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Abstract—In the age of big data, deep learning has emerged
as a powerful tool to extract insight and exploit its value, both in
industry and scientific applications. With increasing complexity
of learning models and amounts of training data, data-parallel
approaches based on frequent all-reduce synchronization steps
are increasingly popular. Despite the fact that high performance
computing (HPC) technologies have been designed to address
such patterns efficiently, the behavior of data-parallel approaches
on HPC platforms is not well understood. To address this issue,
in this paper we study the behavior of Horovod, a popular
data parallel approach that relies on MPI, on Theta, a pre-
Exascale machine at Argonne National Laboratory. Using two
representative applications, we explore two aspects: (1) how
performance and scalability is affected by important parameters
such as number of nodes, number of workers, threads per node,
batch size; (2) how computational phases are interleaved with
all-reduce communication phases at fine granularity and what
consequences this interleaving has in terms of potential bottle-
necks. Our findings show that pipelining of back-propagation,
gradient reduction and weight updates mitigate the effects of
stragglers during all-reduce only partially. Furthermore, there
can be significant delays between weight updates, which can
be leveraged to mask the overhead of additional background
operations that are coupled with the training.

Index Terms—deep learning, data-parallel training, behavior
analysis

I. INTRODUCTION

Deep learning applications are rapidly gaining traction both
in industry and for scientific computing. A key driver for
this trend has been the unprecedented accumulation of big
data, which exposes plentiful learning opportunities thanks to
its massive size and variety. Unsurprisingly, there has been
significant interest to adopt deep learning at very large scale
on supercomputing infrastructures in a wide range of scientific
areas: fusion energy science, computational fluid dynamics,
lattice quantum chromodynamics, virtual drug response pre-
diction, etc.

Under these circumstances, learning models are increasingly
becoming more complex and exhibit deeper structures, up
to the point where serial training becomes unfeasible. One
solution to this challenge is synchronous data-parallel train-
ing [1], which relies on a tightly coupled parallelization strat-
egy that involves frequent all-reduce synchronization steps.
Specifically, this is an iterative process: replicas of the model
are trained in parallel with different batches, which produces

different gradients that are averaged using all-reduce and then
used to independently update the weights of each replica.
Given the same initial weights, the averaging of the gradients
produces the same weight updates on all replicas, therefore
keeping all weights synchronized.

However, such an approach is not without challenges, as
frequent all-reduce operations can become a bottleneck that
hinders scalability. In a quest to scale beyond a few nodes,
recent efforts such as Horovod have stated considering MPI
as the underlying communication framework that provides
efficient all-reduce implementations. Although promising, this
does not magically solve the problem of adopting data parallel
training on supercomputing infrastructures.

One challenge in this context is the inherent complexity
of modern deep learning approaches: even without data par-
allelism, they are capable of taking advantage of multi-core
and hybrid architectures by parallelizing the processing of
batches at fine granularity. One common strategy is layer-
wise pipelining, which can be done both during feed-forward
of samples and back-propagation of gradients. Specifically,
during back-propagation, once the gradients for a layer have
been computed, the weight updates for all successive layers
can be performed in parallel with the computation of the
gradients for the previous layer. However, if gradients are
averaged using all-reduce operations, stragglers will negatively
impact the potential to leverage pipelining, even if the actual
all-reduce operations are fast by themselves.

Another important challenge is the need to couple training
with additional pre-processing [2] (e.g., a transformation of the
samples such as rescaling of images) or post-processing [3].
For example, one important post-processing pattern is check-
pointing, which can be used for a variety of use cases: tracking
the evolution of a model to understand the influence of samples
on its weights; transfer of learning where a model partially or
fully trained for one problem is partially trained and used for
inference in a another problem; fault tolerance based on restart.
Ideally, such operations need to have a minimal impact on the
learning process by leveraging idle shared resources.

