used MGARD to reduce
the five dimensional f'data to achieve a pointwise L, error of
10~ with a compression ratio of 13.

7.3. Online data analysis: NWChem

One focus of the NWChemEx ECP project is enabling MD
simulations of million-atom dynamic biomolecular pro-
cesses. A single simulation over microsecond timescales
can involve 1B or more timesteps. Outputting all trajectory
data for 1M atoms over 1B timesteps would generate 32 PB
of output. Therefore, MD implementations have tradition-
ally reduced at a reduced frequency, such as at every 100th
timestep. However, that frequency would still generate
320 TB of output and may miss key phenomena. Thus,
online data analysis and more sophisticated reduction
methods are of interest.

We describe here three ODAR co-design studies in
NWChemEx. The first is concerned with accelerating an
online analysis that includes sorting and principal component
analysis (PCA). The second uses an online adaptive sampling
method to identify moments in an MD trajectory where the
structure of the molecule undergoes significant changes. The
third demonstrates a reduction in performance trace data
achieved by identifying and storing only anomalous events.
Since NWChemEx development was in progress, all studies
used NWChem (Valiev et al., 2010) as a proxy.

7.3.1. Online data analysis. Sorting and PCA. Our first study
investigated methods for outputting and analyzing MD
simulation state. NWChem can be asked to write periodi-
cally to disk, in a table format with one row per atom, the
spatial coordinates for every atom in a molecule. In order to
track individual atoms over time, the table must be sorted by
atom ID, which we can think of as a simple analysis.
NWChem accomplished this task by performing an all-to-
one MPI collective to move all atom data to rank zero,
where a simple linear-time sort was applied and the sorted
data were stored. A scientist later ingested the sorted data
and performed analyses, such as PCA. We describe here
how performance was improved by performing both the
sorting and PCA online and concurrently.

A first co-design question is how best to organize the
sorting and output step. We have two components (simu-
lation and sort/output) coupled via the atomic coordinates
produced by the simulation and consumed by sort/output.
Since the sort/output can run concurrently while NWChem
is computing, we identify as free parameters the choice of
whether to run the simulation and sort/output on the same or
different nodes and how many nodes (or cores) to allocate to
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Figure 12. NWChem times for 1000 steps on a 36,536-atom
problem. From left: original NWChem on 224 cores with no
1/O, no sorting; original NWChem with sort/output every step;
NWChem on 224 cores with two additional cores dedicated for
sort/output; NWChem on 224 cores with two additional cores
dedicated for sort/output and one additional core for running
principal component analysis every |0 steps; original NWChem
with sort/output every 25 steps.

each. Figure 12 shows relevant results. The first column
gives the time for a 1000-step 36,536-atom simulation
without sort and output: 188 s on 224 cores (14 nodes) of
Rhea, a cluster at the Oak Ridge Leadership Computing
Facility with 16-core, InfiniBand-connected x86 nodes.
Total output is 2.3 MB of atom state per step (2.3 GB over
1000 steps). The second column shows that total time in-
creases to 386 s when sorting and output are enabled on the
same 224 cores.

Using Cheetah to perform runs in which we varied the
number of cores dedicated to sorting, we determined that
allocating two extra cores, to which all unsorted atoms were
sent and on which atoms were sorted and then written to
disk, reduced total runtime to 194.7 s, as shown in the third
column in Figure 12. In other words, we can sort and store
every atom position at every step with insignificant appli-
cation slowdown while only increasing total computational
costs from 188 x 224 = 42,112 core-seconds with no output
to 194.7 x 226 = 44,002 core-seconds.

Next we incorporated PCA, an analysis that is commonly
applied to atom trajectory data to discover interesting
movements of a molecule. To this end, we developed a
motion-adjusted PCA analysis routine within the pbdR
package (Schmidt et al., 2017) to run PCA repeatedly on a
fixed-size window of 10 steps. As shown in the fourth
column of Figure 12, PCA can run on a single additional
core without slowing the overall computation significantly,
for a total computational cost of 197.6x227 = 44,851 core-
seconds.

Thus, we determined that by efficient configuration of
online analysis, we can run NWChem with both sort/output
and PCA with just a 6% overhead relative to running
NWChem without these components.

7.3.2. Online adaptive sampling using machine learning. MD
simulations of biomolecules tend to spend much time
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13

moving only slightly in conformation space, with occa-
sional transitions to other parts of that space. For many
scientific purposes, it is these transitions that are interesting
as biochemistry is regulated by conformation changes of
proteins. Thus, a method for identifying distinct structures
can both provide insights into chemical processes and
greatly reduce the amount of data to stored.

To this end, we developed a machine learning method—
specifically, a weighted reservoir sampling algorithm
(Efraimidis and Spirakis 2006)—that can be applied to
streaming atom trajectory data to detect changes in mo-
lecular structure. To measure such changes stably despite
vibrational noise from the atoms, we used matrix sketching
(Zhang et al., 2018) to compute low-dimensional em-
beddings of the trajectories and then output conformations
only when the low-dimensional embeddings show sig-
nificant changes. As shown by Yoo et al. (2016), a con-
ventional nonstreaming low-dimensional embedding
calculation requires O(m” - n,) operations, where m is the
number of atoms and #; is the time window. Our streaming
approach requires only O(m - n,) operations, that is, it is
linear in the number of atoms.

