
Performance, Power, and Scalability Analysis of the Horovod Implementation of the
CANDLE NT3 Benchmark on the Cray XC40 Theta

Xingfu Wu, Valerie Taylor
Argonne National Laboratory

University of Chicago
Email: xingfu.wu, vtaylor@anl.gov

Justin M. Wozniak
Mathematics and Computer Science

Argonne National Laboratory
Email: wozniak@mcs.anl.gov

Rick Stevens, Thomas Brettin, Fangfang Xia
Computing, Environment, and Life Sciences

Argonne National Laboratory
Email: {stevens, brettin, fangfang}@anl.gov

Abstract—Training scientific deep learning models requires
the large amount of computing power provided by parallel
and distributed systems with CPUs and/or GPUs. In this
paper, we apply the distributed deep learning framework
Horovod to a Python benchmark from the exploratory research
project CANDLE (Cancer Distributed Learning Environment)
to conduct performance, power, and scalability analysis of its
Horovod implementation. We use Horovod to parallelize the
benchmark; and we analyze its scalability, performance, and
power characteristics with different batch sizes and learning
rates under two memory modes: cache and flat on the DOE
pre-exascale production system Cray XC40 Theta at Argonne
National Laboratory. Our experimental results indicate that
power profiling for node, CPU and memory is very useful to
show how the Horovod NT3 benchmark exactly behaves on
the underlying system. The communication timeline of this
benchmark allows for an interpretation of its power behavior.
This benchmark under the cache mode results in smaller
runtime and lower power consumptions for node and CPU.
Increasing the batch size leads to a runtime decrease and
slightly impacts the power. Increasing the learning rate results
in a decrease in runtime and node power and an increase in
accuracy. Several issues in the Horovod NT3 benchmark are
discussed for further work.

1. Introduction

Today, training modern deep learning models requires
the large amount of computing power provided by parallel
and distributed systems with CPUs and/or GPUs. Tensor-
Flow is one of the most widely used open source frameworks
for deep learning, and it supports a wide variety of deep
learning use cases, from conducting exploratory research to
deploying models in production on cloud servers, mobile
apps, and even self-driving vehicles [19]. Horovod [19] [11],
developed by Uber, is a distributed training framework for
TensorFlow [21] and Keras [13]. In this work, we use a
benchmark, NT3 [6], from the exploratory research project
CANDLE (Cancer Distributed Learning Environment) [4]
to conduct performance, power, and scalability analysis of
its Horovod implementation on the DOE pre-exascale pro-

duction system Cray XC40 Theta [9] at Argonne National
Laboratory.

The CANDLE project [4] [12] focuses on building a
single scalable deep neural network code that can address
three cancer challenge problems: the RAS pathway problem:
understanding the molecular basis of key protein interactions
in the RAS/RAF pathway presented in 30% of cancers;
the drug response problem: developing predictive models
for drug response to optimize preclinical drug screening
and drive precision-medicine-based treatments for cancer
patients; and the treatment strategy problem: automating
the analysis and extraction of information from millions of
cancer patient records to determine optimal cancer treatment
strategies. CANDLE benchmark codes [5] implement deep
learning architectures that are relevant to the three cancer
problems. The NT3 benchmark [6] is one of the Pilot1 (P1)
benchmarks [5] that are formed out of problems and data at
the cellular level. The goal behind these P1 benchmarks is
to predict the drug response based on molecular features of
tumor cells and drug descriptors.

This research is an exemplar of the utility of Python
for high-performance computing (HPC) problems. The NT3
benchmark, like other CANDLE benchmarks, is imple-
mented in Python by using the Keras framework. Python
allows for the rapid development of the application. It also
enables code reuse across the CANDLE benchmarks, since
each benchmark uses common Python-based CANDLE util-
ities, and each benchmark implements a common interface
used by higher-level Python-based driver systems, such as
the CANDLE/Supervisor framework for hyperparameter op-
timization [12]. These benchmarks, which are intended to
be run on exascale systems as they emerge, are currently
being tested on pre-exascale systems such as Theta. Such
pre-exascale systems feature new hardware at ever greater
scale, requiring new analysis of performance and power to
determine how best to use them. Deep learning is expected
to play a greater role in scientific computing on systems such
as Summit [20]. Thus, it is critical to study the performance
and power usage of the whole application stack, including
the scripting level, numerics, and communication.

