An Automation Framework for Comparison
of Cancer Response Models Across Configurations

Justin M. Wozniak,* Rajeev Jain,* Andreas Wilke,* Rylie Weaver,*
Alexander Partin,* Thomas Brettin,* and Rick Stevens*
* Argonne National Laboratory, Lemont, IL, USA

Abstract—Machine learning has made significant advance-
ments in precision medicine, resulting in the development of
various deep learning applications. For instance, in cancer drug
response prediction, numerous deep learning models have been
created. However, comparing these models across vast configu-
rations of hyperparameters and data sets can be challenging. In
this paper, we introduce a new scalable workflow suite that aims
to answer questions that arise when comparing different models
developed by different teams on similar or the same problems.
We explain the problem in more detail and discuss our approach
using near-exascale or exascale computers.

I. INTRODUCTION

The intersection of precision medicine and machine learning
(ML) offers a wide range of problems and possible approaches.
The prediction of tumor response to single and combination
drug agents is an active area of ML application development,
as tens of deep learning (DL) models are currently available
and under active development. Comparing the behavior of
these models is very difficult, and is not a well-studied area,
as different projects differ wildly in their problem assumptions
and approach to the problem.

Both cancer studies and DL models have a range of con-
figuration parameters in which researchers can operate. Some
of these include:

1) Data sources- varying studies and experiment types. Dif-
ferent laboratory studies could have subtle differences in
data collection.

2) Data representation- varying data formats. For example, a
drug could be represented as a SMILES string or a series
of features.

3) Algorithms and architectures- varying models could have
very different algorithmic structure or DL architectures.
While inputs and outputs may be comparable, interpreting
variations could be very difficult.

The IMPROVE project at Argonne National Laboratory
is collecting and curating Al models for cancer and similar
precision medicine problems. IMPROVE has collected tens of
models in drug response prediction (DRP). Of these, 28 have
been successfully run by the computer science contingent of
the team, making for a valuable resource both for precision
medicine and computer science investigations in DL. They
vary in DL runtime, architecture, and DL approach.

The IMPROVE approach consists of two aspects: a pack-
aging framework and workflow framework. The packaging
framework consists of conventions for bundling each model

inside a Singularity container and exposing a common shell
script interface to perform tasks such as data preprocessing,
training, and inference. The second aspect is the subject of this
paper. This consists of extensions to the CANDLE/Supervisor
system to run multiple models from the IMPROVE packages
and compare them across a range of configurations. In this
paper, we consider an initial problem of interest to the model
comparison topic. Consider a case in which we want to
perform cross-model comparison for two models over some
range of model parameters, such as underlying training data
error or noise, computation constraints, or other such range. It
is up to the user to specify the range of configuration values for
across which the comparison will take place. It will be up to
the system to compare the models across the range of settings
and underlying data conditions. We will want to compare
error values at coarse-grained level, without investigating root
causes of error deviations. The system will be expected to
automatically find regions of interest, that is, conditions under
which the models vary, so that user investigations may proceed
on those subproblems.

The space of possible conditions is very large. It could be
addressed by simply running a large run flat sweep over the
problem space, but this produces hundreds to thousands of
training runs and is intractable, as will be described. To allow
for automation and scalability of this problem, we recast the
model comparison run as a new workflow-compatible “model”
that may be probed by a general-purpose hyperparameter
search workflow. This new model will be configured to accept
two actual deep learning models, train them nearly identically,
except for user-specified variations and report differences in
errors. Thus, the approach demonstrates the generality of a
scalable automated search framework for deep learning, and
provides a viable solution for a range of deep learning model
comparison studies.

The remainder of this paper is organized as follows. In §II,
we describe the problem in more detail and consider alterna-
tive approaches. In §III, we describe cancer drug response
prediction with the Uno model for this problem. In §IV,
we describe the notion of model comparison in more detail
and narrow the scope of this paper. In §V, we describe the
workflow framework in more detail. In §VI, we describe the
use of containers by our system and how they enable model
comparison. In §VII, we present a model comparison case and
its experimental results. In §VIII, we recapitulate and conclude
and in §IX we describe directions for future work.



II. BACKGROUND

In this section, we provide background on the concept of
deep learning model comparison.

Machine learning (ML) has the capability to transform
many scientific problems. In response to the growing power of
ML techniques and the increasing available computing power
at large scale computing facilities, the U.S. Department of
Energy Exascale Computing Project (ECP) launched the Can-
cer Distributed Learning Environment (CANDLE). CANDLE
developed a suite of software to support scalable deep learn-
ing on DOE supercomputing resources. While the CANDLE
project is explicitly aimed at supporting deep learning in the
three cancer pilot projects in the near-term, its longer-term
goal is to support a wide variety of deep learning applications
across DOE science domains.

