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Advanced analyses and computations based on gene ex-
pressions are prone to errors as they depend on experimental
design, chemical operations/measurements and data analysis.
The assembly and aggregation of such data for creating
deep neural network models may further influence the ac-
curacy of these analyses. For example, the CANDLE [1]
NT3 Benchmark [2] used in this paper attempts to separate
tumor tissue from normal tissue using gene-expression-level
sample signatures. The associated deep neural network (DNN)
has an input layer for RNA sequence gene expression. It is
a 1D convolutional network for classifying RNA-seq gene
expression profiles into normal or tumor tissue categories.
The network follows the classic architecture of convolutional
models with multiple 1D convolutional layers interleaved with
pooling layers followed by final dense layers. The network
can optionally use 1D locally connected layers in place of
convolution layers as well as dropout layers for regularization.

A. Model overview

The model is trained/tested on the matched normal-tumor
gene expression profile pairs available from the NCI genomic
data commons [3] respectively. The full set of expression
features contains 60,483 float columns transformed from
RNA-seq FPKM-UQ [4] values. Before our modifications,
this model achieved around 98% classification accuracy. The
benchmark runs in this paper used the CANDLE hyperpa-
rameters shown in Table I. In this work, we use the NT3
Benchmark to study the effects of injecting bad data at
different rates to study the impacts on the resulting predictions.
Our data manipulations include flipping classification labels

Network architecture Training limits
conv [(64, 20, 1), (64, 10, 1)] epochs 100
pool [1, 10] timeout 3600.0
dense [200, 20] Noise injection
classes 2 noise add true
out act ‘softmax’ noise gaussian false
activation ‘relu’ noise level 0.2
Training settings noise correlated true
optimizer ‘sgd’ noise labels 0.2
loss ‘categorical crossentropy’ feature threshold 0.01
metrics ‘accuracy’ feature col 11180
batch size 16
learning rate 0.002
drop 0.0

TABLE I
HYPERPARAMETERS USED FOR NT3 BENCHMARK IN THIS PAPER.

(label noise) and introducing noise in gene expressions (feature
noise). Our experiments used various trial sizes and injection
rates for each model to understand the effects on the accuracy
of the neural network. We ran large ensembles of these training
runs on OLCF Summit to observe the error impacts over a large
range and with multiple trials.

We introduce noise into the data in two ways, on the
labels and on the features. For the labels, we consider both
uncorrelated and correlated noise, set by noise correlated .
For uncorrelated noise, we randomly flip the normal/tumor
labels on a fraction of the samples corresponding to the
noise level. In correlated label noise, we perform the same
type of label flips, but only on samples where the expression on
a certain gene (set by feature col) is above a certain threshold
(feature threshold), so that the prevalence of noisy labels is
correlated with the expression of that gene.

For correlated label noise, there are some factors to consider.
The first is the number of samples in which the gene is
expressed; if the gene is rarely above the threshold, then the
total number of sample eligible for noise injection is small,
and the effective noise added will likewise be small. Second,
we must consider whether the gene is itself correlated with the
normal/tumor label value; if not, then injection of label noise
correlated with that gene is unlikely to confuse the training
process. In this study we choose to inject correlated label noise
on a feature which is highly correlated with the labels and
sufficiently prevalent in the samples.

For feature noise, we again consider two types of noise
injection: increasing the feature values by a fixed percentage,
and introducing Gaussian random noise across the features.

B. Label noise

1) Correlated label noise: In Figure 1 we compare the
validation performance of the abstaining model with the base
model. The abstaining model retains much higher accuracy
than the base model on the validation set, but must abstain on
a higher fraction of the samples than the naive 1−BaseAcc
estimate. In fact by 50% noise level, the abstaining classifier
has learned that the labels are no longer predictive and abstains
on virtually all of the data.

2) Uncorrelated label noise: The Figure 2 shows that the
behavior is broadly similar to that for uncorrelated noise;
by 50% noise injection, the abstaining classifier has learned
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Fig. 1. Comparison of validation accuracy and abstention with the base model
in the presence of uncorrelated label noise.

that the labels are unreliable and abstains on virtually all
the samples, while formally retaining accuracy on the (small)
fraction of samples it attempts to classify. While we expected
more divergence between the uncorrelated and correlated noise
scenarios, this may be obscured by the fact that this problem
is binary classification and the limited number of classes.
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Fig. 2. Comparison of validation accuracy and abstention with the base model
in the presence of correlated label noise.

C. Feature noise

1) Constant percentage feature noise injection: In another
round of tests, for each error percentage r, all the 60,483 RNA
sequence gene expression are increased by a fixed percentage
value r×z, where z is a random number in [0, 1). The results
indicate that this noise injection does not have any effect on
the accuracy of the model. This may be due to the fact that
the model gets scaled by the same factor as the percentage
bad data injection, and many of the RNA values are 0 (zero).
This indicates that the model is not significantly affected by
scaling errors in the training data. For this reason we do not
use the abstaining classifier on this dataset.

2) Gaussian feature noise injection : In Figure 3 we
compare the performance of the base and abstention models.
Although the base model is able to retain good accuracy on
the validation set, the abstention model nevertheless improves
on this performance, while again abstaining on a fraction of

the data approximately twice that of the naive estimate. This is
consistent with the notion that with only two classes, the base
model can perform better by a factor of two due to “lucky
guesses.”
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Fig. 3. Comparison of validation accuracy and abstention with the base model
in the presence of Gaussian feature noise.

D. Conclusion
The introduction of either correlated or uncorrelated label

noise results in increased validation loss and reduced valida-
tion accuracy in the base model. With the introduction of a
constant percentage noise in gene expression and label noise
the validation accuracy and validation loss remains mostly
constant. In contrast, when introducing random Gaussian noise
with varying standard deviation to gene expressions for all the
samples we see validation accuracy declines sharply indicating
a poor fit compared to model with the original data. We
introduce an abstaining [5] version of the model, which adds
an extra abstention class, allowing the model to abstain when it
is not confident of the prediction. This model retains accuracy
while abstaining on progressively higher fractions of the data
as more noise is injected.

The contributions of this work include 1) a description
of the noise impacts on the well-known cancer benchmark
NT3, 2) a description of a recently developed classifier to
handle uncertain predictions, and 3) experimental results from
the application of the classifier to the problem of training a
cancer benchmark with noisy data. The results confirm the
robustness of the input data and the deep neural network model
represented by the CANDLE NT3 benchmark, especially when
used in conjunction with the abstention approach. Such noise
analysis studies would help set error tolerance for actual ex-
perimental measurement of RNA-seq gene expression profiles.

E. Future Work
Additional error studies motivated by real-world error exper-

imental error modalities are needed to develop confidence in
deep learning-driven analysis of lab data. Careful segregation
of gene expression along specific error prone regions can also
be studied to identify bad data or discover interesting data.
Other cancer study data could also be subject to relatively
simple error analysis, aided by the large compute power that
can now be applied to training cancer analysis models.
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