Therefore, it is important to understand the behavior of
deep learning frameworks at fine granularity, such as to
expose potential bottlenecks and opportunities to leverage idle
resources. To this end, our paper contributes with a study that



aims to quantify and explain important aspects that impact the
behavior. We summarize our contributions as follows:

• We discuss and analyze important aspects that impact
the performance and scalability of synchronous data
parallel training. In particular, we emphasize the interplay
between pipelining and all-reduce (Section II).

• We introduce a series of key metrics and illustrate
how to extract them through an analytics framework,
which we apply to fine-grain logs of events produced by
Horovod [4], a popular synchronous data parallel training
framework (Section III).

• We study CANDLE NT3 and ResNet-50 on the Theta
supercomputer, exposing their sensitivity to various pa-
rameters with respect to performance and scalability,
while zooming on the most efficient configurations to
explain the interplay of pipelining and all-reduce through
the key metrics. Based on these key metrics, we discuss
opportunities for improvement and efficient coupling with
pre/post processing (Section IV).

II. BACKGROUND AND RELATED WORK

Deep Learning (DL) algorithms are a class of machine
learning algorithms that are based on complex neural neural
networks with a large number of layers (hence called deep).
They have have been successfully applied in a wide range of
tasks: image recognition, machine translation, forecasting [5].
Such algorithms have increasingly gained attention in high
performance computing as a complement to simulations (e.g.,
identify regions of interest, select promising initial conditions,
etc.).

DL algorithms primarily use gradient descent to update the
weights. This is an iterative technique that works as follows.
First, a training sample is used as the input of the neural
network (first layer) to compute the output layer by layer
until a prediction of the result is obtained (last layer). This
step is called feed-forward. Then, the difference (gradients)
between the predicted and actual result (“ground truth”) is
used to update the weights layer by layer up to the first
layer. This step is called back-propagation. The goal is to
converge to a minimum that is representative of all training
samples and acts as an interpolation function for the whole
problem. An important type of gradient descent is mini-batch
gradient descent, where multiple training samples are used
for feed-forward and the resulting average gradients for back-
propagation. This speeds up the training process, both because
fewer iterations are needed, and because there are fewer abrupt
changes to the descent due to biased samples, which reduces
the noise of finding the best direction to take. However, a
batch size that is too large may get stuck in a local optimum,
which leads to poorer generalization. Therefore, it is important
to choose a number of training samples (batch size) that
optimizes this trade-off.

Gradient descent is a computationally expensive technique.
The explosion of data sizes and need to solve more complex
problems have led to the introduction of deeper structures with
more layers (e.g., complex residual networks with 1000+ layer,

such as ResNet [6]). Therefore, gradient descent is not only
more expensive to run simply because it needs to process more
batches, but also because each batch itself is more expensive
to process. To solve this problem, distributed DL algorithms
have been developed that are capable of scaling horizontally
on multiple compute nodes. They broadly fall into two classes.

Synchronous data-parallel DL algorithms leverage the idea
of creating replicas of the learning model on each node and
training each replica in parallel with a different batch. During
feed-forward, this can be done in an embarrassingly parallel
fashion. However, during back-propagation, the weights are
not updated with the local gradients, but with global average
gradients computed across all nodes using blocking all-reduce
operations. This process is illustrated in Figure 1.

Fig. 1. Synchronous data-parallel training.

Asynchronous data-parallel DL algorithms aim to alleviate
the overhead of synchronization due to blocking all-reduce in
order to mitigate the problem of stragglers. A popular approach
is to use a parameter server [7], which holds the most up-
to-date version of the learning model. Then, same as for the
synchronous case, each model replica is trained independently
with different batches. However, instead of averaging the
gradients globally, each node sends the local gradients to the
parameter server, where they are used to update the weights.
Since the replicas quickly go out of sync with the parameter
server, they have to be refreshed periodically. However, this
approach has two issues: (1) the parameter server can quickly
become overwhelmed with gradient updates and request to
refresh the learning model, which limits scalability; (2) the
gradients are not computed based on the most up-to-date
weights, which makes the convergence slower. Although there
are recent promising efforts [8], the inherent complexity is
still a barrier for wide adoption in practice. For this reason,
we focus our study on synchronous data-parallel approaches.

