
Accelerating Deep Learning Adoption in

Biomedicine With the CANDLE Framework

Wozniak, J.M.,∗ Brettin, T.,† Stevens, R.†
∗ Data Science and Learning, Argonne National Laboratory, Lemont, IL, USA

† Computing, Environment, and Life Sciences, Argonne National Laboratory, Lemont, IL, USA

The Cancer Deep Learning Environment (CANDLE) is an open framework for rapid develop-

ment, prototyping, and scaling deep learning applications on high-performance computing (HPC)

systems. CANDLE was initially developed to support a focused set of three pilot applications

jointly developed by cancer researchers and deep learning / HPC experts, but is now generalizable

to a wide range of use cases. It is designed to ease or automate several aspects of the deep

learning applications development process. CANDLE runs on systems from individual laptops

to OLCF Summit, the most powerful supercomputer in the world, and enables researchers to

scale application workflows to the largest possible scale.

Key components of the CANDLE architecture are shown in Figure 1. A handful of top-level

workflows have been developed by the CANDLE team, but these can easily be modified or

extended. These include:

Hyperparameter Search: This is the process of refining the architecture of the underlying neural

network in the deep learning application. Given the basic design of a neural network, there are

many flexible parameters that can be tuned to produce a particular result, such as accuracy or

performance. These are typically optimized using generic optimization routines. Such searches

Fig. 1. CANDLE: Key components. Top-level workloads drive large, parallel computing runs, supported by lower-layer

functionality and reusable abstractions.



produce a great many (thousands) of parallel trial training cycles, which run for minutes to hours.

Uncertainty Quantification (UQ): This is the analysis of the sensitivity of the deep learning

method to small changes in the training data or other quantities in the neural network. UQ

provides estimates on how robust the overall method is in the presence of data errors and other

variability. UQ studies also produce a great many (thousands) trial training and inferencing runs

, which are then analysed using statistical techniques.

Training Data Analysis: This is the analysis of the given training data sets for their applicability

to target application problems, generalizability across problems (transfer learning), or unexpected

negative impacts. Training data analysis is performed by training neural networks on various

subsets of the whole training data corpus, then performing cross-comparisons of the neural

networks produced, or applying transfer learning to so far unused parts of the training data

corpus or other problems entirely. Since training data can be broken up and reordered in a great

many ways, this methodology also produces a great many (thousands) of training cycles.

Supporting infrastructure: Under the top-level workflows, several supporting components are

provided. The Workflow Orchestration component is based on the Swift/T workflow system [1],

[2], a previously MPI-based dataflow programming language and runtime. The Data Management

component includes capabilities for data input and output, data caching, and metadata storage

in databases [3]. The Deep Learning Applications are somewhat independent of CANDLE as

they are developed by focused applications teams, but they are built around common abstrac-

tions and APIs designed for integration into CANDLE workflows. These include options for

handling hyperparameters formatted in a common way. As most of our applications are based

on Keras [4] / Tensorflow, CANDLE provides wrappers and simplifications for managing neural

network weights data, input and output tools, features to manage restartability and callbacks (a

Keras feature to execute Python code dynamically during neural network training), and so on.

CANDLE also includes an analysis library for evaluating UQ.

Summary: CANDLE is a comprehensive framework for managing many aspects of deep learning

application development in biomedicine and other areas.
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