
1

Tracking Dubious Data: Protecting Scientific
Workflows from Invalidated Experiments

Jim Pruyne,∗ Justin M. Wozniak,∗ Ian Foster∗
∗ Data Science and Learning, Argonne National Laboratory, Lemont, IL, USA

Abstract—Provenance systems automate record keeping so that
humans and/or machines can determine how a given result was
obtained. In so doing, they enable a variety of reproducibility
and reconstruction capabilities, while tracking the impact of
older artifacts on newer ones. Large-scale scientific experiments
are increasingly relying on workflows and other automation
techniques to keep up with data-rates and perform on-line
computation, notably training of machine learning models, and
to provide rapid feedback to experimentalists. However, these
workflows pose the challenges of: 1) adapting to errors in the
experimental process both at the experiment site as well as in
computation and 2) complex data provenance patterns that can
result from the use machine learning and other methods that
can arise from a feedback pattern in which initial experimental
results drive the creation of new experimental parameters. The
Braid Provenance Engine (Braid-DB) addresses this domain by
integrating with workflow systems used in large-scale science and
providing the additional capability to drive additional workflows
or other automation in response to errors or other causes for
elements of the workflow to be considered invalid. In this paper,
we describe how Braid-DB responds to data marked as invalid, a
common case in experimental science, and demonstrate its ability
to retain artifacts unaffected by the invalid data.

I. INTRODUCTION

Large experimental facilities increasingly employ sophisti-
cated computational workflows to perform automated analy-
sis. These workflows may use computational simulations to
associate observed data with internal model parameters, train
Machine learning (ML) models on experimental and simula-
tion data after various levels of manipulation and processing,
and use trained models to control subsequent experiments:
for example, by determining when sufficient data has been
collected, and ultimately what experiments to run next. As
a consequence, machines increasingly support humans as
decision makers, and in some cases, short-cut the decision
loop so as to accelerate the discovery process.

Such environments pose the question of how to support
reproducibility and validation when the physical experimental
processes used to generate data are affected by ML-based
workflows that themselves depend on other data. Decisions
such as, how, when, and where to analyze and retain experi-
mental data, and when and how to alter and refine experiment
configurations, can have profound impacts on downstream data
products. It is thus essential to automate key parts of the
record-keeping process so that humans and/or machines can
determine how particular results were obtained—and, when
problems occur, examine possible causes and take appropriate
actions. Reproducing such results requires the ability to record
a detailed trace of the ML-driven decisions made and the

Instruments

FAIR 
Queries

Structure solving

Simulation

Prediction

Training

Braid
Provenance

Computing

Feedback to
experiment Defensible

Statements

Data

Reconstruction

Fig. 1. Braid workflows and their connection to Braid-DB. The Braid
provenance engine captures events from Braid tools or as a result of API calls,
and supports FAIR principles by recording the provenance of data products
in the context of experiments, simulations, and learning.

origins of the processes and models used in making those
decisions.

Physical experiments, as well as computational experiments,
are prone to erroneous design, misconfiguration, and faulty
execution. Researchers may identify such dubious experiments
immediately, or only later in an analysis or verification pro-
cess. In either case, it is essential that the resulting dubious
data be isolated from the data used to support the defensible
scientific statements that result from a study.

As ML-based automation methods become more widely
used in research, this task of isolating dubious results becomes
more challenging, as a ML model trained on dubious data
can influence subsequent steps in complex ways. As depicted
in Figure 1, data from an experimental facility may proceed
through various workflows before feeding back to the exper-
iment itself, influencing subsequent downstream data. Such
data flows may be structured using loops or recursive patterns,
for example when raw datasets are augmented by ML model
inferences that depend on training data which may, in turn,
be based on other data flows. Subtle changes in experimental
protocol and policy may have additional effects on downstream
data. The impact of dubious data on subsequent discovery
steps is difficult to isolate.