A. Synchronous data-parallel optimizations

DL algorithms take advantage of multi-core and hybrid
architectures to pipeline the gradient computation with the
weight updates. Specifically, once the gradients up to a given
layer have been computed, they can be applied to update
the weights of all other upper layers, while concurrently



computing the gradients for the next lower layer. This is
called layer-wise pipelining. Over time, several runtimes that
implement such ideas have become popular: Tensorflow [9],
Caffe [10], Torch [11]. They are optimized for compute nodes
that feature multi-core (e.g., Intel Xeon/KNL) or hybrid (e.g.,
CPUs + GPUs) architectures.

Therefore, implementing a synchronous data-parallel ap-
proach exactly as illustrated in Figure 1 using a single large
all-reduce operation for all gradients of all layers would be
suboptimal, because it would cancel the benefits of pipelining.
To address this issue, all-reduce operation can be performed at
fine granularity in parallel with the gradient computation and
back-propagation [12]. This is illustrated in Figure 2.

Fig. 2. Synchronous data parallel optimizations: Serial vs. pipelined gradient
computation (backward) and all-reduce + averaging (gradient sync)

However, unlike the sequential base case, the weight updates
to the upper layers need to be performed using the averaged
gradients, while the computation of the gradients of the next
lower layer needs to be performed with the local gradients.
This implies the all-reduce and averaging of the gradients must
be performed on a copy rather than in-place. Furthermore, the
averaging of the copied gradients must finish before they can
be applied to update the weights.

B. Horovod

Many popular implementations of synchronous data-parallel
training emerged: Distributed Tensorflow, Distributed Torch,
CNTK [13], MaTEx (Machine Learning Toolkit at Extreme
Scale) [14], CaffeonSpark [15], FireCaffe [16]. Some of these
runtimes can use MPI as the underlying communication layer
that provides an optimized all-reduce implementation, which
is a natural fit for supercomputing architectures.

However, much of the DL ecosystem has evolved around
Python. High-level libraries such as Keras [17] were specifi-
cally designed to hide the complexity of interacting with DL
runtimes directly. In this context, Horovod, a relatively recent
implementation that aims to continue this tradition emerged.
Specifically, Horovod hides the details of parallelization by
wrapping around high-level classes typically instantiated by
DL users. Using this approach, there are only minimal changes
necessary to make convert a serial base code into a synchro-
nized data-parallel code. Most of these changes are related to
the fact that each worker in charge of a model replica needs

to access a different batch, which implies a need to either to
shuffle, split and distribute or to randomly sample the training
data on each worker. This is a delicate choice well studied
in the literature [18] and there are reference implementations
available in Keras that can be extended and customized as
needed. Thanks to this ease-of-use, Horovod is one of the
most widely used synchronous deep learning frameworks.

Internally, Horovod can use multiple communication li-
braries to perform all-reduce, depending on where the workers
are located (same node but different GPUs, different nodes,
etc.). We focus our study the case when MPI is used. In
this case, each worker is assigned to a MPI rank and holds
a model replica. Furthermore, the layers of the model and
the corresponding gradients are represented as tensors. To
maintain consistency with the terminology used by Horovod,
we will refer to them as tensors for the rest of this paper.

Horovod implements an optimized version of synchronized
data parallel training (detailed in Section II) as follows: rank
0 is designated as a global coordinator. As soon as all ranks
have finished feed-forward, they employ a three-phase protocol
for each tensor. In the first phase (called “negotiation”), all
ranks compute the local gradients, create a local copy and
report completion to the coordinator. This is followed by a
“reduction” phase that performs a blocking all-reduce on the
local copies using the sum operator, which has an optimal
MPI implementation. Finally, in the third phase the reduced
gradients are averaged (sum divided by number of ranks,
which maintains the same tensor size). The result is passed
to the model replica to update the weights of the layer
corresponding to the tensor (each weight has a corresponding
averaged gradient). Since the gradient computation is com-
pletely localized, once the negotiation for a given tensor has
finished, the next negotiation for the adjacent lower tensor
can be immediately started without waiting for the reduction
or average phase. MPI does not allow multiple concurrent all-
reduce operations, therefore the second phase is serialized: a
new reduction is started only when both the negotiation and
the reduction of the next adjacent upper tensor has finished.
This is also the reason why a coordinator is needed. After the
reduction, the third phase is again localized, therefore it can
be performed in parallel with any other phases of the same or
different tensor.

