
Portable and Reusable Deep Learning Infrastructure
with Containers to Accelerate Cancer Studies

George F. Zaki,1 Justin M. Wozniak,2 Jonathan Ozik,3

Nicholson Collier,3 Thomas Brettin,4 and Rick Stevens5

1 Frederick National Laboratory for Cancer Research, Frederick, MD
2 Data Science and Learning, Argonne National Laboratory and University of Chicago

3 Decision and Infrastructure Sciences, Argonne National Laboratory and University of Chicago
4 Computing, Environment, and Life Sciences, Argonne National Laboratory

5 Computing, Environment, and Life Sciences, Argonne National Laboratory and University of Chicago

Abstract—Advanced programming models, domain specific
languages, and scripting toolkits have the potential to greatly
accelerate the adoption of high performance computing. These
complex software systems, however, are often difficult to install
and maintain, especially on exotic high-end systems. We con-
sider deep learning workflows used on petascale systems and
redeployment on research clusters using containers. Containers
are used to deploy the MPI-based infrastructure, but challenges
in efficiency, usability, and complexity must be overcome. In this
work, we address these challenges through enhancements to a
unified workflow system that manages interaction with the con-
tainer abstraction, the cluster scheduler, and the programming
tools. We also report results from running the application on our
system, harnessing 298 TFLOPS (single precision).

I. INTRODUCTION

High performance computing (HPC) is being made more
accessible through the development of high-level programming
tools and environments. These allow a wider range of scientific
experts to benefit from continued growth in computing capabil-
ities, including many-core concurrency, accelerators including
GPUs, and so on. Additionally, the emergence of scripting
frameworks backed by efficient numerical libraries, analysis
packages, and communication frameworks has made the rapid
development of performant scientific applications a reality.
This is in addition to the availability of deep learning (DL)
toolkits programmed through very high level Python APIs and
deployed on powerful GPUs.

These advances are due in part to the adoption of hierar-
chical programming, where end users develop applications in
Python or R, but the performance-critical sections of code are
developed in C, C++, Fortran, and accelerator programming
systems. This naturally allows for separation of concerns,
where the applications, scripting APIs, and numerics are
programmed by different groups of experts, resulting in a
more complex computational ecosystem and community. This
approach has been pioneered by hierarchical “glue code”
systems like Tcl [13] and Java JNI, although with more modest
adoption in scientific computing.

Getting started with these complex programming environ-
ments is much more challenging than, say, monolithic use
of cc or f77. Thus, we introduce an additional separation
of concerns between the scientific user and the programming

model and middleware layer. The latter contains the program-
ming tools and scripting environment, along with the numeric
or analytic frameworks required for the users. In this work,
we address this with containers. Typically, containers are used
to deploy whole applications, but we address a more complex
problem of delivering a programming environment along with
scheduler interaction and the ability to manage data and deep
learning models outside the container. We treat this problem
as a separate concern to be managed.

Deep learning at scale has the capability to greatly enhance
cancer research. In this work, we used the CANcer Deep
Learning Environment (CANDLE) application suite as a ref-
erence set of small but representative application workflows
that address three key topics in cancer studies. These CAN-
DLE applications have been deployed on petascale machines
as individual benchmarks and as scalable workflows using
the infrastructure provided by the workflow manager CAN-
DLE/Supervisor [17]. This system provides a very high level
programming model but is deployable on the largest available
computing resources. In this work, we investigate deploying
this infrastructure on modest cluster resources, thus delivering
it closer to scientific users. Additionally, the containers may
be deployed again on emerging supercomputers that support
containers, such as OLCF Summit [5].

Contributions. This paper offers the following: 1) A descrip-
tion of cancer research workflows that pervasively use deep
learning; 2) An approach to deliver these workflows on a
commodity cluster and allow for user extensions and pro-
gramming; and 3) performance behavior results from running
representative workflows.

The remainder of this paper is organized as follows. In §II,
we describe our cancer workflows in more detail, the available
parallelism in these workflows and the use of HPC resources.
In §III, we describe the programming model and architecture
used to integrate these workflows on these systems. In §IV, we
provide a performance evaluation of the complete system. In
§V, we describe future work, and in §VI, we offer concluding
comments.