A. Frameworks for machine learning

Deep learning frameworks are under active development
by diverse research communities in both industry (Google,
Facebook, Microsoft, etc.) and academia (Berkeley, Oxford,
Toronto, etc.). These include Caffe [1], Keras [2], Theano [3],
Torch [4], Poseidon [5], Neon [6], TensorFlow [7], CNTK [8],
and the Livermore Big Artificial Neural Net (LBANN) [9].
Each of these frameworks differ with respect to the ma-
chine learning tasks they target, their ease of use, data pre-
processing, and target problems. Most frameworks were archi-
tected for a single node implementation and a few distributed
memory multi-node implementations have recently emerged;
but these implementations are primarily targeted at smaller
core counts and for commodity cluster environments. More-
over, these implementations rely on avoiding communication
by storing data on local disks. Implementations targeting high-
performance computing systems will need novel techniques to
fully exploit the system interconnect bandwidth and topolo-
gies, as well as the deep memory hierarchies.

B. Hyperparameter search

Before a model can be trained, a set of hyperparameters
must be selected to initialize the model with. The choice of
hyperparameters is not only important to performance, but
very computationally expensive to check, as each choice of
hyperparameters requires the training of a model. As an influ-
ential but costly factor in model comparison, hyperparameter
optimization (HPO) is a key part the IMPROVE project.

Moreover, since many hyperparameter spaces are non-
differentiable with multiple local minima [10]some common
optimization approaches are weakened or not viable with HPO.
In this section, we introduce some common methods and their
pros/cons. Some of the most common algorithms/categories of
algorithms for HPO are [11]:

o Grid Search

¢ Random Search

 Gradient-Based Optimization

« Bayesian Algorithms

« Population Based Algorithms (Genetic and Swarm)

Grid search checks a lattice of hyperparameters and random
search randomly checks hyperparameters throughout the hy-
perparameter space. Both are simple and have some success in
smaller hyperparameter spaces, but perform poorly compared
to other algorithms in larger and/or higher-dimensional hyper-
parameter spaces, like many used in the CANDLE workflows.
Moreover, grid search tends to be less effective with contin-
uous parameters, because of its discrete checking. Random
search tends to be less effective for conditional hyperparam-
eters, because of its inability to take into account previous
hyperparameter outputs [11]. Grid search and Random search
can easily be implemented with the Python library scikit-learn
[12].

Gradient-based optimization extends the idea of gradient
descent to hyperparameters. However, calculating the gradient
is not possible because the hyperparameter space is gener-
ally non-differentiable. Instead, this method explores options
around a given hyperparameter selection and goes in the
direction of most improvement. Gradient-based optimization
can often get trapped in a local minimum instead of finding
the global minimum.

Bayesian optimization is a probabilistic model that itera-
tively picks hyperparameter values and updates itself. Firstly, a
probabilistic model of the hyperparameter space is built. Then,
a new set of hyperparameter values in the space is chosen
with the incentive tradeoff of exploration and optimization.
Finally, the evaluation of that selection of hyperparameter
values is used to update the probabilistic model, and the
process of is repeated until a stopping point has been reached.
Bayesian optimization can use varied probabilistic models,
including gaussian processes, random forests, and the tree
Parzen estimator [11], which come with different libraries in
python that can be used for implementation. HyperOpt [13] is
one such framework that is designed to perform searches using
distributed hardware and accomodate Bayesian optimization
which has a scikit-learn variant [14]. Depending on the specific
model used, there are different weaknesses to Bayesian hyper-
parameter optimization, but the class of methods is generally
effective [11].

Genetic algorithms (GAs) model the process of natural
selection, usually through some combination of mutation,
crossover (mating), and selection for many simulated gen-
erations. Genetic algorithms tend to be efficient at handling
all types of hyperparameter spaces [11]. The NeuroEvolution
of Augmenting Topologies (NEAT) algorithm [15] is one
example of a GA. Like other GAs, NEAT spawns a genome
and ‘evolves’ with mutation, crossover, and selection, but
unlike other GAs, NEAT evolves both the nodes and the
topology of the network. NEAT (or at least, its specific NEAT-
Python [16] implementation) has added variability through its
alteration of intra-node weights and parameters that can prove
beneficial by reducing loss at the “starting point” of training,
but also has the drawback that this serves as a topology
specific feature that somewhat precludes comparison of pure
topological strengths and weaknesses.

Particle swarm algorithms (PSOs) simulate the collective
behavior of decentralized systems, like an ant colony or
beehive. In this algorithm, the individual ‘particles’ have



communication with each other such that each particle in the
population makes decisions on their location (hyperparame-
ters) based on not just their best performing location, but the
best performing location of the group or the other particles
around them. Swarm algorithms are effective for all types of
hyperparameter spaces and are easily parallelized, but need
proper initialization [11].

Lastly, several techniques and libraries exist to acceler-
ate model exploration. Some algorithms implement “multi-
fidelity optimization” [11], where if a model is performing
poorly, it stops being trained. This reduces computation time
because less time is spent accurately evaluating models, but
decreases accuracy in those evaluations. One example of multi-
fidelity optimization is Bayesian Optimization Hyperband
(BOHB) [17].

