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ABSTRACT

Training scientific deep learning models requires the significant
compute power of high-performance computing systems. In this
paper, we analyze the performance characteristics of the bench-
marks from the exploratory research project CANDLE (Cancer Dis-
tributed Learning Environment) with a focus on the hyperparame-
ters epochs, batch sizes, and learning rates. We discuss the parallel
methodology, which use the distributed deep learning framework
Horovod to parallelize the CANDLE benchmarks. We then use scal-
ing strategies for both epochs and batch size with linear learning
rate scaling to investigate how they impact the execution time and
accuracy as well as the power, energy, and scalability of the parallel
CANDLE benchmarks under conditions of weak scaling and strong
scaling. We use the following two machines for the experimen-
tal work: the IBM Power9 heterogeneous system, Summit, at Oak
Ridge National Laboratory and the Cray XC40, Theta, at Argonne
National Laboratory. This study provides insights into how to set
the proper numbers of epochs, batch sizes, and compute resources
for these benchmarks to preserve the high accuracy and to reduce
the execution time of the benchmarks. We identify the data-loading
performance bottleneck and then improve the performance and
energy for better scalability. Results with the modified benchmarks
on Summit indicate up to 78.25% in performance improvement and
up to 78% in energy saving under strong scaling on up to 384 GPUs
and up to 79.5% in performance improvement and up to 77.11% in
energy saving under weak scaling on up to 3,072 GPUs. On Theta,
we achieve up to 45.22% performance improvement and up to 41.78%
in energy saving under strong scaling on up to 384 nodes. Moreover,
the modification dramatically reduces the broadcast overhead.

1 INTRODUCTION

Training modern deep learning models requires the large amount of
computing power provided by high-performance computing (HPC)
systems. TensorFlow [2][30] is a widely used open source frame-
works for deep learning; it supports a wide variety of deep learning
uses, from conducting exploratory research to deploying models
in production on cloud servers, mobile apps, and even self-driving
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Figure 1: Scope and System Overview of CANDLE [5]

vehicles [28]. Horovod [14] [28], developed by Uber, is a distributed
training framework for TensorFlow and Keras [16]. In this work, we
use Horovod to parallelize Python-based benchmarks [8] from the
exploratory research project CANDLE (Cancer Distributed Learn-
ing Environment) [5]. We then analyze and improve the Horovod
implementation of CANDLE benchmarks in terms of performance,
energy, and scalability on the IBM Power9 heterogeneous system
Summit with GPUs [29] at Oak Ridge National Laboratory and on
the Cray XC40 Theta [11] at Argonne National Laboratory.

The CANDLE project [5] [33] focuses on building a single scal-
able deep neural network that can address three cancer challenge
problems shown in Figure 1(a): the RAS pathway problem of un-
derstanding the molecular basis of key protein interactions in the
RAS/RAF pathway presented in 30% of cancers using unsuper-
vised learning; the drug response problem of developing predictive
models for drug response to optimize preclinical drug screening
and drive precision-medicine-based treatments for cancer patients
using supervised learning; and the treatment strategy problem of
automating the analysis and extraction of information from millions
of cancer patient records to determine optimal cancer treatment
strategies using semi-supervised learning. The CANDLE system
overview in Figure 1(b) consists of several major components: hard-
ware resources, the CANDLE supervisor and workflow manager,
CANDLE benchmarks, database, and integrator website. The CAN-
DLE benchmarks are the main application driver in the CANDLE
project.

The CANDLE benchmarks [7] Pilot1, Pilot2, and Pilot3 imple-
ment deep learning architectures that are relevant to these three
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cancer problems. The Pilot1 (P1) benchmarks are formed from prob-
lems and data at the cellular level. The goal behind the P1 bench-
marks is to predict the drug response based on molecular features
of tumor cells and drug descriptors. The Pilot2 (P2) benchmarks
are formed out of problems and data at the molecular level. The
goal behind the P2 benchmarks is molecular dynamic simulations
of proteins involved in cancer, specifically the RAS protein. The
Pilot3 (P3) benchmarks are formed out of problems and data at the
population level. The goal behind the P3 benchmarks is to predict
cancer recurrence in patients based on patient-related data.

The CANDLE benchmarks are implemented in Python by us-
ing the Keras framework. Each benchmark uses common Python-
based CANDLE utilities and implements a common interface used
by higher-level Python-based driver systems, such as the CAN-
DLE/Supervisor framework for hyperparameter optimization [33].
These benchmarks, which are intended to run on exascale systems
as they emerge, are currently being tested on pre-exascale systems
such as Theta and Summit. These pre-exascale systems feature new
hardware at ever greater scale, requiring new analysis of perfor-
mance and power to determine how best to use them. Deep learning
is expected to play a greater role in scientific computing on systems
such as Summit. Thus, deep learning is critical for studying the per-
formance and power usage of the whole application stack, including
the scripting level, numerics, and communication. In this work, we
focus on the P1 benchmarks, which include four benchmarks: NT3,
P1B1, P1B2, and P1B3.

To accelerate TensorFlow applications by utilizing large-scale su-
percomputers such as Theta and Summit requires a distributed Ten-
sorFlow environment. Currently, TensorFlow has a native method
for parallelism across nodes using the gRPC layer in TensorFlow
based on sockets [1] [13], but this is difficult to use and optimize
[21] [28]. The performance and usability issues with the distributed
TensorFlow can be addressed, however, by adopting an MPI commu-
nication model. Although TensorFlow has an MPI option, it replaces
only point-to-point operations in gRPC with MPI and does not use
MPI collective operations. Horovod adapts the MPI communication
model by adding an allreduce between the gradient computation
and model update, replacing the native optimizer with a new one
called the Distributed Optimizer. No modification to TensorFlow
itself is required; the Python training scripts are modified instead.
The Cray programming environment machine learning plugin (CPE
ML Plugin) [21], like Horovod, does not require modification to
TensorFlow, but it is designed for Cray systems and is not available
to the public on other systems. Therefore, we chose Horovod for
this investigation.