To speed TensorFlow applications by utilizing large-
scale supercomputers such as Theta requires a distributed
TensorFlow environment. Currently, TensorFlow has a na-



tive method for parallelism across nodes using the gRPC
layer in TensorFlow based on sockets [10]; but this is
difficult to use and optimize [19] [16]. The performance and
usability issues with distribute TensorFlow can be addressed,
however, by adopting an MPI communication model. Al-
though TensorFlow has an MPI option, it only replaces
point-to-point operations in gRPC with MPI and does not
use MPI collective operations. Horovod adapts the MPI
communication model by adding an allreduce between the
gradient computation and model update, replacing the native
optimizer with a new one called Distributed Optimizer. No
modification to TensorFlow itself is required; the Python
training scripts are modified instead. The Cray programming
environment machine learning plugin (CPE ML Plugin)
[16], like Horovod, does not require modification to Ten-
sorFlow, but it is designed for Cray systems, and is not
available to the public. Therefore, we choose Horovod in
this work.

In this paper, we use Horovod to parallelize the Python
NT3 benchmark; and we analyze its scalability, perfor-
mance, and power characteristics with different batch sizes
and learning rates under two memory modes, cache and
flat, on the DOE pre-exascale production system Cray XC40
Theta. Our experimental results indicate that power profiling
for node, CPU and memory is very useful to show how the
Horovod NT3 benchmark exactly behaves on the underlying
system. The communication timeline of this benchmark
allows for an interpretation of its power behavior. This
benchmark under the cache mode results in smaller runtime
and lower power consumptions for node and CPU. Increas-
ing the batch size leads to a runtime decrease and slightly
impacts the power. Increasing the learning rate results in
a decrease in runtime and node power and an increase in
accuracy. Several issues in the Horovod NT3 benchmark are
discussed for further work.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the CANDLE NT3 benchmark and Horovod
in brief, then discusses the Horovod implementation. Section
3 depicts the system platform Cray XC40 Theta. Section 4
analyzes the scalability of the Horovod implementation of
the NT3 benchmark with increasing numbers of nodes. Sec-
tion 5 uses the experimental results to analyze performance
and power characteristics of the NT3 benchmarks. Section
6 summarizes this work and discusses future work.

2. CANDLE NT3 Benchmark and Its Horovod
Implementation

In this section, we describe the CANDLE NT3 bench-
mark and Horovod briefly, then discuss the Horovod imple-
mentation of the benchmark in detail.

2.1. CANDLE NT3 Benchmark

The CANDLE NT3 benchmark [5] [6] is written in
Python and Keras, which is a high-level neural networks
API written in Python and capable of running on top of

TensorFlow, CNTK [17], or Theano [22]. The NT3 bench-
mark entails four phases: data loading, preprocessing, basic
training and cross-validation, and prediction and evaluation
on test data. The benchmark uses the following main global
parameters:
data_url = ’ftp://ftp.mcs.anl.gov/pub/candle/public/
benchmarks/Pilot1/normal-tumor/’
train_data = ’nt_train2.csv’
test_data = ’nt_test2.csv’
model_name = ’nt3’
conv=[128, 20, 1, 128, 10, 1]
dense=[200,20]
activation=’relu’
out_act=’softmax’
loss=’categorical_crossentropy’
optimizer=’sgd’
metrics=’accuracy’
epochs=400
batch_size=20
learning_rate=0.001
drop=0.1
classes=2
pool=[1, 10]
save=’.’

Where the size of the training data file nt train2.csv is
597 MB and the size of the test data file nt test2.csv is 149
MB. The benchmark uses ftp to access the data files; the
optimizer is SGD (Stochastic gradient descent); the number
of epochs is 400; the batch size is 20; and the learning rate
is 0.001.

2.2. Horovod

Horovod [19] [11] is a distributed training framework
for TensorFlow and Keras and is a stand-alone Python
package developed by Uber. The goal of Horovod is to
make distributed Deep Learning fast and easy to use. The
core principles of Horovod are based on MPI concepts
such as size, rank, local rank, allreduce, allgather, and
broadcast; and it is implemented by using MPI subroutines.
A unique feature of Horovod is its ability to interleave
communication and computation. Moreover, it is able to
batch small allreduce operations by attempting to combine
all the tensors that are ready to be reduced at a given
moment into one reduction operation, an action that results
in improved performance. The Horovod source code was
based on the Baidu tensorflow-allreduce repository [3].