C. Approaches used by CANDLE

1) mirMBO: In prior work, we focused on mIrMBO [18]
which is an R package that uses bayesian optimization for its
HPO algorithm. It is designed for optimization problems with
mixed continuous, categorical and conditional parameters. The
specific iterative approach of mlrMBO is as follows. In the
initialization phase, n, configurations are sampled at random,
evaluated, and a surrogate model M is fitted with the input-
output pairs. In the iterative phase, at each iteration, ny
promising input configurations are sampled using the model
M. These configurations are obtained using infill criterion that
tries to trade-off exploitation and exploration. The algorithm
terminates when user-defined maximum number of evaluations
and/or wall-clock time is exhausted.

We focused on mIrMBO as it was shown to obtain state-
of-the-art performance on a wide range of test problems,
where it was benchmarked against other approaches such as
DiceOptim, rBayesianOptimization, SPOT, SMAC, Spearmint,
and Hyperopt. Crucial to the effectiveness of mirMBO is the
choice of the algorithm used to fit M and the infill criterion.
Given the mixed integer parameters in the hyperparameter
search, we used random forest [19] because it can handle
such parameters directly, without the need to encode the
categorical parameters as numeric. For the infill criterion, we
used the qLCB [20], which proposes multiple points with
varying degrees of exploration and exploitation

2) DEAP: We also use Distributed Evolutionary Algo-
rithms in Python (DEAP) [21], which is a Python framework
to easily use and customize evolutionary algorithms that can
be implemented with Optunity [22], a hyperparameter tuning
engine. DEAP allows users significant flexibility and various
options with the mutation, crossover, and selection operations
with minimal ‘under the hood’ understanding/work [23], al-
lowing easy implementation of complex algorithms. Moreover,
DEAP does not alter intra-node weights and parameters as
NEAT does. Specifically, we use DEAP to implement a genetic
algorithm.

In our project, DEAP’s customization allows us to manage
varied types of hyperparameters and explore the hyperparam-
eter space rigorously. For example, the crossover (mating) op-
eration can be customized to swap hyperparameters with their

mating partners, instead of averaging, which prevents integer-
type hyperparameters from becoming floats. The crossover
operation provides a way for individuals in the population
to jump out of local minima, even if that local minima is
very steep. Additionally, DEAP allows the natural selection
pressure to be tuned higher or lower with different selection
methods and parameters like ‘tournsize’ such that more of the
parameter space is explored before the population converges
to the best local minimum found. Effective implementation
of genetic algorithms usually includes a population size and
number of generations in the hundreds, which could lead to
non-optimal computation time in smaller parameter spaces.
However, in large parameter spaces, DEAP presents a ro-
bust framework for hyperparameter optimization, with much
available tuning in its algorithm creation. Optunity acts as an
interface between DEAP and the network to be optimized,
allowing for easy deployment of these various algorithms for
the purpose of hyperparameter optimization. Optunity is an
excellent implementation of evolutionary algorithms for the
purpose of hyperparameter tuning.

D. Comparison with prior CANDLE work

As in prior work, we use the CANDLE/Supervisor system
which internally uses the EMEWS [24] framework to directly
incorporate parameter exploration methods for efficient ex-
ploration of order > 10° spaces. This framework uses the
Argonne-developed Swift/T [25], [26] language to distribute
the model exploration workload efficiently across a large-scale
multi-node system using MPIL.

This work extends prior work by the CANDLE team in
multiple ways. It demonstrates a novel use of the CAN-
DLE/Supervisor workflow framework [27] by applying it to
a new problem space, a model difference maximization rather
than a hyperparameter search. It extends [28] by focusing on
a different model comparison problem, a spatially-oriented
search problem, rather than applying cross-study analysis from
one study to another.

III. DRUG RESPONSE PREDICTION

In this section, we describe the Uno model for drug response
prediction, and compare it to alternate approaches. We also
describe the underlying data.

A highly desirable goal in the application of deep learning
is to enable cross-comparison of cancer studies and integrate
results into a unified drug response model. The overall idea
is to train a neural network (NN) on a corpus of tumor
dose responses based on given combinations of cell RNA
sequences, drug descriptors, and drug fingerprints. The model
can then provide predictions for combinations of RNA se-
quences and drugs that it was not trained on. The drug
response is captured in an AUC (area-under-the-curve) score,
a typical measurement in this application area.

The Uno benchmark [28], [29] integrates experimental
cancer data from 2.5 million samples across six research
centers to examine study biases and to build a unified drug
response model. The associated manually designed DNN has
four input layers: a cell RNA sequence layer, a dose layer,



a drug descriptor layer, and a drug fingerprints layer. It has
three feature-encoding submodels for cell RNA sequence, drug
descriptor, and drug fingerprints. Each submodel is composed
of three hidden layers. The last layer for each of the submodels
is connected to the concatenation layer along with the dose
layer. This is connected to three hidden layers. The scalar
output layer is used to predict tumor dose.