1

II. HYPERPARAMETER SEARCH IN DEEP LEARNING

In this section, we provide background on the cancer appli-
cation suite we are using and the hyperparameter optimization
workflows we are running for it.

A. CANDLE application benchmarks

The CANDLE application benchmarks are a suite of Python
and Keras-based applications that are designed to both 1)
promote the application of deep learning to cancer problems
today and 2) help prepare cancer applications for the exascale
era. The three “Pilot” areas of CANDLE applications are:

1) Analysis of molecular dynamics simulation outputs in
the RAS pathway;

2) Drug response prediction based on the patient genetic
sequence; and

3) Determination of optimal cancer treatment strategies via
clinical text document analysis.

Each Pilot area has a small number of Python applications.
The training and validation data is available for download as
specified in each application. The applications use a common
set of Python-based utilities, and implement a common inter-
face for use by the higher-level workflows described below.

To support the use cases described above, we developed
the CANDLE/Supervisor architecture [17] diagrammed in
Figure 1. The overall goal is to solve the hyperparameter
optimization problem to minimize F (p), where F is the
performance of the neural network parameterized by p ∈ P ,
where P is the space of valid parameters.

The optimization is controlled by an Algorithm 1 se-
lected by the user. The Algorithm can be selected from those
previously integrated into CANDLE, or new ones can be
added. These can be nearly any conceivable model exploration
(ME) algorithm that can be integrated with the EMEWS 3
software framework. EMEWS [14] enables the user to plug
in ME algorithms into a workflow for arbitrary model explo-
ration; optimization is a key use case. This is implemented
in a reusable way by connecting the parameter generating
ME algorithm and output registration methods to interprocess
communication mechanisms that allow these values to be
exchanged with Swift/T. EMEWS currently provides this high-
level queue-like interface in two implementations: EQ/Py and
EQ/R (EMEWS Queues for Python and R). Thus, the ME
algorithm can be expressed in Python or R. The Algorithm is
run on a thread on one of the processors in the system. It is
controlled by a Swift/T script 2 provided by EMEWS, that
obtains parameter tuples to sample and distributes them for
evaluation.

The Swift/T [6], [16] workflow system is used to manage the
overall workflow. It integrates with the various HPC schedulers
to bring up an allocation. A Swift/T run deploys one or more
load balancers and many worker processes distributed across
compute nodes in a configurable manner. Normally, Swift/T
evaluates a workflow script and distributes the resulting work
units for execution across the nodes of a computer system over
MPI. Swift/T can launch jobs in a variety of ways, including

in-memory Python functions in a bundled Python interpreter,
shell commands, or even MPI-based parallel tasks. However,
in this use case, workflow control is delegated to the Algorithm
via the EMEWS framework, which provides the Swift/T script.

During an optimization iteration, the Algorithm produces a
list of parameter tuples 4 that are encoded as arguments to a
Python-based Wrapper script 5 . These wrapper scripts are
the interfaces to the various CANDLE Pilot applications. The
parameters are encoded in JavaScript Object Notation (JSON)
format which can be easily converted by the Python Wrapper
script into a Python dictionary, from which a CANDLE
Pilot application can retrieve the parameter values. These
scripts are run concurrently across the available nodes of the
Swift/T allocation, typically one per node. Thus, the deep
learning software (DL), the underlying learning engine (e.g.,
TensorFlow), has access to all the resources on the node. The
Pilots are Python programs that implement the application-
level logic of the cancer problem in question. They use the
Keras interface to interact with the DL and are coded to
enable the hyperparameters to be inferred from a suitable
default model file, or to be overwritten from the command line.
It is this construction that allows the parameter tuples to be
easily ingested by the respective Pilots, and use a standardized
interface developed as part of the project.

The result of a Wrapper execution is a performance mea-
sure on the parameter tuple p, typically the validation loss.
Other metrics could be used, including training time or some
combination thereof. These are fed back to the Algorithm
by EMEWS to produce additional parameters to sample. The
results are also written to a Solr-based Metadata Store 7 ,
which contains information about the Wrapper execution.
The Metadata Store accesses are triggered by Keras callback
functions, which allow Wrapper code to be invoked by Keras
at regular intervals. Thus, a progress history is available for
each learning trial run, as well as for the overall optimization
workflow. Good models can also be selected and written to a
Model Store.