To address such challenges, we have designed the Braid
Provenance Engine (Braid-DB) to maintain the provenance
structure of coarse-grained data products associated with sci-
entific workflows. In this paper, we expand on the scope of our
prior discussion [1] by considering the ability to insure that
results are derived from valid inputs, and thus a system that
can defend scientific statements and FAIR (§II) queries. In
the presence of data that are later marked invalid, due to newly
realized experimental or computational problems, all affected



2

data products can be identified, and automated actions can be
taken to restore the validity of the overall structure.
Contribution: By developing a conceptual model and im-
plementation of an ML-aware provenance structure with the
capability for invalidation, we intend to support the repro-
ducibility and reusability of workflows and their data products.
Provenance data of this sort makes datasets more reusable by
offering a validation structure for the data products, and makes
it easy to demonstrate that the data has not been invalidated
by implication. It enhances workflow reproducibility by cap-
turing, for example, the ML decisions made, so that subsets
of the overall experiment can be reproduced, for example, just
the physical observations.
Organization: The remainder of this paper is as follows.
In §II, we provide background on provenance systems and
other related efforts. In §III, we present real-world experi-
mental science applications that can benefit from advanced
provenance techniques and describe a representative workflow
based on these used in our development efforts.. In §IV,
we describe our approach in more detail, and describe our
invalidation mechanism. In §V, we describe the Braid-DB
software platform and its use. In §VI, we describe how
invalidation is integrated into a functional workflow. In §VII,
we summarize the paper and provide concluding comments.

II. BACKGROUND

Provenance systems have been widely studied [2], and
there is a significant body of prior work in provenance for
computing workflows. These provenance models are com-
monly designed to capture key aspects of a dataset or artifact,
including its derivation history from other artifacts, quality,
and ability to be replicated or reproduced [2]. Additional
developments are needed to address the needs of workflows
coupled with experimental science infrastructure with a goal to
capture not only data and associated metadata but also derived
models in ways that are Findable, Accessible, Interoperable,
and Reusable (FAIR) [3], particularly FAIR principle R1.2
which states that “(Meta)data are associated with detailed
provenance.”

The Open Provenance Model (OPM) [4] defines provenance
concepts without regard to the underlying technologies or
systems used to represent them. These concepts are connected
with various kinds of edges that represent various types of
dependencies. For a particular workflow, the result is an OPM
graph that captures the causal dependencies among all data
products. Souza et al. [5] considered provenance management
for ML workloads in sciences. They defined human actors
in the ML work cycle, and integrated model training data and
other ML-specific concepts, such as ML hyperparameters, into
the provenance model. This study, however, did not consider
the evolving versions of an ML model that may be produced
during an iterative study, in which different ML predictions are
produced over time by varying versions of a model. This is a
key contribution of the Braid-DB model and is critical for the
integration of provenance in experiment-oriented computing.

Polyzotis et al. [6] similarly identified human factors as
critical in the ML pipeline. This study considered aspects

of raw data manipulation needed for ML training, including
cleaning and enriching datasets for training. Metadata tracking
schemes for ML workloads have been proposed previously. In
ModelDB [7], a ML metadata and training data architecture
is easily accessible from within ML-oriented programming
environments, including a graphical front-end. Notably, Mod-
elDB, like our Braid-DB, uses a branching history model to
track changes over time. An Amazon prototype [8] develops a
formal database schema for tracking models and their training
data, based on previous but more narrowly defined models [9].
This schema allows for the creation of graphs of data trans-
forms in the ML workflow. Neither system, however, explicitly
tracks versions of models in model-model interactions or after
iterations of model-experiment iterations.