A. The Uno data sets

Uno training data consists of a composite data set that
can be partitioned in multiple ways. Multiple user-selected
data sets can be dynamically assembled before training by
selecting from drug response, gene expression, and molecular
descriptors of interest; all from separate studies. Uno can
process data from user-defined combinations of data from at
least 5 studies, including NCI60, CTRP, CCLE, GDSC, and
gCSI [28]. In this paper, we focus on CCLE and gCSI because
they are small and train quickly, enabling us to study the
computational aspects in a reasonable amount of development
time. On our test system Lambda7 (described below (§VII-D)),
the per-epoch times were gCSI at 13 seconds, CCLE at 17
seconds, CTRP at 317 seconds, and the others much longer.

IV. MOTIVATION: MODEL COMPARISON

In this section, we provide a high-level overview of the goals
and approaches of model comparison, and specify the smaller
scope of the comparisons investigated in this paper.

A. Overview of model comparison

The overall goal of this effort is to produce a semi-
automated framework for doing model comparisons, automat-
ing as much as possible. A range of cancer models are now
being produced by the community and determining which
models are better under varying scenarios is very important.
Models may differ greatly on the representation of the un-
derlying data, neural network architecture, and other technical
differences. They may also differ in their intended approach
and outcome, whether focusing on performance, accuracy,
or some combination with respect to a particular range of
scenarios.

The ideal model for such a model comparison study should
be able to handle pan-cancer and multi-drug scenarios, and
provide features that facilitate easy data curation. Additionally,
we are interested in models that can predict continuous drug
response in cell lines, as measured by AUC or IC50. However,
we are not particularly interested in drug-specific models that
do not utilize drug features, or models that rely on complex,
application-specific feature representations. Our main focus
is on finding models that are practical, efficient, and able to
deliver accurate results across a range of scenarios.

In this paper, we are prioritizing the following comparisons,
in which models are assumed to be built to solve similar
problems, such as cross-study generalization analysis. Cross-
study generalization analysis demonstrates how well a model
that is trained on data from one study predicts the response
label for samples from a second study performed at a different

location by a different team, for example a model trained on
CCLE data and used to predict NCI-60 response labels.

The learning curve of the training pattern is also relevant.
In the context of deep learning model comparisons, we treat a
learning curve as a plot of model learning performance over
experience where experience is the number of samples in the
training set. This enables one to visualize model performance
as a function of training data. We are also interested in a range
of possible error analyses and and error subclass/subtyping.
While it would be useful to be able to report the N top
models using the framework that IMPROVE is curating for a
given problem, this paper focuses on a more broad approach,
in which we assume that a user is interested in finding and
isolating cases in which the models differ to gain insight into
the modeling process.

B. Scope of this paper

In this paper, we focus on the narrow problem of building
an eScience workflow that can perform the numerical and
distributed computing operations needed to make a narrow
comparison of two models on a narrowly-defined problem.
We focus on a case in which a user has two similar models
and desires to obtain scenarios in which they perform most
differently.

V. INFRASTRUCTURE

In this section, we describe the CANDLE distributed deep
learning infrastructure used to run automated model compari-
son workflows.

A. CANDLE overview

The Cancer Deep Learning Environment (CANDLE) is an
open framework for rapid development, prototyping, and scal-
ing deep learning applications on high-performance computing
(HPC) systems. CANDLE was initially developed to support
a focused set of three pilot applications jointly developed by
cancer researchers and deep learning / HPC experts, but is
now generalizable to a wide range of use cases. It is designed
to ease or automate several aspects of the deep learning appli-
cations development process. CANDLE runs on systems from
individual laptops to OLCF Frontier, and enables researchers
to scale application workflows to the largest possible scale.

Our workflow system, CANDLE/Supervisor [30], is a work-
flow application framework used to develop multiple deep
learning workflows. It is a Supervisor in the sense that it
manages the execution of many (thousands) of concurrent,
subordinate deep learning training or inference runs. CAN-
DLE/Supervisor was designed to run a wide range of model
types, including TensorFlow and PyTorch. It is also generic
with respect to the application area. For example, CANDLE
runs models in RNA expression data, molecular dynamics
data, and clinical text data.

Key components of the CANDLE architecture are shown
in Figure 1. A handful of top-level workflows have been
developed by the CANDLE team, but these can easily be mod-
ified or extended. These include 1) hyperparameter search, in



Network architecture
dense [1000,1000,1000,1000,1000] s
dense_feature_layers [1000,1000,1000]

scaling “std’

dropout 0.1

out_act ’softmax”

activation ‘relu’

Training settings

Training limits
epochs 10
timeout 3600.0
Noise injection
noise_add true
layer_force 1000
noise 20%
Model Specific

optimizer ’adamax’ train_sources ['CCLE’, "gCSI'] *
loss ‘mse’ cell_features ['rnaseq’]

metrics ’accuracy’ drug_features ["descriptors’]
batch_size 32 test_sources ["train’]
learning_rate 0.0001 agg_dose *AUC

TABLE I
HYPERPARAMETERS USED FOR UNO BENCHMARK IN THIS PAPER.

which a extendable and replaceable 3rd-party algorithm is used
to probe hyperparameter configurations [27], 2) uncertainty
quantification workflows [31], in which model sensitivity is
probed using noise injection and possible abstention, and
3) training data analysis [32], in which models are trained
on various data subsets which allows for insights into the
underlying data.