Petascale computer

Swift/T

EMEWS

AlgorithmAlgorithm

ScriptScript
WrapperWrapper

Pilot

Keras

DL

Model StoreModel Store Metadata StoreMetadata Store

Hyperparameters p ∈ P

Results F(p)

11

22

33

55

44

66

77

Fig. 1: CANDLE/Supervisor original architecture.

2

B. Model-based Optimization

Model-based optimization (MBO) approaches are used for
tackling expensive black-box model optimization by approx-
imating the model’s objective function through a surrogate
regression model and then optimizing over the surrogate
model’s response surface. In this work we used the mlrMBO
[8] R package to implement MBO algorithms and integrated
it into our MBO workflow using the EMEWS Queues for R
(EQ/R) capabilities of EMEWS [14]. The mlrMBO package
is designed for optimization problems with mixed continuous,
categorical and conditional parameters. It follows a Bayesian
optimization [7] approach which proceeds as follows. In the
initialization phase, ns configurations are sampled at random,
evaluated, and a surrogate model M is fitted with the input-
output pairs. In the iterative phase, at each iteration, nb

promising input configurations are sampled using the model
M . These configurations are obtained using an infill criterion
that guides the optimization and tries to trade-off exploitation
and exploration. The infill criterion selects configurations that
either have a good expected objective value (exploitation)
or high potential to improve the quality of the model M
(exploration). The algorithm terminates when a user-defined
maximum number of evaluations and/or wall-clock time is
exhausted. Crucial to the effectiveness of mlrMBO is the
choice of the algorithm used to fit M and the infill criterion.
Given the mixed integer parameters in the hyperparameter
search, we used random forest [9] because it can handle such
parameters directly, without the need to encode the categorical
parameters as numeric. For the infill criterion, we used the
qLCB [11], which proposes multiple points with varying
degrees of exploration and exploitation.

C. Asynchronous Search

The standard CANDLE/Supervisor workflow pattern in-
volves sending batches of parameter combinations to be
evaluate in synchronized stages. The asynchronous search
(AS) workflow modifies this pattern and, instead, allows an
optimizer to continuously update as new results are learned
and to generate new hyperparameter combinations based on
the new information. This improves computational resource
utilization since there are no global synchronization barriers.
The AS workflow contains specific optimizer and model
agnostic framework code and is implemented using the Scikit-
Optimize Python package [4], EMEWS Queues for Python
(EQ/Py), and the MPI for Python (mpi4py) package [2]. The
base AS workflow also uses a random forest classifier to create
a response surface for optimizing the model hyperparameters.
Thus, similar to the mlrMBO workflow, it implements an
MBO algorithm, but the ME algorithm is in Python and the
surrogate model is updated asynchronously. EQ/Py provides
the interface for receiving parameters from the AS optimizer,
while mpi4py is used to communicate results from the model
runs directly back to the optimizer.

D. Parameter Space Gridding

A parameter space can be sampled using a priori selected
parameter combinations. Unlike MBO and asynchronous
search, this approach does not require adaptive algorithms
to guide the parameter space sampling. This is the simplest,
though most costly, approach for hyperparameter optimization.
While we include this approach as a comparative base-case,
we note that there are two primary drawbacks to utilizing
an user-specified set of discrete hyperparameters for reducing
loss: 1) it requires the user to make assumptions concerning
topological efficiencies and efficacies and 2) it is limited to
a small, finite set of models (i.e., it is forcing a complex
algorithm into constrained bounds). The a priori sampling
workflows are implemented using the unrolled parameter file
EMEWS capabilities.

III. ARCHITECTURE FOR WORKFLOW PORTABILITY

To run the workflows described above on the Biowulf cluster
at National Institute of Health, we had to re-architect the
workflow to use a container-oriented paradigm. This gave us
the opportunity to re-architect our HPC-oriented scripts into
a package that is more usable on modern commodity clusters
that offer support for containers.

Biowulf is a heterogeneous cluster with over 95,000 cores
with Intel hyperthreaded processors (e.g., Xeon E5 and E7
family) and Nvidia GPU accelerators (e.g., K80, P100, and
V100). Based on the application, Biowulf nodes have different
number of CPUs, and RAM (e.g., 64GB-3TB). All nodes in
the cluster have access to an NFS storage.