In this paper, we have the following contributions.

e We discuss our parallel methodology and use Horovod to
parallelize the CANDLE P1 benchmarks (NT3, P1B1, P1B2
and P1B3) on Theta and Summit. This parallelization method
can be applied to other CANDLE benchmarks such as the P2
and P3 benchmarks in a similar way.

o We analyze the performance characteristics of the CANDLE
benchmarks with the focus on the hyperparameters epochs,
batch sizes, and learning rates. We use scaling strategies for
both epochs and batch size with linear learning rate scaling
to investigate how they impact not only the performance
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Figure 2: Control Flow of a CANDLE Benchmark

and accuracy but also the power, energy, and scalability
under strong scaling on Summit (with GPUs) and Theta
(with CPUs).

o We identify the performance bottlenecks and then refine the
parallel cancer deep learning benchmarks to improve their
performance, energy, and scalability under strong scaling
and weak scaling.

The remainder of this paper is organized as follows. Section 2
briefly describes the CANDLE P1 benchmarks and Horovod and
then discusses the parallel methodology and the Horovod imple-
mentation. Section 3 depicts the system platforms Summit and
Theta. Section 4 analyzes the performance and power character-
istics of the Horovod CANDLE benchmarks under strong scaling.
Section 5 discusses performance and energy improvement of these
benchmarks under strong scaling. Section 6 analyzes the perfor-
mance and energy improvement of these benchmarks under weak
scaling. Section 7 summarizes this work and discusses some future
work.

2 CANDLE BENCHMARKS AND THEIR
HOROVOD IMPLEMENTATIONS

In this section, we briefly describe the CANDLE benchmarks [7] and
the distributed deep learning framework Horovod [28]. We then
discuss in detail the methodology for the Horovod implementation
of the benchmarks.

2.1 CANDLE Benchmarks

The CANDLE benchmarks are written in Python and Keras, which
is a high-level neural network API written in Python and capable
of running on top of TensorFlow, CNTK [22], or Theano [32]. Each
CANDLE benchmark entails three phases: data loading and pre-
processing, basic training and cross-validation, and prediction and
evaluation on test data in Figure 2.

Batch steps per epoch is the total number of samples divided by
the batch size. Increasing the batch size means decreasing the batch
steps per epoch. To achieve high model accuracy, we have to choose
the proper (optimal) number of epochs and batch size. If the batch
size is too small, the number of batch steps per epoch (the number
of iterations) is too large so that it takes a long time to train the
model. If the batch size is too large, then few data samples are used
for model training, significantly impacting the model accuracy. For
a given batch size, one epoch is not enough to achieve high model
accuracy. Therefore, the parameters for the model training from



Performance, Energy, and Scalability Analysis and Improvement

Table 1: Epochs, batch size, data samples, and training and
testing file sizes for the P1 benchmarks.

B k NT3 P1B1 P1B2 P1B3
Training data size 597MB 771MB 162MB 318MB
Testing data size 150MB 258MB 55MB 103MB
Number of epochs 384 384 768 1
Batch size 20 100 60 100
Learning rate 0.001 none 0.001 0.001
Optimi; sgd adam rmsprop sgd
Total training samples 1,120 2,700 2,700 900,100
Total elements per sample 60,483 60,484 28,204 1,000

this epoch are used for model training in the next epoch, in order
to improve the model accuracy.

In this work, we focus on the P1 benchmarks and briefly describe
four benchmarks—NT3, P1B1, P1B2 and P1B3—as follows. Table
1 shows the number of epochs, batch size, learning rate, the total
number of data samples, and data file sizes for training and testing in
each benchmark. Each benchmark uses the importing data function
pandas.read_csv() [26] to read the data files locally.

2.1.1 NT3 Benchmark. This benchmark [8] is a 1D convolu-
tional network for classifying RNA-seq gene expression profiles
into normal or tumor tissue categories. This network follows the
classic architecture of convolutional models with multiple 1D con-
volutional layers interleaved with pooling layers followed by final
dense layers. The model is trained on the balanced 700 matched
normal-tumor gene expression profile pairs available from the NCI
Genomic Data Commons and acts as a quality control check for
synthetically generated gene expression profiles. The full dataset
of expression features contains 60,483 float columns transformed
from RNA-seq FPKM-UQ values [8] that map to a column that
contains the integer 0|1. As shown in Table 1, the training data size
for this benchmark is 597 MB, and the test data size is 150 MB. The
number of epochs is 384. The batch size is 20 (default); and the total
training samples are 1,120. Thus, the batch steps per epoch are 56.
The optimizer is sgd (stochastic gradient descent).

2.1.2  P1B1 Benchmark. This benchmark [7] is a multilayer per-
ceptron (MLP) network, which is a class of feedforward artificial
neural networks, with encoding layers, dropout layers, bottleneck
layer, and decoding layers. It has at least three hidden layers: one
encoding layer, one bottleneck layer, and one decoding layer. Given
a sample of RNA-seq gene expression data, it builds a sparse au-
toencoder that can compress the expression profile into a low-
dimensional vector without much loss of information. In Table 1,
the training data size is 771 MB, and the test data size is 258 MB.
The number of epochs is 384; the batch size is 100 (default); and the
total training samples are 2,700. Thus, the batch steps per epoch
are 27. The optimizer is adam (adaptive moment estimation).