2.3. Using Horovod to Parallelize the NT3 Bench-
mark

Horovod core principles are based on the MPI concepts
of size, rank, local rank, allreduce, allgather, and broadcast.
As described in [11], to use Horovod, we make the following
additions to the NT3 benchmark to utilize GPUs/CPUs:

• Add import horovod.tensorflow as hvd to import the
Horovod package.

• Add hvd.init() to initialize Horovod.
• For the GPU node only, pin the GPU to be used to

process local rank (one GPU per process). In this
case, the first process on the node will be allocated



the first GPU, the second process will be allocated
the second GPU, and so forth.

• Obtain the size (hvd.size()) and rank (hvd.rank()),
and adjust the number of epochs based on the num-
ber of GPUs/CPUs used as follows.
nprocs = hvd.size()
myrank = hvd.rank()

def comp_epochs(n, myrank=0, nprocs=1):
j = int(n // nprocs)
k = n % nprocs
if myrank < nprocs-1:

i = j
else:

i = j + k
return i

epochs =
comp_epochs(gParameters[’epochs’], myrank, nprocs)

We use the above number of epochs for each
GPU/CPU. For the load balancing, the user should
ensure that the number of epochs is the same for
each CPU/GPU.

• Scale the learning rate by the number of
workers. We scale the learning rate to
gParameters[′learning rate′] ∗ hvd.size().
We keep the batch size the same for our tests.

• Wrap the original optimizer in the Horovod
distributed optimizer such as optimizer =
hvd.DistributedOptimizer(optimizer). The
distributed optimizer delegates gradient computation
to the original optimizer, averages gradients using
MPI Allreduce, and then applies those averaged
gradients.

• Add hvd.BroadcastGlobalVariablesHook(0) to the
callbacks to broadcast initial variable states from
rank 0 to all other processes. This ensures consistent
initialization of all workers when training is started
with random weights.

After these steps, we have the Horovod version of the
NT3 benchmark.

3. System Platform: Cray XC40 Theta

We conduct our experiments on the Cray XC40 Theta
[9], which is a pre-exascale production system at Argonne
National Laboratory. Each Cray XC40 node has 64 compute
cores (one Intel Phi Knights Landing (KNL) 7230 with the
thermal design power (TDP) of 215 W), shared L2 cache
of 32 MB (1 MB L2 cache shared by two cores), 16 GB
of high-bandwidth in-package memory, 192 GB of DDR4
RAM, and a 128 GB SSD. The Cray XC40 system uses the
Cray Aries dragonfly network with user access to a Lustre
parallel file system with 10 PB of capacity and 210 GB/s
bandwidth. Cray XC40 [15] [8] provides power manage-
ment to operate more efficiently by monitoring, profiling,
and limiting power usage. The aim is to increase system
stability by reducing heat dissipation, reduce system cooling
requirements, and reduce utility costs by minimizing power

Figure 1. Cache mode on Cray XC40 Theta

Figure 2. Flat mode on Cray XC40 Theta

usage when rates are the highest and calculating the actual
power cost for individual users and/or jobs. In this work, we
use a simplified PoLiMEr library [14], which utilizes Cray’s
CapMC [15] to measure power consumption for the node,
CPU, and memory at the node level on Theta. The power
sampling rate used is approximately two samples per second
(default). In a Python code, we import ctypes to export the
CDLL for loading the shared PoLiMEr library in order to
measure the power for the code.

Each XC40 node has one Intel KNL, which brings in
new memory technology, an on-package memory called
Multi-Channel DRAM (MCDRAM) in addition to the tra-
ditional DDR4. MCDRAM has a high-bandwidth (4 times
more than DDR4 RAM) and low-capacity (16 GB) memory.
MCDRAM can be configured as a shared L3 cache (cache
mode) shown in Figure 1 or as a distinct NUMA node
memory (flat mode) shown in Figure 2, or somewhere in
between. With the different memory modes by which the
system can be booted, understanding the best mode for an
application becomes challenging for the user.