The cluster can be used for embarrassingly parallel appli-
cation as well as HPC applications where parallel file I/O
and communication loads are significant compared to the
application runtime.

In deep learning applications, the hyperparameter tuning
using MBO requires relatively little communication between
the hyperparameter server and the workers. However, for a
given value of hyperparameters, data and model parallelism
requires extensive communication between workers. Biowulf
has heterogeneous network infrastructure (e.g., 10G, and 56G
FDR Infiniband) so it supports these two requirements.

A single SLURM scheduler provides access to the cluster
via a queue. All nodes are accessible via this scheduler, but
only limited number of GPUs nodes may be allocated at a time
for a given user. Currently, this number is 48 P100 GPUs.
In our experimental runs, we ran on at most 32 nodes. At
9.3 TFLOPS single precision per GPU [3], this gave us access
to 298 TFLOPS.

Since the CANDLE workflows are designed to run in a plain
Linux-based HPC programming environment, they needed to
be extensively modified. The main distinction is that some of
the scripts run outside the container, and some run inside the
container. This made for some challenging rearchitecture.

A. Benefits of containers

Containers are a Linux kernel feature to ease system ad-
ministration. They allow for, effectively, one or more entire

3

operating system (OS) instances to be isolated from the main
Linux OS. The root filesystem is packaged in an image
file, however, the original filesystem can be mounted in the
container. Other resources in the container are isolated from
each other. At a very high conceptual level, containers are like
virtual machines (VMs), but are implemented quite differently,
as an OS feature that multiplexes itself. Containers typically
start up faster than VMs and have less overhead at run
time [10].

Containers have multiple general benefits. First, containers
minimize or eliminate software installation and configuration
complexities for end users. Containers allow for users to
easily switch between software versions, such as Python 2 and
Python 3 packages, without the risk of incompatibilities. This
allows users to try new, untested environments without losing
the productivity in their older, well-tested environments.

For CANDLE users, these benefits are very important.
CANDLE workflows are a shared project between users
interested in basic cancer research, deep learning research,
and exascale computing. Each subgroup has differing interests
in the value of experimental changes to different parts of
the software stack. For example, users of CANDLE at the
National Cancer Institute and Frederick National Laboratory
need a more production-ready system to address more realistic
problems in the health sciences, and are less interested in
exotic changes needed to run on the latest petascale system.
So containers allow us to easily and reliably package the
CANDLE workflows for this use case.

Giving the mentioned advantages, using container technolo-
gies had increased popularity in the scientific community.
However, unlike many web applications that benefit from
enterprise micro-service virtualization, security and scalability
are first class requirements in HPC platforms. In that context,
we have used Singularity [12] a container solution developed
for scientific application. Singularity offers the mobility, re-
producibility, and user freedom of containers while it is able
to support existing HPC resources.

B. Challenges of containers

While container technologies allow enhanced productivity
in dynamic environments and reduce dependencies on system
administrators, they need careful attention to achieve that goal.
We highlight a few of these challenges.

First, container construction and maintenance requires care-
ful attention to software versions and compatibilities. Con-
tainers allow this problem to be delegated to the software
managers on a team, with minimal interference to system
administrators and application-level users. As a problematic
example, the container could be based on an operating system
distribution using the tag latest. While such practice might help
in using the most up to date version, it can break dependencies
down the road.

On the other hand, in the container definition file or recipe, if
the version of a given package is specified, then all dependent
packages have to be compatible. For example, the recipe
cannot contain the versions of some python packages while

omitting the others. When the version is not specified, the
python package manager might install the latest version of a
module which can break compatibility.

Second, to run MPI applications using Singularity, the
MPI implementation inside the container must match the
implementation on the host operating system. This step might
require users to rebuild the container from the recipe instead
of using the already built image. Our approach to mitigate this
overhead is described in the evaluation section.

Third, the portability benefit of using containers can also
come at the expense of limited customization and optimization
of software packages for a given processing architecture. For
example, one cluster might need optimized TensorFlow instal-
lation for Intel Xeon Phi accelerators, while another cluster
needs optimized CUDA installation for their Volta GPUs.
Providing one container with all possible optimized versions
is labor intensive. However, such optimized installation has to
be provided for the software packages that consume most of
the time of the workflow, and for the base operating system
used in the container only.