2.1.3  P1B2 Benchmark. This benchmark [7] is a multilayer per-
ceptron (MLP) network with regularization and five layers. Given
patient somatic SNP data, it builds a deep learning network that
can classify the cancer type based on sparse input data and evaluate
the information content and predictive value in a molecular assay
with auxiliary learning tasks. In Table 1, the training data size is
162 MB, and the test data size is 55 MB. The number of epochs is
768; the batch size is 60 (default); and the total training samples
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are 2,700. Thus, the batch steps per epoch are 45. The optimizer is
rmsprop (root mean square propagation).

2.1.4 P1B3 Benchmark. This benchmark [7] is a multilayer per-
ceptron (MLP) network with convolution-like layers. Given drug
screening results on NCI60 cell lines, it builds a deep learning net-
work that can predict the growth percentage of a cell line treated
with a new drug from cell line gene expression data, drug concen-
tration, and drug descriptors. This benchmark is a simplified form
of the core drug response prediction problem to combine multiple
molecular assays and a diverse array of drug feature sets to make a
prediction. In Table 1, the training data size is 318 MB, and the test
data size is 103 MB. The number of epochs is 1; the batch size is
100 (default); and the total training samples are 900,100. Thus, the
batch steps per epoch is 9,001. The optimizer is sgd.

2.2 Horovod

The goal of Horovod [14] [28] is to make distributed deep learning
fast and easy to use. The core principles of Horovod are based on
MPI concepts such as size, rank, local rank, allreduce, allgather,
and broadcast; and it is implemented by using MPI subroutines. A
unique feature of Horovod is its ability to interleave communication
and computation. Moreover, it is able to batch small allreduce oper-
ations by combining all the tensors that are ready to be reduced at
a given moment into one reduction operation, an action that results
in improved performance. The Horovod source code is based on
the Baidu tensorflow-allreduce repository [4]. Horovod provides
MPI-based data parallelism for TensorFlow. In its examples [14], it
provides the parallelization at the epoch level (keras_mnist.py) and
at the batch step level (keras_mnist_advanced.py). Choosing which
level depends on the application characteristics.

2.3 Methodology: Using Horovod to Parallelize
the CANDLE Benchmarks

In this section, we discuss our methodology using Horovod to
parallelize the CANDLE benchmarks on Summit with GPUs. For
Theta with CPUs, we simply replace the number of GPUs with the
number of nodes for the methodology.

2.3.1 Methodology: Scalable Data Parallelism. Each CANDLE
benchmark has two main loops, at the batch step level and at the
epoch level. We want to parallelize the two loops to speed up the
training process. Figure 3 shows the framework of the data-parallel
methodology. Data parallelism is at the epoch level and/or the batch
step level. The one model training iteration is inside the two main
loops. At the end of the iteration, the allreduce operation is used to
average the gradients, and then the averaged gradients are applied
to the model update for the next training iteration.

We assume that the number of epoch is E, the batch size is B,
and the number of total data samples is S. Thus, the number of
batch steps per epoch is S/B, and the total number of iterations is
E X §/B, as shown in Figure 3. Decreasing E per GPU or increasing
B results in a reduction in the number of iterations, which means
fewer allreduce operations and less time. In Figure 4(a), for strong
scaling (inverse proportion), we keep the total number of epochs
constant, decrease the number of epochs per GPU, and increase the
number of GPUs. For weak scaling (direct proportion), we keep the
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number of epochs per GPU constant and increase the number of
GPUs.
Consider how to scale the batch size to some extent for bet-
ter performance without reducing the training accuracy (such as
linear scaling and square root scaling for batch steps per epoch),
as shown in Figure 4(b). If the total number of data samples is
large, we increase the batch size based on the number of GPUs
as follows: Linear scaling: batch_size X GPUs; Square root scaling:
int (batch_size X (GPUs)l/Z); Cubic root scaling: int (batch_size X
(GPUs)!/3). Which scaling strategy is used depends on the total
number of data samples and number of GPUs for training. Overall,
choosing the level of data parallelism depends on the application

characteristics.

2.3.2  Implementations. As described in [14], to use Horovod,
we made the following additions to a benchmark to utilize GPUs:

e For using GPUs on Summit, pin the GPU to be used to the
process local rank (one GPU per process). In this case, the
first process on the node will be allocated the first GPU, the
second process will be allocated the second GPU, and so

forth.

from keras import backend as K
import tensorflow as tf

import horovod.tensorflow as hvd
hvd.init()

X. Wu et al.

config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.gpu_options.visible_device_list = str(hvd.local_rank())

K.set_session(tf.Session(config=config))

For each Summit node with 6 GPUs, the hvd.local_rank() is

0,1,2,3,4,and 5.

e For using CPUs on Theta, pin the node to be used to the
process rank (one process per node). In this case, the first
process will be allocated the first node, the second process
will be allocated the second node, and so forth. We also set
64 threads per node to accelerate the code.

os.environ["KMP_BLOCKTIME"] = "@"

os.environ["KMP_SETTINGS"] = "1"
os.environ["KMP_AFFINITY"]= "granularity=fine,verbose,compact,1,0"

config = tf.ConfigProto(intra_op_parallelism_threads=

int(os.getenv('OMP_NUM_THREADS', 64)),
inter_op_parallelism_threads=1, allow_soft_placement=True)