4. Scalability Analysis

In this section, we investigate the performance and
power characteristics of the original NT3 benchmark under
different memory modes, then analyze the scalability of the
Horovod NT3 benchmark for our weak scaling study.

4.1. Original NT3 Benchmark under Different
Memory Modes

The number of epochs is 400 for the NT3 benchmark.
For simplicity, in this section we use just one epoch to
conduct the experiments under a learning rate 0.001 and
a batch size of 20.

Figure 3 shows power over time on Theta, with cache
mode on one node and epochs = 1. The runtime is 1567s,
and the average power is 159.21W for node, 105.26W for
CPU, and 12.08W for memory. We can see that the NT3
takes around 800s to do the data loading and preprocessing
because of the ftp remote data access.



Figure 3. Power over time on Theta (with cache mode on one node and epochs = 1)

Figure 4. Power over time on Theta (with flat mode on one node and epochs = 1)

Figure 4 shows a power comparison on Theta (with flat
mode on one node and epochs = 1). The runtime is 1608s,
and the average power is 164.37W for node, 110.37W for
CPU, and 17.0W for memory. Comparing the cache mode
with the flat mode, we can see that the NT3 benchmark
under the cache mode results in better performance and
lower power consumptions in node and CPU. The memory
power consumption when using the cache mode is lower
than that when using the flat mode because the MCDRAM
configured as the L3 cache is enough to hold both data files
in the cache.

In the experiments, we use a batch size of 20 as default.
If we change the batch size, how does this change affect
the performance and power of the NT3 benchmark? Table
1 shows runtime, power, and energy of the NT3 benchmark
with different numbers of batch sizes under the cache mode.
Increasing the batch size results in a decrease in runtime and
impacts the power slightly. The benchmark with a batch size
of 200 achieves the lowest energy. Because of training on

TABLE 1. RUNTIME (S), POWER (W), AND ENERGY (J) OF THE NT3
BENCHMARK WITH DIFFERENT BATCH SIZES UNDER CACHE MODE.

1,120 samples and validating on 280 samples in the NT3
benchmark, it fails if the batch size is 300 or larger. Thus,
the batch size can be adjusted properly only to some extent.

4.2. Horovod NT3 Benchmark

In this section, we still use one epoch and a batch size
of 20 to conduct the experiments under the cache mode on



Theta. However, we scale up the number of nodes with one
epoch per node for our weak scaling study. We measure
the performance of the Horovod version of the NT3 and
use Python’s cProfile [18] to profile the performance and
analyze its scalability on Theta.

Table 2 shows the time for different parts of the
NT3 benchmark with increasing learning rate (0.001 *
hvd.size()). Where ”TensorFlow” is the time for the method
pywrap tensorflow internal.TF Run; ”Method read” is the

time for method read of pandas. libs.parsers.TextReader
objects; ”Keras callback” is the time for the Keras call-
backs.py; ”Horovod callbacks” is the time for Horovod
callbacks.py; ”Distributed Optimizer” is the time for the
Horovod Distributed Optimizer; ”Broadcast” is the time
for Horovod broadcast itself; ”Allreduce” is the time for
Horovod allreduce itself; and ”Model.fit” is the time spent
in the model training and validation.

The Horovod distributed optimizer has small overhead,
around 1.4s even with increasing numbers of nodes, because
this optimizer delegates gradient computation to the original
optimizer, averages gradients using allreduce, and then ap-
plies those averaged gradients. Horovod callbacks introduce
some overhead, but it is relatively small. It is interesting
to see that the Horovod broadcast overhead is around 0.22s
and the Horovod allreduce overhead is around 0.24s. The
dominated parts are data loading (Method read) and Ten-
sorFlow. Model.fit is the main part of TensorFlow because
the NT3 benchmark uses deep learning neural networks to
train the model, and the model.fit takes most of the execution
time. Because the Python cProfile only provides the time for
TensorFlow as a whole, we have to add the inline timing
for the function model.fit to measure its runtime.

