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Outline

 Scripted scientific applications

– Overview of parallel scripting 

– I/O challenges

– Existing solutions and related work 

 Collective data management

– Communication and I/O model

– Basis and theoretical benefit

 Case studies

– High-level features

– Look for well-studied patterns

 Summary
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Scripted applications

 Development timeline:

– Scientific software developer produces sequential code for application research

– Produces small batch runs for parameter sweeps, plots

– Small scale batches organized through the shell and filesystem

– This model scales up to about an 8 node cluster

– Additional scaling possible through the application of grid tools and resources

– What if the application is capable of (and worthy of) scaling further? 
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Swift and related tools

 Separate workflow description from implementation

 Compile and generate workloads for existing execution infrastructures
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<sites.xml>
…

rawdata = sim(settings);
stats = analysis(rawdata);

…

compile

select resources

allocate resources

write script

 execute



Default I/O 

 In a standard Swift workflow, each task must enumerate its input and 
output files

 These files are shipped to and from the compute site 
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submit site

copy inputs

return outputs

compute



 This RPC-like technique is problematic for large numbers of short jobs



Data generation and access

 Current I/O systems work recognizes the challenges posed by large batches 
of small tasks

 Characterized by: 

– Small files

• Small, uncoordinated accesses

• Potentially large directories

– Whole file operations

– Metadata operations 

• File creates

• Links 

• Deletes

 Overall challenges

– BlueGene/P: 

• I/O bandwidth: down to 400 KB/s /core 

• File creation rate: only 1/hour /core (Raicu et al.) 
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Related work

 Filesystem optimizations

– PVFS optimizations for small files (Carns et al. 2009)

• Improved small object management

• Eager messages

– BlueFS client optimizations (Nightingale et al. 2006)

• Speculative execution in the filesystem client

• Mitigates latency

 Scheduling and caching

– BAD-FS (Bent et al. 2004)

– Data diffusion (Raicu et al. 2009)

 Collective models

– Enable programmer support

– Borrow from strengths of MPI, MPI-IO functionality

– Expose patterns explicitly (MapReduce, etc.)
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Collective Data Management

 Provide primitives that the programmer can use explicitly

– May already be used via custom scripts

– Generally difficult to specify with sequential languages

 Broadcast (aggregation, map): 

» 

 Scatter (two-phase):

» 

 Gather (aggregation, reduce)

» 
11/15/2009
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Cache techniques

 Cache pinning (specify critical data)

»  

 Workflow/data-aware scheduling

» 
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I/O reduction

 Let applications continue to move large quantities of small data over POSIX 
interfaces

 Prevent these accesses from reaching the filesystem 
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I/O reduction

 The purpose of each potential CDM technique is to reduce accesses to the 
filesystem

 In our case studies, we sought to estimate the maximum possible reduction 
that a carefully-written application could achieve on our target system 
model

 In a default scripted workflow, all accesses go to the FS

 As a start, we used an I/O reduction defined as: 

 in bytes 

 Other interesting quantities could measure file creates, links, or a count of 
accesses regardless of size 
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Case studies: High-level view

 OOPS: Open Protein Simulator

 DOCK: Molecular docking

 BLAST: Basic Local Alignment Search Tool

 PTMap: Post-transformational modification analysis

 fMRI: Brain imaging analysis
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fMRI
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 Simple MapReduce-like structure

 Broken down into scatter and gather operations

 Intermediate data can be cached.  Produces much final output



BLAST
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 Like MapReduce with two inputs

 If cache is used to implement broadcast, must prevent pollution

 Produces trivial final output – I/O reduction may exceed 99%



DOCK
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 Significant input size

 Pipeline-like accesses

 Produces trivial final output – I/O reduction may exceed 99%



OOPS
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 Significant input size

 Pipeline-like accesses and iterations

 Produces trivial final output – I/O reduction may exceed 99%



PTMap
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 Pipeline-like accesses and iterations

 Uses links to create an intermediate index

 Produces trivial final output – I/O reduction may exceed 99%



Observations

 Great deal of potential optimizations

– Many of which are previously studied

– Difficult to implement with sequential programming models

 Small files

– Large input data sets must be read efficiently

– Many small files are created, written once, and possibly read again multiple 
times, primarily by transmission to other compute jobs

– Developer basically knows this – must be able to express it

 Patterns

– MPI-like concepts such as broadcasts, gathers, and even point-to-point messages 
help describe the I/O patterns

– Can be exposed to the developer through scripting abstractions
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Summary

 Investigated I/O performance characteristics of five scalable applications

– Laid out workflow job/data dependencies

– Compared with well-studied patterns

– Performed coarse studies of file access statistics

– Looked at idealized potential optimizations (gedankenexperiments) 

 Portability

– Running on the BG/P not unlike running on the grid

– Benefit from existing software systems

– Work within the typical scientific development cycle

 Lots to do

– Proposed new software toolkit and language integration

– Largely based on existing tools; package and expose to developers

11/15/2009

Case Studies in Storage Access by Loosely Coupled Petascale Applications

19



Thanks

 Application collaborators: 
Aashish Adhikari (OOPS) and Sarah Kenny (fMRI)

 Mihael Hategan (Swift, Coasters, Java CoG), Allan Espinosa (BLAST), 
Ioan Raicu (Falkon)

 Rob Ross

 Thanks to the reviewers

 Grants:
This research is supported in part by NSF grant OCI-721939, NIH grants DC08638 and DA024304-02, the Office of 
Advanced Scientific Computing Research, Office of Science, U.S. Dept. of Energy under Contracts DE-AC02-
06CH11357 and DE-AC02-06CH11357. Work is also supported by DOE with agreement number DE-FC02-
06ER25777.

11/15/2009

Case Studies in Storage Access by Loosely Coupled Petascale Applications

20



Questions
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