B. CANDLE compliance

CANDLE has developed the notion of CANDLE compli-
ance, a set of guidelines and interfaces to make running deep
learning models easier. It also makes it possible to invoke them
from a common workflow framework. CANDLE compliance
includes the notion of “CANDLE hyperparameters” and a few
Python methods. CANDLE hyperparameters are generalized
to include system settings and other configurations that are
not always called hyperparameters in the strict machine learn-
ing sense. The required Python methods include a run ()
method that accepts a simple Python dict of hyperparameters,
and a small number of initialization methods. CANDLE is
a lightweight framework that specifies a JSON format for
hyperparameters and logging format for model results, but
delegates the storage and use of hyperparameters and results
to external algorithms and the deep learning model. Typical
results used by workflows are performance or error metrics
such as validation loss.

CANDLE has released a library to help with CANDLE
compliance. The candle_1ib package is a pip-installable
library designed to standardize and streamline machine learn-
ing code development and deployment. Originally developed
as part of the CANDLE Benchmarks suite, it is now a

Hyperparameter
Search

Uncertainty
Quantification

Training Data
Analysis

| Workflow Orchestration

| Data Management

| Deep Learning Applications

Utilities: Hyperparameters, Data manipulation,
Restart, Callbacks, Analysis

Fig. 1. CANDLE component architecture. Users modify and extend the top-
level workflows and the deep learning applications that plug into the system,
while benefitting from reusable system components.

independently-installable library that provides various utilities
including integration with the CANDLE/Supervisor frame-
work to automate running complex workflows on exascale
machines. CANDLE-compliant models can use this simple
API and its underlying functionality via the hyperparameter
controls which control both network architecture and system-
level functionality including checkpoints [33].

The benchmark runs in this paper used the CANDLE hyper-
parameters shown in Table I. Hyperparameters shown with x
indicate typical values but in this work may be automatically
probed by the workflow.

C. Software architecture for model comparison

Key components of the CMP (CoMParator) workflow are
depicted in Figure 2. The workflow is driven by the DEAP
algorithm for optimization @, and is configured similarly
to its use in hyperparameter search by CANDLE. The search
workflow itself (r% is an unmodified reuse of the GA work-
flow in the CANDLE/Supervisor workflow suite. The CMP
Model , described in the following, is invoked on the
hyperparameters selected by the algorithm and conveyed by
the workflow system to an available worker for execution.
The CMP Model then translates hyperparameters as needed
for each of the two underlying models , here shown as
“Uno Model [0]” and “Uno Model [1].” The results produced
by the two submodels are then differenced and written
back to the system by the CMP model as though produced by a
single model. The algorithm registers the results and proceeds
to additional iterations.

A|gori?ﬁrin(385 AP) o > Search Workflow s
| Y CMP Model I
= ®
@) it )
| Uno Model [0] || Uno Model [1] |

Fig. 2. The CMP workflow. The CMP Model satisfies the interfaces needed
to be run inside a CANDLE workflow, but simply executes other models and
returns the difference.

The novel part of the workflow for this effort is in the
CMP Model and below. The CMP Model is a CANDLE-
compliant (§V-B) software module. CMP, however, is not
a deep learning model. It is a plain Python module that
runs two other CANDLE-compliant models. It currently runs
them sequentially, although it would be straightforward to run
them concurrently given appropriate handling of the GPUs.
It then returns the difference of the two models as specified
by the CANDLE MODEL_RETURN setting, which is typically
validation loss val_loss, although it could be any other
error metric or value such as a performance metric.

The behavior of the CMP Model is controlled by CAN-
DLE hyperparameters. For example, the hyperparameter set
for the CMP run with Uno would contain some common



1 [Global_ Params]

3 # The CMP Model:

4 model_name = 'cmp'

5 # The Uno submodels as containers:
6 cmp_model_name = '/tmp/woz/Uno.sif'
7 # Additional hyperparameter file for submodels:
8 cmp_config_file = '/candle_data_dir/uno_auc_model.txt'

10 # Per-model hyperparameters:

11 cmp_0_train_sources = 'CCLE'
12 cmp_1_train_sources = 'gCSI'
13 cmp_0_run_id = '"M0"
14 cmp_1_run_id = 'M1"

16 # Common hyperparameters:
17 epochs = 10

Fig. 3. CANDLE hyperparameter file for CMP Model run. Hyperparameters
starting with cmp_ are treated specially by CMP and passed down to the
submodels.

hyperparameters and some specific hyperparameters for each
submodel, as shown in Figure 3. CMP passes hyperparameters
directly to the submodels, except for those prefixed with
cmp_ or cmp__[01]_. These prefixes are stripped. The cmp__
hyperparameters are only visible in the submodels, and the
numbered hyperparameters cmp_ [01]_ are only visible in
the corresponding submodel O or 1.