We further test the communication overhead introduced
by Horovod with the same learning rate shown in Table
3 on Theta. Overall, the total runtime results are slightly
larger than that shown in Table 2. The Horovod overheads
for the callbacks, optimizer, broadcast and allreduce are
very similar. Compared with the total runtime, the Horovod
overhead is relatively small. Notice that, from Tables 2 and
3, the times for TensorFlow and model.fit increase with the
numbers of nodes. It means that Horovod causes some over-
head within TensorFlow, but this overhead is not reflected
from the Horovod functions provided by the cProfile. In the
following section, we will explain this overhead using the
Horovod timeline in detail.

5. Performance and Power Analysis of the
Horovod NT3 Benchmark

In this section, we use the problem size from the original
NT3 benchmark for our strong scaling study, where we fix
the number of epochs at 400, the learning rate at 0.001,
and the batch size at 20. We conduct our experiments with
different numbers of nodes under different memory modes to
analyze the performance and power behavior of the Horovod
NT3 benchmark. We focus on the following metrics: the
time spent in the model.fit, loss, and accuracy.

5.1. Cache Mode

Table 4 shows the performance for the original dataset
with epochs = 400 and the increased learning rate on Theta.
”loss” stands for training loss; ”acc” stands for training
accuracy; ”val loss” stands for validation (testing) loss; and
”val acc” stands for validation (testing) accuracy. Each node
executes the number of epochs, which is 400 divided by the
number of nodes. On 400 nodes, each node executes one
epoch, and the total runtime is 1,042s. On 100 nodes, each
node executes 4 epochs, and it takes 2,640s. On 25 nodes,
each node executes 16 epochs, and it takes 10,662s.

Figure 5 shows power over time for the Horovod NT3
benchmark on 400 nodes. We found that loading the clib for
the power measurement using ctypes takes around 11s based
on the profile data from the Python cProfile. Therefore, the
data loading takes around 781s. Compared with Figure 3,
what happened after the data loading phase? To explain the
power behavior in Figure 5, we use the Horovod timeline
feature [11] to record the communication activities.

Horovod can record the timeline of its activity viewed in
the Chrome browser through chrome://tracing [7]. Figure 6
shows the timeline for the communication of the benchmark
on 400 nodes with the highlight of allreduce from Figure
5. This timeline starts the broadcast communication, not the
beginning of the benchmark. It consists of six communica-
tion types: negotiate broadcast, broadcast, mpi broadcast,
allreduce, mpi allreduce, and negotiate allreduce, where
broadcast is implemented based on mpi broadcast; allre-
duce is based on the baidu ring-allreduce algorithm [3]
and mpi allreduce. MEMCPY IN FUSION BUFFER and
MEMCPY OUT FUSION BUFFER are to copy data into
and out of the fusion buffer. There are two major phases
for each tensor broadcast/reduction in the Horovod NT3
benchmark:

• Negotiation phase (negotiate broadcast, negoti-
ate allreduce) when all workers send a signal to rank
0 that they are ready to broadcast/reduce the given
tensor. Each worker is represented by a tick under
the negotiate broadcast/negotiate allreduce bar. Im-
mediately after negotiation, rank 0 sends a signal to
the other workers to start broadcasting/reducing the
tensor.

• Processing phase, when the operation actually hap-
pens. These communications shown in Figure 6
indicate the time taken to do the actual operation
on the CPU and highlight that the operation was
performed by using pure MPI such as mpi broadcast
and mpi allreduce.

Based on the communication activities in Figure 6, we
can explain the power behavior in Figure 5. After data
loading and preprocessing, the negotiate broadcast takes
place. During the broadcast, the node power and CPU power
decrease because of the dynamic power management on
Cray XC40. Then the gradients are computed, so the node
and CPU power increase. Both allreduce and mpi allreduce
are used to average the gradients, and the averaged gradients



TABLE 2. PERFORMANCE (SECONDS) WITH THE INCREASED LEARNING RATE (WEAK SCALING) ON THETA.

TABLE 3. PERFORMANCE (SECONDS) WITH THE SAME LEARNING RATE (WEAK SCALING) ON THETA.

Figure 5. Power over time of the Horovod NT3 with the increased learning rate on 400 nodes.