K.set_session(tf.Session(config=config))

e Obtain the size (hvd.size()) and rank (hvd.rank()), and
adjust the number of epochs.
If the number of epochs n is large, adjust the number of
epochs based on the number of GPUs as follows.

nprocs = hvd.size()
myrank = hvd.rank()

def comp_epochs(n, myrank=0, nprocs=1):
j = int(n // nprocs)
k = n % nprocs
if myrank < nprocs-1:
i=3
else:
i=3+k
return i

epochs = comp_epochs(gParameters['epochs'], myrank, nprocs)

We use comp_epochs () to calculate the number of epochs
for each GPU. For load balancing, we ensure that the number
of epochs is the same for each GPU.

e Scale the learning rate by the number of workers. We scale
the learning rate to learning_rate X nprocs. We keep the
batch size constant for the benchmarks NT3, P1B1, and P1B2
because of the small number of samples, and we scale the
batch size for the benchmark P1B3 because of the large num-
ber of samples in Table 1.

e Wrap the original optimizer in the Horovod distributed opti-
mizer using hvd.DistributedOptimizer(optimizer). The
distributed optimizer delegates the gradient computation to
the original optimizer, averages gradients using the Allreduce,
and then applies those averaged gradients.

e Add hvd.BroadcastGlobalVariablesHook (@) to the call-
backs to broadcast initial variable states from rank 0 to all
other processes. This step ensures consistent initialization of

all workers when training is started with random weights.

3 SYSTEM PLATFORMS

We conduct our experiments on the IBM Power9 heterogeneous
system Summit [29] of approximately 200 petaflops at Oak Ridge
National Laboratory and the Cray XC40 Theta [11] of approximately
12 petaflops at Argonne National Laboratory. In this section, we

briefly describe their specifications.

The basic building block of Summit is the IBM Power System
AC922 node. Each of the approximately 4,600 compute nodes on
Summit contains two IBM POWER9 processors and six NVIDIA
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Figure 5: High-Level Overview of a Summit Node [29]

Volta V100 accelerators in Figure 5 (a). Each POWERY processor is
connected via dual NVLINK bricks, each capable of a 25 GB/s trans-
fer rate in each direction. Nodes contain 512 GB of DDR4 memory
for use by the POWERSY processors and 96 GB of high-bandwidth
memory (HBM2) for use by the accelerators. Additionally, each
node has 1.6 TB of nonvolatile memory that can be used as a burst
buffer. Summit is connected to an IBM Spectrum Scale filesystem
providing 250 PB of storage capacity with a peak write speed of 2.5
TB/s. The largest block size of I/O that the Spectrum Scale can issue
on Summit is 16 MB [18]. For each Summit node [3], the TDP of
each Volta GPU is 300 W, and the TDP of each Power9 is 190 W. The
power consumption of each Summit node is 2,200 W. In this work,
we use the NVIDIA System Management Interface (nvidia-smi) [24]
to measure power consumption for each GPU; however, the power
measurement for IBM Power9 is not available to the public. The
power sampling rate used is 1 sample per second (default).

Each Cray XC40 node has 64 compute cores (one Intel Phi Knights
Landing (KNL) 7230 with the thermal design power (TDP) of 215
W), shared L2 cache of 32 MB (1 MB L2 cache shared by two cores),
16 GB of high-bandwidth in-package memory, 192 GB of DDR4
RAM, and a 128 GB SSD. The Cray XC40 system uses the Cray
Aries dragonfly network with user access to a Lustre parallel file
system with 10 PB of capacity and 210 GB/s bandwidth. In this
work, we simplified the PoLiMEr library [17], which utilizes Cray’s
CapMC [19] [10] to measure power consumption for the node, CPU,
and memory at the node level on Theta. The power sampling rate
used is approximately 2 samples per second (default). In a Python
code, we import ctypes to export the CDLL for loading the shared
PoLiMEr library in order to measure the power. We conduct our
experiments with the cache memory mode.

4 PERFORMANCE AND POWER ANALYSIS

In this section, we discuss CPU and GPU partitioning and ana-
lyze the performance and power characteristics of the Horovod
CANDLE P1 benchmarks with strong scaling on Summit; we find
a similar performance trend on Theta. For the constant number
of epochs in Table 1, we scale up the number of GPUs to measure
the performance and power of the Horovod CANDLE benchmarks.
We use Python’s cProfile [27] to profile the performance and use
nvidia-smi to measure the GPU power consumption.

ACM Conference, 2019,
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Figure 6: Horovod NT3 on Summit

4.1 Horovod and GPUs Partitioning

Summit supports the NVIDIA Collective Communications Library
(NCCL) [23], which implements multi-GPU and multinode collec-
tive communication primitives that are performance optimized for
NVIDIA GPUs to achieve high bandwidth over PCle and NVLink
high-speed interconnect. Therefore, we configure Horovod using
NCCL on Summit. Each Summit node has two Power9 (42 cores)
and six Volta GPUs. We use the jsrun visualizer [15] to partition
the CPU cores and GPUs in order to achieve better performance.
Figure 5(b) shows the GPUs partitioning layout with 6 partitions
for our experiments, where each partition consists of one GPU and
7 CPU cores.

4.2 Performance and Power Analysis

4.2.1 Horovod NT3. We use 384 epochs and the batch sizes of
20 (default) and 40 to conduct the experiments for Horovod NT3 on
Summit. This is our strong-scaling study: each GPU executes the
number of epochs, which is 384 divided by the number of GPUs.
In our previous work [35], we found that the model training and
cross-validation phase dominated the time spent in TensorFlow on
the Cray XC40 Theta. Therefore, we focus on the time for this phase
and data loading, training accuracy, and GPU power on Summit.