The CMP Model currently returns a relative difference
scaled by the inverse of the larger value:

—|V1 = Vg
_ 1
maX(Vl,Vo) ( )

where Veyp is the CMP Model result and V, and V; are
the performance results for models M, and M respectively.
Vearp is always negative so minimizing this value maximizes
the relative difference. This can be easily reconfigured for
other studies. This is to handle cases such as the noise analysis
done herein (§VII) in which there is large variation from very
small errors to very large errors, and returning an absolute
difference would strongly bias the search toward the large
error magnitudes, even if the relative difference between them
is trivial. We assume that future studies will require more
complex differencing functions to handle other cases, possibly
with user feedback and steering to orient the search toward or
away from known areas of interest or disinterest.

Vemp =

VI. MODEL SHARING VIA LINUX CONTAINERS

In this section, we describe how community models can be
shared via Linux containers.

A. Scientific software distribution via containers

Containers allow the packaging and distribution of tools
together with their execution environment. While multiple
solutions exist to package software environments, e.g., Conda
or Spack, container technology allows the simultaneous exe-
cution of programs without loading and unloading conflicting
packages. This is especially handy for workflow systems. We
have various model codes depending on different libraries and
software versions. To run complex model workflows, we en-
force standardized interfaces for model training and inference.
All models are packaged inside a container for distribution and

easy execution. Also, Docker provides a convenient way of
packing software and distributing container images, we are
focusing on Singularity [34] or Apptainer [35] since most
HPC systems support it nowadays. Apptainer is rootless by
default and allows unprivileged users (non-root) to make use of
containers on HPC systems. In addition, it interacts seamlessly
with GPUs and network file systems.

B. Container use for community model comparison

To create workflows that can scale model execution and
comparisons, we need to make sure that all supported model
codes follow the same interface specification and are packaged
in a container. Furthermore, containers need to expose a
common interface to the workflow execution engine. There is
little to no overhead for the workflow system other than that
needed to ensure data is properly mounted inside the container
and results can be written out.

In a manner similar to CANDLE-compliance (§V-B) the
IMPROVE framework establishes a set of rules for model
codes and their containers to comply with. Every model
code provides shell scripts for data preprocessing, training,
and inference with identical interfaces. Within the IMPROVE
project, the computer science team ran and validated 28
models. These models have been developed using different
model engines and their versions (8 models with TensorFlow
vl, 1 model with TensorFlow v2, and 19 with PyTorch). Ten
of these models have been made compliant and are exposing
identical interfaces. By encapsulating the diverse model codes
and their deployment requirements into a container, we can
now execute the model codes without managing software
dependencies for the different models.

The combination of using containers for the distribution
and execution of model codes together with the standardized
interfaces is enabling plug-and-play of these models into our
workflows. The shell script framework includes:

1) preprocess.sh: Data preprocessing. For example,
this could transform raw drug response prediction data
into a data format more amenable to machine learning.

2) train.sh: Model training. Ingests machine learning-
formatted data to train the model and saves the model
along with relevant statistics and metadata. This is the
script invoked by the CMP workflow described here.

3) infer.sh: Model inferencing. Uses the trained model
and machine learning data to perform inferences and
saves raw predictions or other relevant statistics.

A CANDLE convention is to use the environment vari-
able CANDLE_DATA_DIR to specify where training data and
other configuration information may be found. In IMPROVE
containers, this is always mapped to /candle_data_dir
inside the container via the Singularity ——bind flag.

A large collection of containerized machine learning models
built for similar problems is a valuable resource and we
expect a range of future studies to be made possible; model
comparison is just one aspect of many viable research paths.
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Fig. 4. Uno model performance as trained by two different datasets. Layer size is the number of neurons in each of the dense layers in the Uno model. Noise

is the scale of the Gaussian noise applied to the drug response.

VII. CASE STUDIES IN MODEL COMPARISON

In this section, we describe how model comparison can be
automatically performed. As a demonstration, we use the Uno
model as trained on two different underlying datasets.

A. Model performance in Uno

In this experiment we use the single-drug response predic-
tion from two public datasets that are widely used resources
in the field of cancer drug response prediction and training:
1. the gCSI (Genentech Cell Line Screening Initiative [36])
and 2. CCLE (Cancer Cell Line Encyclopedia [37]). It must
be noted that the gCSI dataset contains data on a diverse
set of compounds, including both FDA-approved drugs and
investigational agents, allowing for a more comprehensive
analysis of drug response. The CCLE dataset, while providing
some drug response data, primarily focuses on genomic and
transcriptomic characterization of cell lines rather than exten-
sive drug profiling. There might be variations in the specific
cancer cell lines included in each dataset. Some cell lines may
be present in both datasets, but the overall composition and
coverage of cell lines may differ. Prior work [28] showed that
the gCSI is the most predictable among the several cell line
data sets considered in their cross-validation study.