TABLE 4. TIME (SECONDS), LOSS AND ACCURACY FOR THE ORIGINAL
DATASET WITH THE INCREASED LEARNING RATE (STRONG SCALING)

ON THETA.

are applied. This process takes around 131s as the first
allreduce and mpi allreduce shown in Figure 6. The process
takes place between 800s and 1000s shown in Figure 5. The
model training then is started. During the training, negoti-
ate allreduce, allreduce, and mpi allreduce take place be-
tween two consecutive training steps periodically, as shown
in Figure 6. Compared with Figure 3, this Horovod overhead
enlarges the gaps between two consecutive training steps.
This explains the overhead caused by Horovod within the
TensorFlow run.

Table 5 shows the performance for the original dataset
with epochs = 400 with the same learning rate on Theta.



Figure 6. Timeline for the communication of the Horovod NT3 on 400 nodes (cache mode).

TABLE 5. TIME (SECONDS), LOSS AND ACCURACY FOR THE ORIGINAL
DATASET WITH THE SAME LEARNING RATE (STRONG SCALING) ON

THETA.

Compared with Table 4, we observe that the execution time
increases slightly. For 100 nodes or more, the accuracy using
the same learning rate is much higher than that using the
increased learning rate. We note, however, that for 50 and
25 nodes, the accuracy using the same learning rate is lower
than that using the increased learning rate.

5.2. Flat Mode

Table 6 shows the performance for the original dataset
with epochs = 400 with the increased learning rate using
the flat mode on Theta. Compared with Table 4 using the
cache mode, the NT3 benchmark benefits more from using
the cache mode than the flat mode.

Figure 7 shows power behavior similar to that shown in
Figure 6. Compared with Figure 4, the Horovod overhead
enlarges the gaps between two consecutive training steps
because of the allreduce operations as discussed in the
previous section. For the benchmark, using the cache mode
results in smaller runtime and lower power consumptions
for node and CPU.

TABLE 6. TIME (SECONDS), LOSS AND ACCURACY FOR THE ORIGINAL
DATASET WITH THE INCREASED LEARNING RATE (STRONG SCALING)

ON THETA.

6. Conclusions

In this paper, we used the Python NT3 benchmark
from the exploratory research project CANDLE to conduct
performance, power, and scalability analysis of its Horovod
implementation with weak scaling and strong scaling cases
on Cray XC40 Theta. We used Horovod to parallelize the
NT3 benchmark, and we analyzed its scalability, perfor-
mance, and power characteristics with different batch sizes
and learning rates under two memory modes: cache and
flat on Theta. Our experimental results indicate that power
profiling for node, CPU and memory was very useful to
to show that the Horovod NT3 benchmark exactly behaved
on the underlying system. The communication timeline of
this benchmark allowed for an interpretation of its power
behavior. This benchmark under the cache mode resulted in
smaller runtime and lower power consumptions for node and
CPU. Increasing the batch size leaded to a runtime decrease
and slightly impacted the power. Increasing the learning rate
resulted in a decrease in runtime and node power and an
increase in accuracy.

We plan to address several issues raised by our use of
the NT3 benchmark. (1) The data-loading time becomes the



Figure 7. Power over time of the Horovod NT3 with the increased learning rate on 400 nodes.

bottleneck after speeding the model-training process. We
have to consider how to speed the input dataset reading
operations. (2) The performance profiling using the Python
cProfile includes only the total time for the whole Tensor-
Flow run, as shown in Tables 2 and 3. It does not give any
detail about how TensorFlow behaves. To further improve
the performance of the TensorFlow run, we may need a fine-
grained performance profiling tool to profile the TensorFlow
run. (3) We developed the Horovod version of the NT3
benchmark to support both CPUs and GPUs. We plan to
test the benchmark on some heterogeneous systems with
CPUs and GPUs, such as Summit [20]. (4) We plan to add
checkpoint/restart features to the Horovod benchmark for
fault tolerance purposes. (5) We plan to use our performance
and power modeling work [23] to model and optimize
the CANDLE benchmarks because the Python codes, like
other scripting languages, do not have compiler optimization
support, and they often depend on the library, resource,
and environment settings for better performance. We can
utilize our previous work to identify the better resource and
environment settings for performance improvement.