A key feature that makes Horovod easy to study at fine
granularity is its logging capability called the timeline. Since
rank 0 acts as a global coordinator, it can collect information
about when important events happen and log them based on its
local timestamp, which provides a coherent ordering. Specif-
ically, information about the following events is collected for
each tensor: when the negotiation phase has started, when
each rank reported completion of the negotiation, when the
reduction phase has started, when the reduction phase has
ended. Horovod organizes this information in a specific JSON
file format that can be loaded and visualized externally (e.g.,
using Google Chrome’s built-in tools). An example of this
is illustrated in Figure 3. Unfortunately the timeline quickly
explodes at scale and becomes a complex interleaving difficult



to understand visually, negating its ability to explain fine-grain
details.

Several efforts have focused on the investigation of the
behavior of deep learning applications from different per-
spectives: performance and power characteristics [19], scal-
ability and fine-tuning [20], GPU optimizations [21], I/O
workloads [22], [23]. However, a systematic understanding of
fine-grain behavior at tensor level that explains the interplay
of layer-wise pipelining and all-reduce in synchronous data
parallel training is missing. To the best of our knowledge, we
are the first to study this aspect and to discuss the opportunities
it opens for further optimizations and/or coupling with pre/post
processing.

Fig. 3. Horovod timeline: An example of the visual representation of the
events generated by the ResNet-50 benchmark

III. TIMELINE ANALYTICS

We have contributed with an analytics framework that parses
the Horovod timeline to produce aggregated statistics that are
specifically targeted at explaining how well the parallelization
of the various phases works, where potential bottlenecks are,
and what opportunities to leverage idle resources exist. Note
that our approach is by no means tied to Horovod: given
appropriate instrumentation, the key metrics and principles
discussed in this section are general enough to be applicable
for other frameworks as well.

To this end, we introduce a series of key metrics, which are
detailed below. Note that the training process involves multiple
epochs, with each epoch consisting of multiple rounds during
which each worker processes a batch. To avoid bias due to
warm-up, the first round is excluded from the analysis.

Feed-forward: measures the average elapsed time from
the start of a new round until the start of the first negotiation.
This is averaged for all rounds. This metric is important
because it indicates for how long the workers are performing
embarrassingly parallel computations and do not need to syn-
chronize with each other, which can be exploited to leverage
the idle I/O and network bandwidth for other purposes.

Negotiation delays: measures the sum of all idle time
intervals for each rank between the moment when the first
negotiation has started until the beginning of the next round.
This is averaged for all workers and rounds. An idle time

interval happens when a worker is not involved in any ne-
gotiation (i.e., has finished reporting to the coordinator for
all negotiation phases that have started) or in any reduce
phase for any of the tensors. A common cause for this are
stragglers: if a rank is slow in finishing one of the negotiations,
it blocks not only the corresponding reduce phase, but all
reduce phases that follow (because all-reduce operations are
serialized), ultimately leading to the situation where the other
ranks finish the third phase and sit idle waiting for it. This
metric is important because it exposes the degree of imbalance
experienced by the workers, which causes inefficiencies in the
pipeline. This can be used either to better tune the pipeline or
scavenge idle resources for other types of work.

Back-propagation window per tensor: measures for each
tensor the interval from the moment when the all-reduce
operation has finished until the beginning of the next round.
This is averaged for all rounds. In other words, it indicates how
much time is available after the end of the all-reduce to average
the gradients and apply them to update the weights of the layer
corresponding to the tensor. This metric is important because
it exposes potential opportunities to delay the third phase
and/or schedule additional work that modifies the weights (e.g.
pruning of weights close to zero) without delaying the next
round (once the weights have been updated, they will not be
read again before the beginning of the next round).