C. The container architecture for CANDLE workflows

Container-based cluster

Login node

Network File SystemNetwork File System

11

CANDLE containerCANDLE container

Workflow
Compiler

SLURM

WF Code

MPI

sbatch

Compute node
CANDLE containerCANDLE container

Workflow
Runtime

WF Code

MPI

Submit node
 $ mpiexec singularity exec ...

● ● ●

22

33

44

Launch script

55

Fig. 2: Container usage for CANDLE workflows.

Our container-based workflow startup infrastructure is show
in Figure 2. We bundled all the requisite software, including
the CANDLE Benchmarks, Supervisor scripts, Python, R,
Keras, and Swift/T into a “CANDLE container.” The container
allows the user to launch it interactively to make any necessary
edits. The system is then run by the user invoking a launch
script 1 that specifies the workflow expressed in Swift
and the settings for the run, including the number of nodes
requested, queue to use, and so on. This invokes a container
in which Swift/T is installed 2 . The component shown
as “Workflow Compiler” uses Swift/T to translate the Swift
workflow into runnable format, shown as the “WF Code”,
as well as generate the SLURM submit script and MPI
runtime settings. This process takes about 1 second. Then,
the user must use sbatch to launch the generated workflow
scripts 3 .

4

Once the submitted job starts, it uses mpiexec to start the
CANDLE container on each allocated compute node. Within
this container, the Swift/T “Workflow Runtime,” an MPI
program, is started. It is able to connect to other processes that
are part of this MPI job 5 . The main CANDLE application
workflow is then able to start.

IV. EVALUATION

A. Building the CANDLE container

The singularity definition file for CANDLE includes the
recipe for all the required packages to run the parameter
optimization workflows and the machine learning models [1].
In singularity, the MPI implementation in the container im-
age must match the implementation on the host cluster. On
Biowulf, multiple MPI implementations are installed. At run-
time, the installation that matches the CANDLE container is
loaded.

Building the CANDLE container for other clusters will
require making sure the correct MPI implementation is used
in the container recipe. In practice, the system admins for the
HPC cluster provide a template for a simple MPI application
running in the container environment for that cluster. This
template is then used to configure the MPI section in the
CANDLE recipe.

Per singularity requirement, the CANDLE container is built
on a virtual machine (VM) where we have root access, then
the container single file is copied to the Biowulf cluster for
end users. Productivity of using containers is achieved by
running the workflow on the VM as well as on the cluster
without modification. The current CANDLE container size is
about 1.9GB. As mentioned in the introduction, the actual deep
learning models are shipped separately.

B. Using the CANDLE container

Once the singularity image is copied to the production
system (e.g., Biowulf) end users have to focus only on defining
the configuration of their experiments without dealing with
software installation. To set up a deep learning experiment us-
ing the CANDLE container, health science researchers should
define the following:

• The deep learning model. The script that describes the
model should accept the value of the model hyperparam-
eters as input arguments and print the score of the model
after training.

• The definition of the hyperparameter search space. De-
pending on the optimization algorithm, the hyperparam-
eters space can be enumerated for grid search, or the
range of every parameter can be described using the API
provided by the optimization package (e.g., mlrMBO,
Scikit-Optimize).

• The compute job. Users have to define the number and
type of processing nodes, the job time, memory per node,
and any special queue for the schedule, etc.

Once the job is defined, it is submitted to the cluster using
a script that wraps the steps described in Section III.

C. The U-Net application

To evaluate the usability and scalability of the workflow, we
developed a benchmark that shows how to use the container
to train deep learning problems in addition to the examples
mentioned in Section II. In that context, we trained a popular
image segmentation DL network U-Net [15]. U-Net has an
encoder/decoder architecture where its input is a 2-D image
and its output is a 2-D array of the same size of the input.
Every pixel in the output array indicates a classification as
foreground or background for the corresponding pixel in the
input.

U-Net is expressed in Keras using the TensorFlow backend.
The hyperparameters for the network consist of the number
of layers in the encoder/decoder stacks, the number of convo-
lutional filters, the size of the convolution filters, the dropout
value, and the activation functions.

The three hyperparameter optimization algorithms: ran-
dom grid search, mlrMBO, and asynchronous search were
evaluated. For random grid search, continuous and integer
parameters (e.g., dropout, number of layers) were sampled to
discrete values and the evaluation took place using a random
order of the candidate configurations.