In the workflows described in the following we use the
above two datasets and study the difference in performance of
the models trained on the two datasets. We vary the number
of dense layers (neurons) and the noise level in the data. We
use the same hyperparameters for both the datasets, only the
training data is modified.

To illustrate the behavior of the two models we formulate
a scenario in which training data noise and the number of
neurons are varied, to study hypothetical cases in which
data quality is variable and/or computational constraints are
imposed.

The Gaussian noise is applied to the labels (drug response
AUC values) by adding a Gaussian random variable. This

variable has expected value 0, with o set to range of pos-
sible percentages of the mean value of the labels found
in the unmodified training data. This was applied by using
numpy . random.normal () as the data is ingested. The
noise level was scaled by a given percentage, here called the
noise level, from 0%-50%.

We vary the number of neurons in the Uno deep learning
model by simply overriding the default neuron count in each
dense layer of the model with a value in the range from
[500,1000].

We ran these scenarios in a simple “flat” CANDLE/Su-
pervisor workflow called “dense-noise.” The CMP Model
was not used, we simply called the Uno model in the Su-
pervisor container mode, which invokes the Uno con-
tainer from the Swift/T worker node via the shell command
singularity exec. Each model ran on 1 GPU.

B. Individual model performance

We first illustrate individual model performance by sam-
pling each value in the grid of hyperparameter space defined
by our scenario. We first desire to see the full hyperparameter
space as defined by our grid. Note that this is only tractable
for a coarse sampling of a low-dimensional parameter space,
herein we use two parameters. For more parameters an auto-
mated search would be required.

The grid search was performed on Polaris at the Argonne
Leadership Computing Facility [38]. Polaris is a 560 node sys-
tem based on 1 AMD EPYC “Milan” processor per node, with
4 NVIDIA A100 GPUs per node. Each node has 512 GB RAM
and a 3 TB local NVRAM filesystem, with access to a Lustre
parallel filesystem. Each GPU appears to TensorFlow as 2
GPUs, so we ran 8 TensorFlow models concurrently per node.

Our Singularity container on Polaris for Uno runs Python
3.6.9 and TensorFlow 2.4.2 on CUDA 11.4. The image is
based on Ubuntu 18.04.5. It uses a modified version of Uno
that simply admits for the noise and layer size behavior
described above, the neural network is unchanged.



We ran Uno alone as part of a sweep workflow as depicted
in Figure 4. The results are illustrated as a heat map with
the noise level percentage on the Y-axis and the layer size
on the X-axis. Each data cell represents the validation loss
(val_loss) reported by TensorFlow. The plot is colored so
that red values are higher errors (worse quality results) and
the blue values are lower errors (better quality results). The
central white values are set to the median of the plotted data.

Each range of models was run for 10 epochs, which is
a known value for reasonable Uno results (models typically
converge after 7 epochs [32]).

As shown, the CCLE data has significantly lower median
and maximum val_loss results. For both models, broadly
speaking, results are generally better for lower noise settings,
and higher layer sizes, as expected.

Noise in the labels is expected to cause the model to be
unable to converge to the true patterns in the underlying data
and some gradient steps in the training procedure will take the
model weights in a wildly inaccurate direction.

Reducing the layer sizes used by Uno from the recom-
mended setting of 1000 per dense layer also harms perfor-
mance. This is also expected as the loss of neurons per layer
reduces the available memory of the neural network and its
capacity to pick up on patterns in the underlying data.

Some aspects of the individual models are clear. The CCLE-
trained model appears to have unusually poor performance in
the 900 column, but this is probably an anomaly. Both models
start performing very poorly as the layer size is reduced below
550, and both seem to perform noticeably better as the layers
increase in size from 950 to 1000, justifying the recommended
value of 1000.

Holding the two model results side by side, it is difficult to
visually identify a clear comparative pattern in the behavior
of the models. It is unclear how to interpret in what scenarios
the models differ greatly.

C. Model performance comparison: Grid search

To be able to identify the difference between the models,
we ran them in the CMP workflow over the same grid. The
results returned were the CMP result from Equation 1. The
result is plotted on the same axes as before in Figure 5 (a).

As shown in the plot, the relative error is higher in the
high-noise, high-layer-size region of the top right. While
this is somewhat a mathematical expectation that derives
from Equation 1, it is interesting to note that this does holds
more strongly for high noise than low noise, indicating that
the models do differ in their robustness to noise. It is also
clear visually that more extreme values are found in this
plot than in the individual plots above, as visually noticeable
by the abundance of stronger shades of both red and blue.
This indicates that there is more to learn about the varying
responses of the two models.

D. Model performance comparison: GA search

To determine the ability of automated search to find inter-
esting differences between the two models, we then ran the

full CMP workflow on the problem. We ran it using the DEAP
algorithm in the Supervisor GA (genetic algorithm) workflow.