Reaction bandwidth per tensor: the amount of work
needed for the third phase and/or to schedule additional work
during the back-propagation window depends on the size of
the tensor (the number of averaged gradients equals number
of weights in the layer). Therefore, it is important to measure
the minimum rate at which the tensor needs to be processed
(i.e., react on it after all-reduce) such as to avoid delaying the
next round. We call this metric reaction bandwidth and obtain
it by dividing the size of the tensor by its back-propagation
window.

Immutable bandwidth per tensor: after the start of a new
round, a layer will stay immutable and can be safely read until
the end of its corresponding reduce phase. This is a worst case
scenario, because the layer may also stay immutable during
the previous back-propagation window after the gradients have
been averaged and the weights have been updated. Therefore,
in the ideal case, when considering these operations to be
negligible, a layer will stay immutable between two reduce
phases. Therefore, we propose to divide the size of the
corresponding tensor by the average time interval for the best
and worst case. This gives the minimum bandwidth necessary
to safely read a layer and use it as an immutable object
(unlike reaction bandwidth, which allows changes) without
causing delays. Such a metric is important to understand the
opportunity to perform asynchronous immutable operations
(e.g., checkpointing, compression, etc.).

IV. EVALUATION

A. Experimental Setup

Our experiments were performed on ANL Theta, a 11.69
petaflops pre-Exascale Cray XC40 system based on the
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Fig. 4. CANDLE NT3: Performance and strong scalability for an increasing number of nodes under variable batch size, ranks per node, threads per node.
Threads per rank equals threads per node divided by number of ranks.

second-generation KNL Intel Xeon Phi 7230 SKU. The system
is equipped with 4392 nodes, each containing a 64 core
processor (256 hardware threads) with 16 gigabytes (GB) of
high-bandwidth in-package memory (MCDRAM), 192 GB of
DDR4 RAM (20 GB/s), and a 128 GB SSD (700 MB/s).
The interconnect topology is based on Dragonfly with a total
bisection bandwidth of 7.2 TB/sec. In terms of software, we
use Horovod v.0.16.1, Keras v.1.10 and Tensorflow v.2.2.2.
Note that all these libraries are compiled with optimized
support for the KNL architecture by taking advantage of Intel’s
Math Kernel Library (MKL).

B. Applications

We study two representative deep learning applications.
1) CANDLE NT3: CANDLE [24] (Cancer Distributed

Learning Environment) is a project that aims to combine the
power exascale computing with deep learning to address a
series of loosely connected problems in cancer research. Each
such problem is driven by a series of benchmarks. One such
direction (Pilot 1) aims to predict drug response based on
molecular features of tumor cells and drug descriptors. In
this context, we study on NT3 [25], which consists of a
1D convolutional networks for classifying tissue expressed as
gene sequences as normal or tumorous. This type of network
follows the classic architecture of convolutional models with
multiple 1D convolutional layers interleaved with pooling
layers followed by final dense layers. The optimizer used by
NT3 is SGD (stochastic gradient descent). The training data
size for this benchmark is ≈ 600 MB, which includes 1120
training samples. The default batch size is 20. For the purpose
of this work, we modified NT3 to enable data parallel training.
Specifically, we introduced a partitioning scheme that evenly
distributes the training data to the workers and added a new
distributed optimizer based on Horovod.

2) ResNet-50: is a deep neural network where the layers
learn residual functions with reference to the input layers,

instead of learning unreferenced functions. This allows ResNet
to train extremely deep neural networks with 150+ layers,
which was difficult prior to its introduction due the problem
of vanishing gradients [26]. Due to this breakthrough, ResNet
became a highly popular image classification benchmark espe-
cially in a simpler form that uses 50 layers. We study this form,
called ResNet-50. A data parallel implementation is shipped
together with Horovod as an example [4]. The optimizer used
by this implementation is also SGD. As training data, we use
the ImageNet dataset [27], which is ≈ 200 MB large and
includes 100,000 samples. The default batch size is 128. The
training set of each worker is randomly sampled from the
training data.