Figure 6(a) shows the performance comparison of Horovod NT3
with the batch sizes of 20 (default) and 40 on Summit, where Ten-
sorFlow stands for the time spent in the model training and cross-
validation for a batch size of 20; Total Runtime (40) stands for
the total runtime for the Horovod NT3 with a batch size of 40; and
Data Loading stands for the time spent in the data-loading phase
using pandas.read_csv() [26] for a batch size of 20. On 384 GPUs
(64 nodes), each GPU executes one epoch; and on one GPU, each
GPU executes 384 epochs. We observe that with increasing num-
bers of GPUs, the time in TensorFlow decreases significantly for
both cases. Using a larger batch size (40) results in the less runtime
because of fewer iterations performed. However, the data-loading
time increases slightly for both cases. In particular, on 48 GPUs or
more, the data-loading time dominates the total runtime. Therefore,
data loading is its performance bottleneck.

Figure 6(b) compares the training accuracy for Horovod NT3
with batch sizes of 20 and 40. With increasing numbers of GPUs,
the number of epochs per GPU decreases. The training accuracy
reaches 1 when 12, 24, and 48 GPUs are used for the batch size of 20;
when 12 and 24 GPUs are used for the batch size of 40, the training
accuracy decreases significantly. These results indicate that the
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Table 2: Time per epoch (s) and average GPU power (W) for
Horovod NT3.

#GPUs 1 6 12 24 48 96 192 384

Time per epoch 1030 | 1093 | 11.17 | 11.41 1191 1274 | 15.65| 21.82
Power per GPU 2242 | 1768 | 155.1| 1303 | 93.88 | 76.02| 64.59 | 59.14
Time per epoch (40) 10.14| 1045 | 1073 | 11.09 | 11.50 | 12.17 | 14.51 | 21.75
Power per GPU (40) 2281 | 1712 154 | 1267 | 94.09 | 77.54| 6569 | 57.07

oy Time for 384 GPUS

(a) Node Power (b) Timeline

Figure 7: Horovod NT3 Using 384 GPUs on Summit

number of epochs for the training and the batch size impact the
accuracy. The proper number of epochs per GPU for the training is
8. Using 4 epochs or less per GPU results in a significant decrease
in accuracy. Notice that for Horovod NT3, using a batch size of 50
or larger causes running out of memory.

Table 2 compares the time per epoch and average GPU power
for the benchmark with batch sizes of 20 and 40. For the given
batch size, the time per epoch should be the same. Using a larger
batch size (40) results in smaller time per epoch and lower GPU
power. With the increased number of GPUs, the time per epoch
increases significantly from around 10 s on one GPU to around 22
s on 384 GPUs. This increase is caused by the Horovod allreduce
overhead, which is similar to what we found for Horovod NT3 on
the Cray XC40 Theta with Intel KNL CPUs [35]. The benchmark is
compute-intensive (more than 695 s per epoch) on Theta. On Sum-
mit, however, it is not compute-intensive (around 10 s per epoch).
The data loading becomes the dominant performance bottleneck
for Horovod NT3.

Figure 7(a) shows GPU power per node over time for the Horovod
NT3 executed on 384 GPUs (64 nodes). We observe that the bench-
mark spends most of the time in data loading. For one node of 64
nodes, the power behavior for each GPU is similar. We find that the
data loading takes around 153 s. Then what happened? To explain
the power behavior in Figure 7(a), we use the Horovod timeline to
record the communication activities.

Horovod has the ability to record a timeline of its activity viewed
in the Chrome browser through chrome://tracing [9]. Figure 7(b)
shows the timeline for the communication of the benchmark on 384
GPUs with allreduce highlighted. This timeline starts the broadcast
communication, not the beginning of the benchmark. It consists of
two communication types, broadcast (negotiate_broadcast, broad-
cast, mpi_broadcast) and allreduce (allreduce, NCCL_allreduce, and
negotiate_allreduce), where broadcast is implemented based on
mpi_broadcast and allreduce is implemented based on the NCCL
_allreduce [23].
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Figure 9: Horovod P1B2 on Summit

Based on the communication activities in Figure 7(b), we can
explain the power behavior shown in Figure 7(a). After data load-
ing and preprocessing, the negotiate_broadcast takes place. During
the broadcast, the GPU power remains the same; however, it takes
around 43 s for the broadcast. Then the gradients are computed so
that the GPU power increases. Next, allreduce and NCCL_allreduce
are used to average the gradients, and the averaged gradients are ap-
plied. After this, the model training batch steps are started. During
the training, negotiate_allreduce, allreduce and NCCL_allreduce
take place periodically.

4.2.2 Horovod P1B1. As shown in Table 1, the P1B1 has the
largest training data size. Its default batch size is 100, so the batch
steps per epoch are only 2700/100=27. Figure 8(a) compares the per-
formance of Horovod P1B1 with batch sizes of 100 and 110, where
P1B1 requires at least 4 epochs (at most 96 GPUs) for execution.
We observe that the data loading dominates the total runtime us-
ing 24 GPUs or more. Therefore, data loading is its performance
bottleneck, similar to the Horovod NT3. Figure 8(b) compares the
training loss of the benchmark with batch sizes of 100 and 110. The
loss increases only slightly for both cases.