III. CASE STUDIES IN EXPERIMENTAL SCIENCE

In this section, we summarize a set of large scale scientific
applications [10] which link scientific instruments at the
Argonne Advanced Photon Source (APS) [11] and Stanford
Synchrotron Radiation Lightsource (SSRL) [12] beamlines
and high-performance computing at the Argonne Leadership
Computing Facility (ALCF) [13].
X-Ray Photon Correlation Spectroscopy (XPCS): This
experimental technique is used at synchrotron light sources to
study materials dynamics at the mesoscale/nanoscale by iden-
tifying correlations in time series of area detector images [14],
[15]. The flow comprises 11 steps: 1) transfer of experimental
data from APS to ALCF; 2) metadata extraction from the
experiment data; 3) transfer of these metadata to persistent
storage; 4) index the metadata into a catalog for future query
and discovery of data; 5) pre-allocation of computing resources
to reduce the risk of unexpected queuing delays for high-
performance compute resource; 6) application-specific corre-
lation analysis function which is matrix-heavy is best run on a
GPU; 7) plotting of data correlations and reduced size images
for presentation in the discovery portal; 8) metadata extraction
from computation results; 9) bundle all information generated
in the ALCF environment in the previous steps; 10) transfer
of the the bundle to long term storage; and 11) augment the
indexed metadata in the catalog with generated information
Ptychography: This coherent diffraction imaging technique
can image samples with sub-20 nm resolutions [16]. A sample
is scanned with overlapping beam positions while correspond-
ing far-field diffraction patterns, 2D small-angle scattering
patterns containing frequency information about the object,
are collected with a pixelated photon counting detector. The
flow performs 2D inversion and phase retrieval on diffraction
patterns with the following steps: 1) transfer data from APS to
ALCF; 2) compute the diffraction for each pattern to obtain a
full image; and 3) transfer intermediate results back to APS.
High Energy Diffraction Microscopy (HEDM): This non-
destructive technique combines imaging and crystallography
algorithms to characterize polycrystalline material microstruc-
ture in three dimensions (3D) and under various in-situ
thermo-mechanical conditions [17], [18]. The flow comprises
these steps: 1) transfer data from APS to ALCF; 2) process
each raw image; 3) extract metadata from files and generate



3

1 # Define Flow steps
2 transfer_step = Transfer(source="$.data_origin_location",
3 destination="$.compute_data_location")
4 train_step = TrainModel(input="$.compute_data_location",
5 output="$.model_location")
6 extract_step = ExtractMetadata(input="$.compute_data_location",
7 result_path="$.ExtractedMetadata")
8 index_step = IndexMetadata(index_id="$.index_id",
9 content="$.ExtractedMetadata")

10 return_transfer_step = Transfer(source="$.model_location",
11 destination="$.result_repository")
12
13 class BraidFlow(GladierBaseClient):
14 # Execute the Flow steps
15 steps = [transfer_step, train_step, extract_step,
16 index_step, return_transfer_step]
17
18 # Define Flow input parameters
19 flow_input = {"data_origin_location": ...,
20 "compute_data_location": ..., "model_location": ...,
21 "index_id": ..., "result_repository": ...}
22
23 # Launch the flow
24 run_id = BraidFlow().run(flow_input)

Fig. 2. Gladier implementation of the example use case

visualizations; 4) process each set of processed images (from
step 2) to refine structure; 5) gather metadata; 6) transfer
metadata to long-term storage; 7) index raw data, metadata,
and visualizations; and 8) transfer the results back to the APS.

A. A Representative Scenario

Based on our experience with these science workflows
and the Globus Flows workflow service, we have defined a
representative scenario for our experiments and for further
discussion here. We define the Flow as follows using the
Gladier [19], [20] Python library for defining and executing
Globus Flows though for more complex flows, particularly
those that include branching, the service’s native (and more
verbose) JSON syntax may be preferred.