C. Scalability

First, we evaluate the performance and scalability under
variable number of nodes, processes per node, hardware
threads per process, and batch size. The goal of this step is
to understand how well data parallel training can scale using
Horovod, as well as to identify the optimal granularity of
parallelism at node level and the impact of the batch size.

To this end, we vary the number of nodes in range: 1,
2, 4, 8. Since Tensorflow can take advantage of multi-core
architectures, we vary the number of workers per node in a low
spectrum: 1, 2, 4. There are 64 cores per node, therefore we
explore three scenarios: under-utilization (half of the cores run
32 hardware threads), full utilization (all cores run a hardware
thread), hyper-threading (2 hardware threads per core). For
each scenario, we allocate the hardware threads evenly among
all workers co-located on the same node. The batch size is a
variation around the default setting. We run all experiments for
all possible combinations of settings and record the completion
time. Since exploring all combinations is a time-consuming
process, each run is limited to one epoch, during which each
worker will process several batches. This is enough to reveal
a repetitive behavior.
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Fig. 5. ResNet-50: Performance and strong scalability for an increasing number of nodes under variable batch size, ranks per node, threads per node. Threads
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The results for CANDLE NT3 are highlighted in Figure 4.
In all cases, there is a clear trend visible: an increasing number
of nodes decreases the training duration for a fixed number
of samples, which means strong scalability is possible. First,
we focus on the impact of the number of ranks per node.
We fix the batch size to 10, which produces many small all-
reduce operations and thus finer-grain pipelining. Also, we
fix the number of threads per node to 32, which emphasizes
an under-subscribed scenario that favors multiple ranks per
node. As can be observed in Figure 4(a), the best configuration
is one rank per node, which means increasing the degree of
fine-grain pipelining leads to better performance than creating
more model replicas for the same amount of nodes. Next, we
focus on increasing the number of threads to further study the
scalability of pipelining. As can be observed in Figure 4(b),
when we fix one rank per node, over-subscribing the number of
threads per node using hyper-threading (2 per core) produces
better results (compared with one thread per core). Thus,
we conclude the NT3 model pipeline is highly parallelizable.
Next, we study the impact of batch size, using one rank per
node and 128 threads per node (Figure 4(c). As expected,
an increasing batch size leads to shorter completion time.
However, it is interesting to observe that the difference is
small, which means the number of steps in an epoch has little
impact as long as the total size of the training data per worker
remains the same.

We perform a similar study for ResNet-50 (Figure 5). Again,
we observe strong scalability in general. However, unlike the
case of CANDLE NT3, pipelining does not leverage the full
compute capability of a node efficiently, as the optimal number
of ranks per node is four (as per Figure 5(a)). Furthermore, the
optimal number of threads per node is 64 (one hardware thread
per core), which amounts of 16 hardware threads per rank, as
shown in Figure 5(b). Interestingly, 128 threads per node (two
hardware threads per core) delivers the worst performance,
which is the opposite of the NT3 case. Furthermore, under-

subscription (32 threads per node) does not seem to degrade
performance significantly, which confirms why more ranks per
node increase performance. Finally, as depicted in Figure 5(c),
the impact of the batch size is negligible in the optimal
configuration. This finding is consistent with the behavior of
NT3 as well.

Note that we have experimental results for all possible
combinations of settings for both applications. We verified
that the optimal number of ranks per node and threads per
node remains constant for all combinations, not just the ones
highlighted above.

D. Fine-grain study of key metrics

Next, we zoom on the configurations for which we obtained
the best performance for a given number of nodes. For these
configurations, we study the timeline produced by Horovod
using the key metrics produced by the analytics framework
introduced in Section III.