4.2.3 Horovod P1B2. Figure 9(a) compares the performance of
Horovod P1B2 with batch sizes of 60 (default) and 100. Because
P1B2 is strong scaling, we observe that the data loading starts
to dominate the total runtime with increasing numbers of GPUs.
Therefore, data loading is its performance bottleneck, similar to
the Horovod NT3. Figure 9(b) compares the training accuracy of
the benchmark with the number of GPUs. The accuracy decreases
significantly when using 96 GPUs or more. This result indicates
that using16 epochs or more per GPU for model training will result
in high accuracy.
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Figure 10: Horovod P1B3 on Summit

4.2.4 Horovod P1B3. In Table 1, P1B3 is different from the other
three benchmarks in the number of epochs, total training samples,
and total elements per sample. P1B3 has only one epoch as default,
and it has 900,100 training samples with only 1,000 elements per
sample. Because of the huge number of training samples in P1B3,
we focus on how different batch size scaling strategies shown in
Figure 4 impact the performance and accuracy of the Horovod P1B3.

Figure 10(a) shows the performance of Horovod P1B3 with three
batch size scaling strategies on Summit. The default batch size is
100. For the linear scaling, the batch size is 100 X GPUs; For the
square root scaling, the batch size is int (100 X (GPUs)Y2); and for
the cubic root scaling, the batch size is int (100 X (GPUs)'/3). We
observe that the linear scaling scales up the batch size significantly
with the number of GPUs. This results in the smallest runtime
because of the fewest batch steps per epoch. However, setting the
batch size too large (19,200 or 38,400) using 192 or 384 GPUs causes
failed execution. The cubic root scaling is the slowest increase in
batch size, so that its runtime is the largest. We note that data
loading is not a dominant performance factor. Figure 10(b) shows
that cubic root scaling results in the best accuracy among these
strategies. Using 96 GPUs or larger, however, does not lead to better
accuracy. These results indicate that setting the proper batch size
can result in high accuracy. For instance, for the given number of
GPUs (48), setting the batch size to int(100 X (48)1/3) = 363 leads
to the highest accuracy (0.6579).

5 PERFORMANCE AND ENERGY
IMPROVEMENT

Based on the performance analysis in the preceding section, per-
formance optimization should focus on the data-loading process
in the Horovod CANDLE benchmarks on Summit and Theta. In
these benchmarks, pandas.read_csv() is called to read the csv data
files. Tables 3 and 4 show the performance (in seconds) for data
loading with different file sizes using different methods for the P1
benchmarks on Summit and Theta. We compare data-loading meth-
ods, the original one (pandas.read_csv()) and the data loading in
chunks with low_memory=False (chunk size is 16 MB). The option
low_memory is True in the default case for the original method; it
internally processes the file in chunks, resulting in lower memory
use while parsing. Setting the option to False improves the data-
loading process significantly because of the use of large chunks
without being limited to lower memory use. We also tested the Dask
DataFrame [12] to see whether it would improve the data-loading
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Table 3: Performance (in seconds) for data loading with dif-
ferent file sizes using different methods on Summit.

Benchmark Data Size pandas.read_csv Data loading in chunks
(original) with low_memory=False
NT3 Training: 597MB 81.72 14.30
Testing: 150MB 22.25 5.25
PIB1 Traini 771MB 235.68 30.99
Testing: 258MB 80.77 14.47
PI1B2 Training: 162MB 40.98 11.03
Testing: S5SMB 15.95 5.33
PI1B3 Training: 318MB 5.41 5.34
Testing: 103MB 3.20 2.52

Table 4: Performance (seconds) for data loading with differ-
ent file sizes using different methods on Theta

Benchmark Data Size pandas.read_csv Data loading in chunks
(original) with low_memory=False
NT3 Training: 597MB 52.91 13.84
Testing: 150MB 13.93 3.62
PIBL Training: 771MB 139.71 27.43
Testing: 258MB 48.38 11.67
P1B2 Training: 162MB 25.07 9.53
Testing: 55MB 9.56 4.40
P1B3 Training: 318MB 4.74 4.53
Testing: 103MB 2.79 2.49

performance; the performance is better than the original method

but worse than the data loading in chunks with low_memory=False.
For instance, the following is the original Python code for data
loading with the NT3 training data (nt_train2.csv) of 597 MB.

import pandas as pd
df = pd.read_csv('nt_train2.csv',header=None)

We replace it with the following the Python code with data
loading in chuncks and low_memory=False.

csize = 2000000
chunks = []
for chunk in pd.read_csv('nt_train2.csv', header=None,
chunksize=csize, low_memory=False):
chunks. append(chunk)
df = pd.concat(chunks, axis=0, ignore_index=True)

In Tables 3 and 4, for the training data file in NT3 there is ap-
proximately five times improvement in the data loading by using
the method low_memory=False on Summit and approximately four
times improvement on Theta. For the largest training data file (771
MB) in P1B1, there is more than seven times improvement in the
data loading on Summit and more than five times improvement on
Theta. These are significant improvements. In contrast, for P1B3
there is little data-loading improvement because P1B3 has only
1,000 elements per sample in Table 1. Thus, its csv training file has
1,000 columns per row with a huge number of rows (900,100). This
situation is very different from the other three benchmarks with
a medium number of rows (1,120 or 2,700) with a large number of
columns per row (more than 28,000). It indicates that the types of
data samples impact the importing data’s I/O performance using
pandas.read_csv() significantly. The time spent in the data loading
for a single data file on Theta is much less than that on Summit.