Similar to many of the Flows described above, this Flow:
1) uses Globus Transfer to copy data from a source to a compu-
tational environment; 2) uses funcX to perform a computation
(in this case we model as a ML model training step); 3) uses
funcX to analyze the data and extract metadata information,
which it stores in the run-time state of the flow (at the location
indicated using the result_path argument); 4) indexes the
metadata from the Flow’s state to a Globus Search index (as
defined by index_id); and 5) uses Globus Transfer to copy
the output of the computation to a final repository. In Figure 2
these steps are shown as the creation of objects from the
Gladier library representing the various steps which are then
enumerated as steps on a class (BraidFlow) representing
the entire workflow. The listing also shows Gladier use to
instantiate and then run the Flow.

IV. APPROACH

We now describe how the Braid Provenance Engine main-
tains a provenance structure for artifacts in an environment,
notably steps within a Flow and their inputs and outputs, and
how elements of this structure may be marked as invalid and
how the system acts upon such invalidations.

A. System overview

Braid-DB, like traditional provenance systems (§II), cap-
tures computation, such as ML model training or workflow
steps and the inputs, outputs and other artifacts associated with
the process. Importantly, it integrates provenance records with
model version history so as to record how a possibly complex
ensemble of variably-accurate models were trained and up-
dated over time. As training data may come from experiment,
simulation, or other models (e.g., a higher-accuracy, higher-
cost model, or an ensemble of lower-cost models) Braid-DB
includes structures that allow a user to ask how a model
inference result was obtained, in the form of a defensible
statement. The provenance structure is designed to be portable
so that provenance histories can be merged with other records
from collaborating teams, as when a user borrows a model
from another team.
BraidRecord: A base-class for all Braid-DB provenance
records. Each such entity has a unique ID, a (possibly not
unique) string name, a list of URIs representing, and possibly
pointing to, the actual data, a list of dependent records (i.e. the
provenance relationship), and a dictionary of user-specified,
string-keyed metadata tags. Operations are provided to lookup
a record based on any of the associated values (ID, name,
uri, tags) and for associating another record as a dependency
of another record. When defining dependencies, the system
insures that the a Directed Acyclic Graph (DAG) semantic is
maintained and no cycles are introduced.
BraidFact: A simpler object consisting of static data: for
example, pre-existing trusted data or software, etc. BraidFacts
may have a provenance outside the Braid-DB system.
BraidData: The Braid-DB representation of traditional
provenance-tracked data, with traditional conceptions of its
derivation history from other BraidData and/or BraidFacts,
such as via simulation.
BraidModel: An ML model tracked by Braid-DB. A Braid-
Model has the additional capability update(), which represents
model exposure to other BraidRecords, possibly including
other models. This includes the possibility of dependency
cycles that capture complex interactions among models and
data as experiment workflows progress. These exposures are
timestamped, so that queries can determine what a model knew
and when the model knew it.

B. Invalidation

Provenance systems can, and often are, used for tracking
down errors and their consequences. Braid-DB makes marking
records invalid an explicit operation which can, in turn: 1)
cause dependent records to be further marked invalid; and 2)
automatically cause compensating or recovery workflows or
other automation processes to be initiated.

Any BraidRecord may be invalidated with an operation
which contains a cause description which will be associated
with the invalidation allowing further understanding of record
validity over time. By default, invalidations cascade, meaning
that any records which have provenance from a preceding
record will also be marked invalid by the operation. In



4

the cascade case, the invalidation cause description will be
applied to all records, but additional references are maintained
indicating which preceding record’s invalidation resulted in the
invalidation of a child record.

In anticipation of invalidation, any record may have asso-
ciated with it an Invalidation Action which will be invoked
should the record be invalidated. In the present implementa-
tion, the invalidation action takes a form similar to the steps
in our workflow system (§V-A) and thus can perform any
operations a workflow may. for example, an affected record
may be simply annotated instead of being deleted, if the effect
of the invalidated data is likely to be negligible. Values from
the BraidRecord as well as from the invalidation operation
may be used to parameterize the action when it is invoked.

V. EXECUTION PLATFORM

In this section, we describe the services and database
structure to support the the production workflows described
above and our provenance model, and provide a complete
example.