Acknowledgments

This work was supported in part by Laboratory Directed
Research and Development (LDRD) funding from Argonne
National Laboratory, provided by the Director, Office of
Science, of the U.S. Department of Energy under contract
DE-AC02-06CH11357, and in part by NSF grants CCF-
1801856. We acknowledge the Argonne Leadership Com-
puting Facility for use of the Cray XC40 Theta under the
DOE INCITE project PEACES and ALCF project EE-ECP.

References

[1] M. Abadi, A. Agarwal, et al., Tensorflow: Large-scale machine learning
on heterogeneous distributed systems, arXiv:1603.04467, 2016.

[2] M. Abadi, P. Barham, et al., Tensorflow: A system for large-scale
machine learning, arXiv:1605.08695, 2016.

[3] Baidu-allreduce, https://github.com/baidu-research/baidu-allreduce,
https://github.com/baidu-research/tensorflow-allreduce.

[4] CANDLE: Cancer Distributed Learning Environment,
http://candle.cels.anl.gov.

[5] CANDLE Benchmarks: https://github.com/ECP-CANDLE/Bench
marks.

[6] CANDLE NT3 Benchmark, https://github.com/ECP-CANDLE/
Benchmarks/blob/frameworks/Pilot1/NT3.

[7] Chrome trace event profiling tool, https://www.chromium.org/
developers/how-tos/trace-event-profiling-tool.

[8] Cray, Monitoring and Managing Power Consumption on the Cray XC
System, Tech Report, S-0043-7204.

[9] Cray XC40 Theta, Argonne National Laboratory,
https://www.alcf.anl.gov/theta.

[10] Distributed TensorFlow, https://www.tensorflow.org/deploy/distributed,
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/
core/distributed runtime/README.md.

[11] Horovod: A Distributed Training Framework for TensorFlow,
https://github.com/uber/horovod.

[12] J. M. Wozniak, R. Jain, P. Balaprakash, J. Ozik, N. Collier, J. Bauer, F.
Xia, T. Brettin, R. Stevens, J. Mohd-Yusof, C. G. Cardona, B. Van Essen,
and M. Baughman, CANDLE/Supervisor: A Workflow Framework for
Machine Learning Applied to Cancer Research. SC17 Workshop on
Computational Approaches for Cancer Workshop, November 2017.

[13] Keras: The Python Deep Learning Library, https://keras.io/#keras-the-
python-deep-learning-library.

[14] I. Marincic, V. Vishwanath, and H. Hoffmann, PoLiMEr: An En-
ergy Monitoring and Power Limiting Interface for HPC Applications,
SC2017 Workshop on Energy Efficient Supercomputing, Nov. 13, 2017.

[15] S Martin, D Rush, M Kappel, M Sandstedt, and J Williams. 2016.
Cray XC40 Power Monitoring and Control for Knights Landing. Pro-
ceedings of the Cray User Group (CUG), 2016.

[16] P. Mendygral, Scaling Deep Learning, ALCF SDL(Simulation, Data
and Learning) Workshop, March 2018.

[17] Microsoft Cognitive Toolkit, https://github.com/Microsoft/cntk.

[18] Python Profilers, https://docs.python.org/2/library/profile.html.

[19] A. Sergeev and M. Del Balso, Horovod: Fast and Easy Distributed
Deep Learning in TensorFlow, arXiv:1802.05799v3, Feb. 21, 2018.

[20] Summit, https://www.olcf.ornl.gov/olcf-resources/compute-systems/
summit/



[21] TensorFlow, https://www.tensorflow.org.

[22] Theano, https://github.com/Theano/Theano.

[23] X. Wu, V. Taylor, J. Cook, and P. Mucci, Using Performance-Power
Modeling to Improve Energy Efficiency of HPC Applications, IEEE
Computer, Vol. 49, No. 10, pp. 20-29, Oct. 2016.

The submitted manuscript has been created by UChicago
Argonne, LLC, Operator of Argonne National Laboratory
(”Argonne”). Argonne, a U.S. Department of Energy Office
of Science laboratory, is operated under Contract No. DE-
AC02-06CH11357. The U.S. Government retains for itself,
and others acting on its behalf, a paid-up nonexclusive,
irrevocable worldwide license in said article to reproduce,
prepare derivative works, distribute copies to the public,
and perform publicly and display publicly, by or on behalf
of the Government. The Department of Energy will pro-
vide public access to these results of federally sponsored
research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).