In the following sections, we apply the improved data-loading
method to the Horovod P1 benchmarks and discuss how it improves
the performance and energy.
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Figure 11: Performance for Horovod NT3 on Summit

Table 5: GPU power (W) and Energy (J) for Horovod NT3

#GPUs 1 3 12 | 24 | 48 | 96 | 192 | 384
Power 2242 | 1768 | 155.1| 1303 | 93.88| 76.02 | 6450 | 59.14
Power (optimized) | 2282 | 201.7 | 1973 | 1883 | 1584 115.5| 9728 | 73.84
% Increase 182 | 1406 | 2727 4451 68.77] 5187 5061 24385
(a) Power per GPU
#GPUs 1 6 P u a8 % 92| 38
Energy 919535.66 | 15557244 | 88981.99 | 5004433 | 31270.70 | 2051047 | 1514706 | 1322792
Energy (optimized) | 912133.19 | 15024840 | 8450845 | 42577.07 | 22096.14 | 12377.82 | 7372.18 | 582951
% Increase 081 34|  s03] -1492] 870| 3965 5133|5593
(b) Energy per GPU

Figure 12: Timeline for the Broadcast of the Optimized
Horovod NT3 Using 384 GPUs on Summit

5.1 Horovod NT3

We first discuss the performance, power, and energy of the opti-
mized Horovod NT3. We then compare the results with the Horovod
NT3 on both Summit and Theta.

Figure 11 compares the performance of the Horovod NT3 with
that of the optimized Horovod NT3 on Summit. The optimized
method improves the performance of data loading by a factor of
at least 5, so that the total time decreases significantly; the perfor-
mance for TensorFlow is similar. Overall, we achieve up to 67.68%
performance improvement on Summit.

Table 5(a) shows that the average power per GPU for the opti-
mized NT3 increases by up to 68.77% because of the reduced time
for low-power data loading. Table 5(b) shows that the energy per
GPU for the optimized NT3 decreases by up to 55.93%. Therefore,
the performance improvement results in energy saving.

Figure 12 shows the timeline for the broadcast of the optimized
Horovod NT3 on 384 GPUs. We find that compared with Figure
7, the optimized method results in a significant decrease in the
broadcast overhead, from 43.72 s to 4.65 s, an improvement of
89.36%. This indicates that the slow data-loading delays the data
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Figure 14: Horovod P1B1 on Summit

Performance Comparison for Horovod P181 on Theta Energy Comparison for Horovod P181 on Theta

i " —emtnergy o Energy (Optimized)

- 10000000

sn \

100000

Time (5
Enerey per Node ()

Number of Nodes Number of Nodes

(a) Performance (b) Energy

Figure 15: Horovod P1B1 on Theta

movement. We find a similar improvement in broadcast overhead
using other numbers of GPUs.

Figure 13 compares the performance and energy of the Horovod
NT3 with those of the optimized Horovod NT3 on Theta. The
optimized method improves the performance of data loading by a
factor of at least 6, so that the total time decreases significantly; the
performance for TensorFlow is similar. Overall, we achieve up to
38.46% performance improvement and up to 32.21% energy saving
on Theta. Notice that the time spent in the data loading for Horovod
NT3 on Theta is more than four times that on Summit because of
the larger I/O contention and smaller I/O bandwidth on Theta. The
time per epoch increases from 695 s on 24 nodes to 965 s on 384
nodes on Theta. Compared with Table 2, the time per epoch on
Theta is much larger than that on Summit.

5.2 Horovod P1B1

When we apply the optimized data-loading method to the Horovod
P1B1, we observe that the optimized P1B1 results in up to 78.25%
performance improvement in Figure 14(a), and up to 78% energy
saving in Figure 14(b).
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Figure 16: Horovod P1B2 on Summit
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Figure 17: Horovod P1B2 on Theta

Figure 15 compares the performance and energy of the Horovod
P1B1 with those of the optimized Horovod P1B1 on Theta. The
optimized method improves the performance of data loading by a
factor of at least 7, so that the total time decreases significantly; the
performance for TensorFlow is similar. Overall, we achieve up to
45.22% performance improvement and up to 41.78% energy saving
on Theta. Notice that the time spent in the data loading for Horovod

P1B1 on Theta is more than four times larger than that on Summit.

5.3 Horovod P1B2

When we apply the optimized data-loading method to the Horovod
P1B2, we observe that the optimized P1B2 results in up to 55.45%
performance improvement in Figure 16(a) and up to 55.44% energy
saving in Figure 16(b) on Summit.

Figure 17 compares the performance and energy of the Horovod
P1B2 with those of the optimized Horovod P1B2 on Theta. The
optimized method improves the performance of data loading by a
factor of at least 3, so that the total time decreases significantly; the
performance for TensorFlow is similar. Overall, we achieve up to
40.72% performance improvement and up to 40.95% energy saving
on Theta. Notice that the time spent in the data loading for Horovod

P1B2 on Theta is more than five times larger than that on Summit.

5.4 Horovod P1B3

When we apply the optimized data-loading method to the Horovod
P1B3 with cubic root scaling, we observe that the optimized P1B3
results in up to 6.50% performance improvement on Summit. We
expect this small performance improvement because of the small
data-loading improvement for the data sample type in Table 3. The
small performance improvement occurs on Theta as well, and the
time spent in the data loading for Horovod P1B3 on Theta is more
than five times larger than that on Summit.
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Performance Comparison for Horovod NT3 GPU )
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Figure 18: Horovod NT3 (weak scaling) on Summit

(a) Original (b) Optimized
Figure 19: Timeline for the Horovod NT3 with Weak Scaling
on 768 GPUs on Summit

6 SCALABILITY ANALYSIS AND
IMPROVEMENT

In this section, we analyze the scalability of the Horovod P1 bench-
marks and discuss their performance and energy improvements on
Summit; the performance improvement on Theta is similar. We use
weak scaling (8 epochs per GPU) for these benchmarks to conduct
the experiments because the Horovod NT3 with 8 epochs achieves
an accuracy of 1 in Figure 6(b). Because the number of epochs is
just 1 for P1B3, we focus on the benchmarks NT3, P1B1, and P1B2.