A. Cloud-hosted Service

Globus Flows [21] is a cloud-hosted and professionally
operated workflow service providing the reliability, security
and scale necessary for production flows supporting large-
scale scientific processes. A flow specification in this service
consists of a sequence of Action steps defining the network
location (URL) where an Action Provider (AP) may be invoked
to perform the operation associated with the step. Each Action
Provider implements a Globus Flows-defined API for starting
and monitoring the Action. The Flows service implements
Action Providers for the following operations: 1) data trans-
fer and management (lookup/delete/access control) via the
Globus Transfer service [22]; 2) execution of user-defined
functions, including for high-performance computing usage
via funcX [23]; 3) indexing and lookup of metadata; 4) E-
mail based notification to users; 5) generation of Digital Object
Identifiers (DOIs); and 6) web-based forms for users to direct
a flow while it is running Each Flow deployed to the service
also supports the AP interface allowing Flows to invoke other
Flows as Actions, and the open nature of the API allows
anyone to host APs for use in their own Flows or for use
by others without modification to the Globus Flows service.
The interface allows Actions (and the Flows invoking them)
to run for as long as weeks or even months allowing very long
term operations including human-in-the-loop. Further, end-to-
end authentication and authorization is performed such that
a user invoking a Flow provides credentials indicating their
identity and consent to run the Flow and those credentials are
propagated to each AP for further validation.

Flow runs are stateful, and each step of the Flow may
reference elements of the state (e.g. to provide parameters for
a specific Action invocation) and Actions’ return values are
incorporated into the state of the run allowing outputs from
one step to be used as inputs to subsequent steps. Branching
steps may check conditions on the current state of the run
and select next step based on them. In a typical use case, the

1 # Define automated actions upon invalidation
2 flow_invalidation = InvalidationAction("send_notification", ...)
3 index_invalidation = InvalidationAction("search_update", ...)
4
5 # Define Flow steps
6 initial_step = FlowProvenance(invalidation=flow_invalidation)
7 transfer_step = TransferProvenance(source=...,dest=...,
8 prev_step=initial_step)
9 train_step = ComputeProvenance(TrainModel(...),

10 prev_step=transfer_step, input_from_prev=True)
11 extract_step = ComputeProvenance(ExtractMetadata(...),
12 prev_step=train_step, input_from_step=transfer_step)
13 index_step = IndexMetadataProvenance(
14 invalidation=index_invalidation,
15 index_id=..., content=..., prev_step=extract_step,
16 )
17
18 class ProvenanceBraidFlow(GladierBaseClient):
19 # Execute the flow steps as Gladier tools
20 gladier_tools = [initial_step, transfer_step,
21 train_step, extract_step, index_step]

Fig. 3. Example augmented flow with invalidation

developer will simply insert steps into the flow that operate
on the Braid-DB, as described in the following.

B. Braid-DB implementation

The core of the Braid-DB implementation is a Python
library which makes use of an Object Relational Model (ORM)
approach to map an object-oriented programming interface for
the various Braid-DB abstractions to a relational database. The
Braid-DB library, in turn, uses Globus’ Python libraries to
make authenticated requests to services, notably the Globus
Flow service, to carry out invalidation actions when they are
triggered. The core library is used in various modes in our
experiments. Most notably, funcX-compatible wrappers are
provided for operations on Braid records, invalidation actions
and invalidation operations in a manner which makes them
invokable as steps in Globus Flows. Command line tools are
also provided for these operations as well as for generating
visual representations of the state of the Braid-DB. The core
software libraries can also be used directly for use cases that
do not involve workflows or Globus services.

