
Case Studies in Storage Access

by Loosely Coupled Petascale Applications

Justin M Wozniak and Michael Wilde

Petascale Data Storage Workshop at SC’09

Portland, Oregon – November 15, 2009

Outline

 Scripted scientific applications

– Overview of parallel scripting

– I/O challenges

– Existing solutions and related work

 Collective data management

– Communication and I/O model

– Basis and theoretical benefit

 Case studies

– High-level features

– Look for well-studied patterns

 Summary

Case Studies in Storage Access by Loosely Coupled Petascale Applications

2
11/15/2009

Scripted applications

 Development timeline:

– Scientific software developer produces sequential code for application research

– Produces small batch runs for parameter sweeps, plots

– Small scale batches organized through the shell and filesystem

– This model scales up to about an 8 node cluster

– Additional scaling possible through the application of grid tools and resources

– What if the application is capable of (and worthy of) scaling further?

Case Studies in Storage Access by Loosely Coupled Petascale Applications

3
11/15/2009

Swift and related tools

 Separate workflow description from implementation

 Compile and generate workloads for existing execution infrastructures

Case Studies in Storage Access by Loosely Coupled Petascale Applications

4
11/15/2009

<sites.xml>
…

rawdata = sim(settings);
stats = analysis(rawdata);

…

compile

select resources

allocate resources

write script

 execute

Default I/O

 In a standard Swift workflow, each task must enumerate its input and
output files

 These files are shipped to and from the compute site

Case Studies in Storage Access by Loosely Coupled Petascale Applications

5
11/15/2009

submit site

copy inputs

return outputs

compute

 This RPC-like technique is problematic for large numbers of short jobs

Data generation and access

 Current I/O systems work recognizes the challenges posed by large batches
of small tasks

 Characterized by:

– Small files

• Small, uncoordinated accesses

• Potentially large directories

– Whole file operations

– Metadata operations

• File creates

• Links

• Deletes

 Overall challenges

– BlueGene/P:

• I/O bandwidth: down to 400 KB/s /core

• File creation rate: only 1/hour /core (Raicu et al.)

11/15/2009

Case Studies in Storage Access by Loosely Coupled Petascale Applications

6

Related work

 Filesystem optimizations

– PVFS optimizations for small files (Carns et al. 2009)

• Improved small object management

• Eager messages

– BlueFS client optimizations (Nightingale et al. 2006)

• Speculative execution in the filesystem client

• Mitigates latency

 Scheduling and caching

– BAD-FS (Bent et al. 2004)

– Data diffusion (Raicu et al. 2009)

 Collective models

– Enable programmer support

– Borrow from strengths of MPI, MPI-IO functionality

– Expose patterns explicitly (MapReduce, etc.)

11/15/2009

Case Studies in Storage Access by Loosely Coupled Petascale Applications

7

Collective Data Management

 Provide primitives that the programmer can use explicitly

– May already be used via custom scripts

– Generally difficult to specify with sequential languages

 Broadcast (aggregation, map):

»

 Scatter (two-phase):

»

 Gather (aggregation, reduce)

»
11/15/2009

Case Studies in Storage Access by Loosely Coupled Petascale Applications

8

Cache techniques

 Cache pinning (specify critical data)

»

 Workflow/data-aware scheduling

»

11/15/2009

Case Studies in Storage Access by Loosely Coupled Petascale Applications

9

time

I/O reduction

 Let applications continue to move large quantities of small data over POSIX
interfaces

 Prevent these accesses from reaching the filesystem

11/15/2009

Case Studies in Storage Access by Loosely Coupled Petascale Applications

10

U
se

r
I/

O CDM

I/O reduction

 The purpose of each potential CDM technique is to reduce accesses to the
filesystem

 In our case studies, we sought to estimate the maximum possible reduction
that a carefully-written application could achieve on our target system
model

 In a default scripted workflow, all accesses go to the FS

 As a start, we used an I/O reduction defined as:

 in bytes

 Other interesting quantities could measure file creates, links, or a count of
accesses regardless of size

11/15/2009

Case Studies in Storage Access by Loosely Coupled Petascale Applications

11

appsby seen I/O

FSby seen I/O
%100reduction

Case studies: High-level view

 OOPS: Open Protein Simulator

 DOCK: Molecular docking

 BLAST: Basic Local Alignment Search Tool

 PTMap: Post-transformational modification analysis

 fMRI: Brain imaging analysis

11/15/2009

Case Studies in Storage Access by Loosely Coupled Petascale Applications

12

fMRI

11/15/2009

Case Studies in Storage Access by Loosely Coupled Petascale Applications

13

 Simple MapReduce-like structure

 Broken down into scatter and gather operations

 Intermediate data can be cached. Produces much final output

BLAST

11/15/2009

Case Studies in Storage Access by Loosely Coupled Petascale Applications

14

 Like MapReduce with two inputs

 If cache is used to implement broadcast, must prevent pollution

 Produces trivial final output – I/O reduction may exceed 99%

DOCK

11/15/2009

Case Studies in Storage Access by Loosely Coupled Petascale Applications

15

 Significant input size

 Pipeline-like accesses

 Produces trivial final output – I/O reduction may exceed 99%

OOPS

11/15/2009

Case Studies in Storage Access by Loosely Coupled Petascale Applications

16

 Significant input size

 Pipeline-like accesses and iterations

 Produces trivial final output – I/O reduction may exceed 99%

PTMap

11/15/2009

Case Studies in Storage Access by Loosely Coupled Petascale Applications

17

 Pipeline-like accesses and iterations

 Uses links to create an intermediate index

 Produces trivial final output – I/O reduction may exceed 99%

Observations

 Great deal of potential optimizations

– Many of which are previously studied

– Difficult to implement with sequential programming models

 Small files

– Large input data sets must be read efficiently

– Many small files are created, written once, and possibly read again multiple
times, primarily by transmission to other compute jobs

– Developer basically knows this – must be able to express it

 Patterns

– MPI-like concepts such as broadcasts, gathers, and even point-to-point messages
help describe the I/O patterns

– Can be exposed to the developer through scripting abstractions

11/15/2009

Case Studies in Storage Access by Loosely Coupled Petascale Applications

18

Summary

 Investigated I/O performance characteristics of five scalable applications

– Laid out workflow job/data dependencies

– Compared with well-studied patterns

– Performed coarse studies of file access statistics

– Looked at idealized potential optimizations (gedankenexperiments)

 Portability

– Running on the BG/P not unlike running on the grid

– Benefit from existing software systems

– Work within the typical scientific development cycle

 Lots to do

– Proposed new software toolkit and language integration

– Largely based on existing tools; package and expose to developers

11/15/2009

Case Studies in Storage Access by Loosely Coupled Petascale Applications

19

Thanks

 Application collaborators:
Aashish Adhikari (OOPS) and Sarah Kenny (fMRI)

 Mihael Hategan (Swift, Coasters, Java CoG), Allan Espinosa (BLAST),
Ioan Raicu (Falkon)

 Rob Ross

 Thanks to the reviewers

 Grants:
This research is supported in part by NSF grant OCI-721939, NIH grants DC08638 and DA024304-02, the Office of
Advanced Scientific Computing Research, Office of Science, U.S. Dept. of Energy under Contracts DE-AC02-
06CH11357 and DE-AC02-06CH11357. Work is also supported by DOE with agreement number DE-FC02-
06ER25777.

11/15/2009

Case Studies in Storage Access by Loosely Coupled Petascale Applications

20

Questions

11/15/2009

Case Studies in Storage Access by Loosely Coupled Petascale Applications

21