To demonstrate that the GA approach allows for more
limited resources, we ran it on a smaller system at Argonne,
Lambda7. This is a single node with a 2 CPUs, each a 20-core,
40-thread Intel Xeon Gold 6246. The system has § NVIDIA
Tesla V100 GPUs. The system has 1 TB RAM and a simple
local NVRAM-based filesystem. This also demonstrates the
portability of our workflow scripts, which were unmodified
between Lambda7 and Polaris.

We configured DEAP to run in the bounding box described
above for the same parameter space as the grid search sce-
narios. For each search variable, the mutation value o was set
to 10. We started the run with a population size of 16, and
limited the search to 5 generations. DEAP commonly produces
fewer samples than the initial population size in generations
after the first; in this run, it only produced 56 samples total.
This contrasts with the over 100 samples required for the full
search. We expect this would be even more pronounced in
a study with more dimensions, or if finer-grained results are
required.

The results are shown in Figure 5 (b). The axes are the same
as in previous runs, except that the labels are dynamically
chosen based on bucketing the available data into deciles.
Thus, the labels do not quite match prior runs, although the
space is roughly equivalent. Some cells contain more than 1
sample run, in which case the results are averaged.

As shown, the algorithm clearly picks up on the pattern that
the variation is on the right side of the plot. In total, only 9
samples were performed in the leftmost 3 columns, whereas
44 samples were performed in the rightmost 3 columns. In
fact, 23 samples were performed in cell (851, 11) and 6 in the
sample above it (851, 17), indicating that unusual variation is
happening there. As shown in the color bar, the DEAP-based
run also found a difference value higher than any value in the
grid search, as the scale maxes out at well above 6, as opposed
to 5 in the grid search case.

The performance statistics for DEAP are compared to that
of grid search in Figure 6. In this plot, the 5 DEAP generations
are compared to the fixed maximum relative difference found
by grid search. Both the population mean and maximum are
shown for DEAP. The maximal value found by grid search was
0.5479 and the maximal value found by DEAP was 0.7314,
a 33% improvement. This supports the visual observation
that DEAP is focusing on more interesting regions of the
hyperparameter space both as a whole population and in the
specific fine-grained targeting of the maximal differences.

VIII. CONCLUSION

In this paper, we described the overall problem of cancer
drug response prediction and the previously reported Uno
model that is used to study this problem. We described the new
efforts of the IMPROVE project to catalog and standardize a
large range of community-developed cancer models for drug
response prediction and other uses. There is a need to be able
to compare these models for various reasons, including to gain
insight into model behavior.



noise level (%)
15 20 25 30 35 40 45

10

o
w

- 03

i
e
[N}

i
o
-

relative error diff (val_loss)

0
e

1 I I I 1 1 1 1 1
500 550 600 650 700 750 800 850 900 950
layer size

(@) Uno model performance differencing via grid
search. For each noise and layer size, the colored data
cell indicates the relative difference in validation loss
between the Uno on the gCSI and CCLE datasets.
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We focused on the problem of comparing two models under
a range of hyperparameters and determing in which regions of
the hyperparameter space they differ the most. By investigating
scenarios such as noise in the training data or computational
constraints such as layer size, models can be compared and
subtle differences among them may become apparent. We
propose that this can be useful to the developers and end users
of deep learning models for cancer and other application areas.

In this paper, we introduced the CMP Model and an
associated workflow based on a previously developed frame-
work for hyperparameter optimization. The new model rep-
resents an innovative use of software architecture principles
and demonstrates how a generalizable, scalable, and portable
workflow framework can be adapted to new scientific uses.
It also demonstrates the new capabilities of the framework to
incorporate containers and run them on supercomputers like
the Polaris system.

We presented results from grid search and automated search
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(b) Uno model performance search with DEAP.
Colored data cells indicate the relative difference in
validation loss between models, averaged across all
samples in that cell. Counts indicate the number of
samples performed per cell.

for two models that represent a plausible scientific investiga-
tion into model behavior in a reasonable range of scenarios.
In the grid search, we showed that the two models behaved
as expected in unfavorable scenarios, such as with noisy
data or constraints on neural network size. It was also clear
that although some patterns were clear, model comparison is
visually difficult, and it would be difficult to obtain actionable
results with a purely visual approach. We showed that auto-
mated search can quickly pick up on patterns in the model
comparison space and find wider variations than grid search
with fewer samples.

IX. FUTURE WORK

The project and features presented here have the capability
to unlock a range of future work. The model curation effort
of the IMPROVE project, not properly presented here, has
the capability to greatly impact cancer research by cataloging
and improving a large range of community cancer models.
The project will allow model developers to learn from other
models and improve their own models, while attempting to
solve problems posed by other models and approaches and
other data sets.

The automated search capabilities representing the main
thrust of this paper will be further investigated in more realis-
tic, higher-dimensional searches, on bigger data sets. We chose
the smallest and fastest-training available datasets for Uno to
demonstrate the workflow capabilities here, but other datasets
have very long training times. The combination of longer
training times, bigger datasets, bigger search spaces, larger
genetic algorithm populations, and larger neural networks will
pose exciting challenges for exascale computing.
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