6.1 Horovod NT3

Figure 18(a) shows the performance of the Horovod NT3 with weak
scaling on Summit. Our optimized method improves the perfor-
mance of data loading by a factor of at least 5, so that the total
time decreases significantly. Further, we achieve a performance
improvement between 34.23% and 52.44% on up to 3,072 GPUs;
however, the performance improvement percentage decreases with
the number of GPUs because of the large Horovod overhead.

We also find that the optimization method results in a reduction
in the broadcast overhead. This is similar to what we found for the
strong-scaling case. For instance, Figure 19 shows that the broadcast
overhead decreases from 37.65 s to 5.3 s on 768 GPUs (128 nodes),
which is an 85.92% improvement. Each GPU performs 8 epochs,
so the timeline shows 8 pieces of the communication for 8 epochs.
Because the timeline files are very large for 1,536 and 3,072 GPUs,
we cannot generate their timeline plots.

In Table 6, the differences in training accuracy and time per
epoch for the original and optimized Horovod NT3 are smaller
because we focus on improving the data loading performance. The
time per epoch for the sequential one is just 10.30 s, but the time
per epoch on 3,072 GPUs is more than 3 times larger because of
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Table 6: Training accuracy, time per epoch (s), and average
GPU power (W) for Horovod NT3 on Summit

#GPUs 1 6 24 96 384 768 1536 3072

Training Accuracy 0.83 0.96 0.993 0.64 0.56 0.51 0.52 0.51

Time per epoch 1030 | 11.22 | 11.61 | 1247 | 14.08 | 17.66 | 23.10 | 33.09
Power per GPU 110.1 96.4 | 106.5| 98.75 | 93.92| 87.04| 8031 | 73.24
Training Accuracy (optimized) 0.81 0.97 | 0.996 0.61 0.55 0.52 0.52 0.51
Time per epoch (optimized) 1030 | 1099 | 11.53| 1237 | 1419 | 18.05| 22.82 | 3237
Power per GPU (optimized) 169.5 | 1575| 164.5| 1353 | 127.8 | 1165| 1044 83.0

(a) Performance (b) Energy

Figure 20: Horovod P1B1 (Weak Scaling) on Summit

Performance Comparison for Horovod P182 (weak scaling) on Summit

(a) Performance (b) Energy

Figure 21: Horovod P1B2 (Weak Scaling) on Summit

the large Horovod overhead. For weak scaling, the ideal case is the
time per epoch remains constant. This overhead is caused mainly
by the allreduce operations using NCCL_Allreduce. The average
power per GPU for the optimized Horovod NT3 is larger than for
the Horovod NT3 because of the reduced time for low-power data
loading. However, because of the large performance improvement,
the energy saving is between 22.31% and 28.59% in Figure 18(b).

6.2 Horovod P1B1 and P1B2

For Horovod P1B1 under weak scaling, the optimized method
achieves a performance improvement between 75.24% and 79.50%
in Figure 20(a), and an energy saving between 69.70% and 77.11%
in Figure 20(b).

For Horovod P1B2 under weak scaling, the optimized method
achieves a performance improvement between 48.63% and 56.62%,
as shown in Figure 21(a), and an energy saving between 45.86% and
53.91% in Figure 21(b).

7 CONCLUSIONS

In this paper, we investigated the performance and power char-
acteristics of the parallelized CANDLE benchmarks with a focus
on the hyperparameters epochs, batch sizes, and learning rates
under weak scaling and strong scaling on Summit and Theta. We
found that the time per epoch on Theta is much larger than that on
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Summit for these benchmarks. For instance, the NT3 benchmark is
compute-intensive (more than 695 s per epoch) on Theta. On Sum-
mit, however, it is not compute-intensive (around 10 s per epoch);
instead, data loading becomes the dominant performance bottleneck
for the CANDLE benchmarks. We identified this bottleneck and im-
proved both the performance and energy for better scalability. We
observed that different types of data samples impact the importing
data I/O performance using pandas.read_csv() significantly. Overall,
the time spent in the data loading for these benchmarks on Theta
is more than four times larger than that on Summit because of the
larger 1/0 contention and lower I/O bandwidth on Theta. When we
applied the optimized data-loading method to these benchmarks,
we achieved up to 78.25% in performance improvement and up
to 78% in energy saving under strong scaling on up to 384 GPUs
and achieved up to 79.5% in performance improvement and up to
77.11% in energy saving on up to 3,072 GPUs on Summit. We also
achieved up to 45.22% performance improvement and up to 41.78%
in energy saving under strong scaling on up to 384 nodes on Theta.
Moreover, the optimization dramatically reduced the broadcast
overhead. We note, however, that the Horovod allreduce overhead
for the Horovod NT3 on 3,072 GPUs is almost three times larger
than using 6 GPUs on a single node because the time per epoch is
very small (only around 10 s).

To further improve the performance of the TensorFlow run, we
plan to use NVProf [25] to profile the TensorFlow run and identify
the other performance bottlenecks for much larger datasets. We also
plan to upgrade NCCL from version 2.3.7 to version 2.4.2 to reduce
the communication overhead for the allreduce operations [23]. We
will add checkpoint/restart features to the Horovod benchmarks
for fault tolerance. Additionally, we plan to use our performance
and power modeling work [34] to model and further optimize the
CANDLE benchmarks.
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