The U-Net application is used in a workflow to perform
image segmentation for the nuclei in images generated from
fluorescent microscopy. This is a necessary first step for
many image processing pipelines for cancer cell analysis. The
algorithm is required to perform with varying distribution of
pixel intensities, signal to noise ratios, different cell types,
and most challenging overlapping cell where there no clear
background signal that separates two different cells. Examples
for input and output for the segmentation workflow is shown
in Figure 3.

D. Performance results

Figures 4-6 show Gantt charts for exploring the hyperparam-
eter space on eight Biowulf’s P100 GPU nodes. The vertical
line in the Gantt chart corresponds to every worker. If two
configurations are assigned to the same worker, the evaluations
are given contrasting colors for display purpose. To test the
workflow, every hyperparameter evaluation was capped to run
for 2 epochs, the total job runtime was set for 2 hours, and
the number of configurations was capped at 1000.

Asynchronous search and random grid search have an
overall good utilization of GPUs, while mlrMBO imposes
barrier synchronization after every iteration which reduces the
throughput and utilization. However, it is also important to
consider the quality of the generated model hyperparameters,
which is out of the scope of this paper.

Figure 7 shows scaling of the workflow using the mlrMBO
optimization from 1 to 32 nodes. Using 1 or 2 nodes, the
evaluation did not get past the initialization. By increasing
the number of nodes, more mlrMBO iterations are evaluated.
This however takes place at the expense of dropped throughput
per node as the mlrMBO barrier synchronization contributes
to relatively large idle time. In the scaling results shown in
figure 7, the average idle times (i.e., the percentage of time

5

(a) Microscopy image of nuclei

(b) Ground truth for nuclei semantic segmentation

Fig. 3: Example of U-Net input and output

Workers: 1 2 4 8 16 32
Idle time: 0.01% 0.2% 4% 6% 27% 44%

TABLE I: Idle times for increasing worker node counts.

the workers are not processing any evaluation) are shown in
Table I.

At 32 nodes, a great deal of time is wasted on workers that
complete early and must wait for the synchronization before
the new hyperparameters are ready to run. This utilization
gap can be addressed by running more samples per iteration,
allowing the Swift/T load balancer to add work to idle workers.
It can also be addressed by the asynchronous approach in §II-C
which shows good per node throughput.

E. Native versus containerized performance

To evaluate the performance of the CANDLE container,
we installed the packages needed to run the basic EMEWS
workflow on Biowulf. We set an experiment to run the grid
search hyperparameter evaluation with a dummy model that
imports the Keras deep learning package and exit. Running
the MPI job using 2 workers for 5 minutes produced 891
dummy evaluations using native installation and 869 dummy
evaluations using the CANDLE container. This result shows
near perfect scaling and less than a second overhead to run one
evaluation. This overhead is minimal compared to the time a

Fig. 4: Random grid search Gantt chart using 8 GPUS on 8
nodes.

Fig. 5: Asynchronous search Gantt chart using 8 GPUS, 8
nodes.

typical deep learning training task takes (tens of minutes to
hours).

V. FUTURE WORK

The next step for this work is to deploy this approach
on supercomputers that support containers like Summit. If
successful, we will monitor the adoption of containers in other
supercomputing centers. If containers become ubiquitous, we
will be left with the question of whether to continue support for
workflows without containers, and what the maintainability,
usability, and portability of such workflows may be.

VI. CONCLUSION

Containers can greatly enhance the ability of users to access
complex software applications and workflows. In this paper,
we used a container to simplify the deployment of a complex
cancer-based application suite called CANDLE for scientific
users. This system combines multiple scripting languages, an
MPI-based workflow system, large Python and R libraries

6

Fig. 6: mlrMBO Gantt chart using 8 GPUS, 8 nodes.

containing TensorFlow, optimizers, and so on, and Python-
based application benchmarks. The workflow was originally
designed to run on petascale DOE supercomputers, but we
used containers to redeploy the system on a smaller cluster
commonly used by health scientists.

In this paper, we described the motivation for the use of
containers by this application workflow. We described the
workflow itself and the benefits gained by the incorporation
of a container-based solution. We showed the behavior of the
complete system running real cancer workflows on the Biowulf
cluster, delivering 298 TFLOPS (single precision) to the deep
learning modules.