Specifically, we fix the number of ranks per node, threads
per node and batch size and study the case of 2, 4, 8 nodes
(which feature non-trivial communication over the network
during all-reduce). Since it is difficult to plot the metrics
obtained for each tensor individually, we aggregate them as
follows: (1) for the back-propagation window we calculate the
average and maximum among all tensors; (2) for the reaction
and immutable bandwidth, we calculate the maximum across
all tensors. Note that the lower the sustained bandwidth for
a tensor needs to be, the more flexibility there is to perform
complex post-processing. Therefore, the maximum among all
tensors indicates a conservative bandwidth that provides a
good overview of the minimum sustained processing rate that
avoids any delay regardless of the size of the tensors and their
back-propagation window.

The obtained timing metrics are depicted in Figure 6.
Overall, both CANDLE NT3 and ResNet-50 behave similarly.
The average feed-forward remains relatively constant with
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increasing number of nodes, with a slight increase observable
for more than two nodes (larger number of workers creates
stragglers). This hints at consistent opportunities to leverage
idle I/O and network resources in the background. The average
negotiation delay is significant for two nodes but sharply
decreases for more than two nodes due to workers spending
more time in all-reduce operations. This means there is little
opportunity to consistently leverage idle resources due to
imbalance at scale. However, the maximum negotiation delay
behaves differently for CANDLE NT3 and ResNet-50: for the
former it is close to the average, for the latter it is up to orders
of magnitude larger, which implies occasional opportunities to
leverage idle resources. Both the average and maximum back-
propagation window is larger than the feed-forward duration
and increases with scale (which is expected, due to increasing
all-reduce overhead).

The bandwidth-related metrics are depicted in Figure 7. As
can be observed, for CANDLE NT3 the reaction bandwidth

grows fast with increasing scale (note the log scale on the Y
axis). This is due to the fact that it features a large lower tensor
that makes up the bulk of the model, which is preceded by a
few trivial tensors that incur negligible overhead. Therefore,
its back-propagation window is tiny and leads to a huge
reaction bandwidth, leaving little room to do other operations
that modify the tensor without causing delays. However, the
situation is different for the immutable bandwidth: the large
tensor incurs a large all-reduce overhead, therefore it takes a
long time until it is updated again in the next round and can be
safely read at a relatively slow rate (less than 200 MB/s, which
is enough to copy it to local storage). Also note the small
difference between the best and worst immutable bandwidth,
which is caused by the tiny back-propagation window of
the large tensor. ResNet-50 is in a much different situation.
Featuring a large number of tensors that are of comparable
size, its pipelining is much deeper and more evenly balanced,
which results in very small reaction and immutable bandwidth



(note the unit on the Y axis: KB/s). This leaves plenty of room
to leverage idle I/O resources and couple the training with
additional pre/post processing, regardless whether this implies
modifications to the tensor or not. Furthermore, thanks to the
small reaction bandwidth, the difference between the worst
and best case immutable bandwidth is more pronounced.

V. CONCLUSIONS

This paper focuses on the problem of understanding the
performance and scalability of synchronous data parallel train-
ing at fine granularity. To this end, it introduces series of
key metrics and an approach to extract them from low-level
operations and events performed by data-parallel frameworks.
We illustrate this approach on Horovod, which has a powerful
logging mechanism for such low-level operations and events.
Using this approach, we study the performance, scalability and
behavior of two application benchmarks (CANDLE NT3 and
ResNet-50) on a supercomputing infrastructure (ANL Theta).

Our findings show: (1) significant opportunity to leverage
idle I/O and network resources during feed-forward; (2) signif-
icant flexibility to schedule the back-propagation and/or couple
it with additional operations that modify tensors when for deep
models with balanced tensor sizes; (3) significant opportunity
to perform additional immutable asynchronous operations in
the background on the tensors during the training with minimal
interference.

Encouraged by these results, we plan to explore in future
work how to design advanced asynchronous checkpointing
techniques to preserve the state of models at high frequency
by taking advantage of the observation that checkpointing is
an immutable operation. To this end, we plan to leverage
VeloC [28], a large-scale checkpointing system that features
asynchronous management of deep storage hierarchies.
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