Figure 13 shows how this method can greatly reduce
output while retaining key molecular conformations.
While storing all trajectory data for this 5000-step, 8993-
atom system would take 2.3 GB, our adaptive online
analysis stores only 32 configurations, or 15 MB: a re-
duction of 156x. Even fewer “interesting” conformations
may be identified in longer simulations. For example, in a
10,000-step simulation, the adaptive online analysis
identified 37 conformations (17 MB), only five more than
in the 5000-step simulation, and a reduction of 270% from
the full output of 4.6 GB.
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Figure 13. One-dimensional embedding values via PCA for a
5000-timestep trajectory where a protein first collides (first
change) and then binds (second change) with DNA. Also shown
are the 32 configurations selected for output by online sampling;
for these, the y values have no significance.

7.3.3. Performance data reduction. We used the Chimbuko
online performance analysis tool to study the performance
of different NWChem data analysis solutions and im-
plementations. We first configured the NWChem workflow
with TAU to generate function execution events and with
Chimbuko to flag anomalously long function execution
times, defined as those greater than two standard deviations
from the mean. A 1.2 M atom simulation on 2560 MPI ranks
(128 nodes) of Summit generated 117.5 GB of performance
trace events during a ~140 s NWChem run, which
Chimbuko reduced to 5.5 GB of anomalous events with
97% accuracy. Analysis of these anomalies revealed that the
barrier synchronization used in NWChem was causing
excessive delays (Pouchard et al., 2018), an observation that
has motivated the replacement of the block synchronous
implementation with a put-notify-driven implementation to
remove all barriers.

7.4. Deep learning workflows: CANDLE

The Cancer Distributed Learning Environment (CANDLE)
ECP is developing methods and software to support scalable
deep learning on supercomputers, with a particular focus on
cancer research applications (Wozniak et al., 2018b). CAN-
DLE applications often involve many quasi-independent
learning and inferencing tasks, each run on a single node
of a supercomputer. While each such task may generate only
modest amounts of data, large data volumes can be pro-
duced in aggregate across the many tasks, leading to a need
for online data analysis and reduction.

As an example, the CANDLE hyperparameter optimi-
zation (HPO) workflow (Wozniak et al., 2018b) generates,
and evaluates via training and testing, many single-node
neural network (NN) configurations that differ along such
dimensions as number of layers, number of neurons per
layer, and activation functions. A typical HPO workflow
runs many instances of the NN training process at once,
selecting parameter values to explore via various search
methods. Each NN configuration is characterized by quality
measures such as validation error on a test set, and the
network weights produced during training.

A large parallel computer can easily generate and
evaluate NN configurations at tens of gigabytes per second
on today’s computers and terabytes per second on exascale
systems. Application scientists would strongly prefer to
avoid writing these data to disk only to have to read them
later to identify interesting configurations. But while re-
duction is desirable, it is not straightforward. While the vast
majority of NN states can normally be discarded because
they are uninteresting, determining whether or not a state is
interesting can be nontrivial. For example, the HPO process
wants a set of states that are diverse along multiple di-
mensions rather than just those with the best validation
error. Thus, to support online filtering of states, we want in
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Figure 14. CANDLE hyperparameter optimization architecture with Model Cache, into which workers place results and with which
analysis functions interact to filter results. Swift/T (Wozniak et al., 2013) is used to coordinate task execution and information flow;

EMEWS (Ozik et al., 2016) is used to generate tasks.

general to collect many states as the HPO proceeds, analyze
those outputs as they are produced, and selectively prune
uninteresting states over time, ultimately outputting only the
most interesting ones. Thus HPO workflows require in
general the ability to maintain, perform random access on,
and compute over large quantities of data.

We have worked with CANDLE to define a general
architecture for incorporating ODAR methods into HPO. As
shown in Figure 14, HPO workers and analysis routines are
coupled via a shared Model Cache (Wozniak et al., 2018a)
based on DataSpaces (Docan et al., 2012), a distributed, in-
memory storage system. DataSpaces provides a highly
scalable implementation of a tuple-space programming
model (Carriero and Gelemter 1989) that permits data
producers to insert tuples (essentially, key-value pairs), and
data consumers to both retrieve tuples and subscribe to
notifications of new tuples with specified properties.

The DataSpaces implementation is designed to scale
across many nodes and to enable high-speed data access, so
that data produced by one application component can be
efficiently indexed and then asynchronously accessed and
processed by other components. In HPO, the data being
written to the Model Cache are the NN states, and the
components that retrieve and process those states are
analysis routines that may compute summary statistics,
eliminate uninteresting configurations, and/or compress
configurations before outputting them.