We developed a container-based middleware that allows a
workflow developed for petascale systems to be deployed on a
terascale cluster, without loss of performance or usability. The
programming model used is the Swift/T workflow language, a
scalable, MPI-based dataflow language. This system allows
cancer researchers to benefit from a heterogeneous cluster,
running a workflow with multiple layers of concurrency. In
short, this paper demonstrates that containers are a viable
approach to broaden the use of advanced programming models
developed for extreme scale systems.

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S. De-
partment of Energy, Office of Science, under contract number
DE-AC02-06CH11357. This research was supported by the
Exascale Computing Project (17-SC-20-SC), a collaborative
effort of the U.S. Department of Energy Office of Science and
the National Nuclear Security Administration. This research
used resources of the Argonne Leadership Computing Facility,
which is a DOE Office of Science User Facility. This research
used resources of the Argonne Leadership Computing Facility,
which is a DOE Office of Science User Facility supported
under Contract DE-AC02-06CH11357.

This work utilized the computational resources of the NIH
HPC Biowulf cluster. (http://hpc.nih.gov)

REFERENCES

[1] Candle-Distribution. https://github.com/ECP-CANDLE/Distribution.
[2] MPI for Python. https://mpi4py.readthedocs.io.
[3] Nvidia Tesla P100 data sheet. https://www.nvidia.com/en-us/data-

center/tesla-p100.
[4] Scikit-Optimize. https://scikit-optimize.github.io.
[5] Summit. https://www.olcf.ornl.gov/olcf-resources/compute-

systems/summit.
[6] Timothy G. Armstrong, Justin M. Wozniak, Michael Wilde, and Ian T.

Foster. Compiler techniques for massively scalable implicit task paral-
lelism. In Proc. SC, 2014.

[7] James S. Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl.
Algorithms for hyper-parameter optimization. In Advances in Neural
Information Processing Systems, pages 2546–2554, 2011.

[8] Bernd Bischl, Jakob Richter, Jakob Bossek, Daniel Horn, Janek Thomas,
and Michel Lang. mlrMBO: A modular framework for model-
based optimization of expensive black-box functions. arXiv preprint
arXiv:1703.03373, 2017.

[9] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
[10] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio. An updated

performance comparison of virtual machines and Linux containers.
In 2015 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 171–172, March 2015.

[11] Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. Parallel algorithm
configuration. Learning and Intelligent Optimization, pages 55–70,
2012.

[12] Gregory M. Kurtzer, Vanessa Sochat, and Michael W. Bauer. Singularity:
Scientific containers for mobility of compute. PLOS ONE, 12(5):1–20,
05 2017.

[13] John Ousterhout. Scripting: Higher-level programming for the 21st
century. IEEE Computer, March 1998.

[14] Jonathan Ozik, Nicholson Collier, Justin M. Wozniak, and Carmine
Spagnuolo. From desktop to large-scale model exploration with Swift/T.
In Proc. Winter Simulation Conference, 2016.

[15] O. Ronneberger, P.Fischer, and T. Brox. U-Net: Convolutional networks
for biomedical image segmentation. In Medical Image Computing and
Computer-Assisted Intervention (MICCAI), volume 9351 of LNCS, pages
234–241. Springer, 2015. (available on arXiv:1505.04597 [cs.CV]).

[16] Justin M. Wozniak, Timothy G. Armstrong, Michael Wilde, Daniel S.
Katz, Ewing Lusk, and Ian T. Foster. Swift/T: Scalable data flow
programming for distributed-memory task-parallel applications. In Proc.
CCGrid, 2013.

[17] Justin M. Wozniak, Rajeev Jain, Prasanna Balaprakash, Jonathan Ozik,
Nicholson Collier, John Bauer, Fangfang Xia, Thomas Brettin, Rick
Stevens, Jamaludin Mohd-Yusof, Cristina Garcia Cardona, Brian Van
Essen, and Matthew Baughman. CANDLE/Supervisor: A workflow
framework for machine learning applied to cancer research. In Proc.
Computational Approaches for Cancer @ SC, 2017.

7

1 node

2 nodes

4 nodes

8 nodes 16 nodes 32 nodes

Fig. 7: Scaling mlrMBO optimization from 1 to 32 nodes, 1 GPU per node.

8