This architecture can be adapted to meet application
needs. For example, Figure 15 shows results from an ex-
periment with a synthetic workload in which an increasing
number of nodes, organized in a CANDLE-like workflow,
stores and retrieves 1 MB files in either a parallel file system
(PFS) or the Model Cache (implemented here by a single
DataSpaces server). We see that the Model Cache delivers
significantly better performance than does PFS. As the
number of nodes increases, the rate between the Model
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Figure 15. Small file (I MB) access rate for CANDLE Model
Store on NERSC Cori.

Cache and PFS implementations seems to converge, sug-
gesting a need for multiple Model Cache servers. Co-design
studies are needed to determine the optimal number of
Model Cache servers as a function of the number of nodes
and other parameters, the placement of Model Cache servers
across nodes, and the mechanisms by which Model Cache
servers coordinate.

8. Lessons learned

Our ECP co-design experiences motivate the following
observations about the power of co-design, the ODAR
motif, and interactions between the co-design process and
motif.

Co-design process: It is good practice to use models to
inform the design and workflow optimization process,
since a grid search over a large design space is compu-
tationally intensive and inefficient and a coarse dis-
cretization of the search space can accidentally remove
optimal designs that a model-driven analytic plan would
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find. While a precise analytical model will often be im-
practical, the process of constructing and refining under-
lying models and applying a systematic, model-driven
co-design process is critical precisely because the co-design
spaces are extremely large.

ODAR as motif: High-end computational science has
been dominated for several decades by powerful monolithic
applications. Science investigations that address more
complex scenarios require support for modular, multi-
physics integration (Foster and Kesselman 2006). The
ODAR motif offers a programmatic approach for ad-
dressing these needs. Integrating ODAR into an existing,
large code base, however, can be difficult and expensive.
Therefore, we see power in considering ODAR as a first-
class motif of extreme-scale applications in order to achieve
both software management and performance goals.

Tools aid the process: In HPC, we must deal with
components (application software, libraries, systems
software, and architecture and hardware) that are devel-
oped at different times and frequently on different time
scales. We may be able to modify an application in an
afternoon but changes to systems software can take months
(ad hoc modifications to external libraries are antithetical
to long-term software lifecycle management) and hard-
ware changes years. Moreover, managing and tracking
changes over time can be extremely difficult. Thus, we
have found a need for tools such as Cheetah, Savanna, Z-
Checker, and Chimbuko that enable consistent and veri-
fiable testing capabilities within co-design campaigns.
Such campaigns are rarely circumscribed investigations
but instead stretch over multiple application versions,
hardware changes, extensions to cover new algorithms,
and so on. Managing a co-design campaign so that one can
continue design exploration over the entire lifecycle of an
application can significantly reduce costs and improve the
quality of the results.

Co-design of ODAR workflows as a new model: A
strength of today’s HPC ecosystem is that its performance
optimization tools work well in improving the perfor-
mance of individual applications. However, independent
optimization of individual components is rarely sufficient
for optimizing a multicomponent ODAR system because
of the need to account for interactions and interference
among components. Exhaustive search of all possible
configurations is rarely feasible. The co-design of ODAR
workflows offers a strong model for achieving the new
science and high performance needed in the future. This
unified software development and execution motif addresses
the need for model-driven optimization choices, while also
making explicit the reasons for those optimizations so that the
future evolution of high-performance science can continue to
benefit from co-design study insights as the HPC landscape
changes.

9. Conclusions

The ODAR motif is becoming increasingly important in
HPC applications because of changes in both systems and
applications. Efficient implementation of applications that
implement this motif can raise challenging co-design
questions due to trade-offs that must be navigated be-
tween simulation performance, data reduction and analysis
performance, output data volume and quality, and the ca-
pabilities of different applications and HPC system com-
ponents, among other factors. We have described an ODAR
co-design process that we have found useful for answering
these questions. This process is assisted by tools developed
by the CODAR ECP project, often in partnership with other
ECP projects, such as ADIOS, Exal.earn (Alexander et al.,
2020b), ExaWorks, SZ, ZFP, and TAU, to facilitate ex-
perimentation with design alternatives (e.g., different map-
pings of application components to processes, different
communication structures, and different reduction methods)
and to evaluate the data quality and computational per-
formance achieved by these alternatives.

The co-design studies considered in this study have
focused primarily on how to configure existing applications
for efficient online data analysis and reduction, with few
changes to the applications themselves. As components are
coupled ever more tightly to enable rapid information ex-
change and feedback, it will likely become desirable also to
reconfigure aspects of application internals, such as data
layouts. This may motivate more extensive use of data
layout abstractions.

The case studies presented here illustrate some of the
ways in which ODAR methods and tools are being applied
to accelerate ECP applications. Online data analysis and
reduction tools can also be used in other ways. For example,
the fusion whole-device modeling project’s EFFIS coupling
framework (Suchyta et al., 2021) uses Savanna to place
components on nodes and processors; Z-Checker is used to
evaluate compression methods in many contexts; Chim-
buko is used to study the performance of ECP applications;
and scientists are using ODAR methods to link ML with
HPC to accelerate MD simulations (Brace et al., 2021). The
co-design of ODAR workflows remains a fruitful activity
that will benefit applications far into the future.
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