VI. INTEGRATION

We developed augmented wrappers around typical Flows
operations that populate Braid-DB with information on work-
flow steps and the inputs consumed and outputs gener-
ated by these steps. An example augmented flow is shown
in Figure 3. For the Flow’s run itself (FlowProvenance)
and for each of the types of operation defined in the
original Flow, Transfer (FlowProvenance), computation
via funcX (ComputeProvenance), and metadata indexing
(IndexMetadataProvenance), wrappers around the existing
Gladier classes have been created. These wrappers are used as
one-to-one replacements of existing Flow definition elements
making transition relatively straightforward. The wrappers take
additional provenance information specifying the provenance
dependency among the flow steps (the prev_step parameter),
the input and output artifact dependencies specifying either
that a step depends on outputs from the previous step (parame-
ter input_from_prev) or a different step (input_from_step
which may be a single value or a list of values).



5

Step Flow Started

Step FromInstrumentTransfer

notify user

compute_data_loc:/~/

Step MockMlTrain

Step MockMetadataExtract/~/model_result

data_origin_loc:/~/experiment_data

compute_data_loc:~/model_result Step SearchIngest

Error in extraction function

Invalidates

Error in extraction function

Causes

Error in extraction function

Causes

http://app.globus.org/runs/a3a4a3ba-82ee-438d-8b9b-5781c0beaffd

invalidate search record

Invalidates

Error in extraction function

Causes

Invalidates

Invalidates

Fig. 4. A graph of provenance information captured from running the representative flow. Rectangular nodes represent steps of the Flow and data or other
artifacts. Hexagonal nodes indicate Invalidation Actions and dotted arcs show the record those actions are associated with. Pink parallelograms represent
invalidation records with arrows indicating which record they invalidate as well as arcs to other invalidations generated due to invalidation cascading.

Braid-DB invalidation actions are created as objects whose
initialization parameters match the required values in the
Braid-DB. Instances of these classes may be associated with
instances of any of the provenance classes by adding an
invalidation parameter to their creation. This will then add
steps to the generated Flow for creating the invalidation action
in the Braid-DB as well as associating that action with the
record representing that step of the Flow.

Running the flow in Figure 3 will generate a provenance
structure as shown in Figure 4. We have also invalidated record
ExtractMetadata which is shown with the re-coloring of
that and dependent records as well as invalidation records
referencing each of the invalidated items. The IndexMetadata
step has an action associated with it to update the entry in
the metadata index. This action will have run as a result of
invalidation so that any queries to the metadata index will
reflect that this entry is no longer considered to be reliable.

VII. CONCLUSION AND FUTURE WORK

We have discussed the importance of workflow-based au-
tomation to large-scale instrument-based science, and further
how new provenance methods are needed to track next-
generation experiments and to adapt to changes or errors
in data or workflow processing. These provenance structures
are needed to capture not just the history and progress of
workloads driven by data capture on these instruments, but
also the feedback of results, including those from ML modules
into further iterations of an on-going experiment.

The Braid-DB provenance store is tailored for tracking
experiments built on workflows and enabling adaption to and
compensation for errors in data, computation or other elements
that compose the end-to-end scientific process. Braid-DB
combines traditional provenance concepts with new concepts
relevant to workflow and other automation systems such that
provenance information can be used to both propagate changes
in state of workflow and data components while requiring only
localized knowledge of necessary corrective actions, such as

re-training an ML model when errors or other conditions upon
which previous results are based are detected. We showed
how it can be applied in a workflow representative of those
we’ve encountered in working with our intended user-base
with relatively minimal changes to an existing workflow..

Our next step is to move beyond our representative work-
flow and bring the Braid-DB into production experiment
workflows. We will work with the scientists to determine
how they get greatest benefit from seeing provenance from
their experiments and how that enables them to repeat and
evolve their experiments. New tools allowing easy or au-
tomatic marking of invalid provenance elements and their
corresponding correctie steps will be developed. We will also
be pursuing methods to more transparently apply provenance
capture to workflows based on Globus Flows such that changes
to existing Flows can be minimized or eliminated as well as
providing a cloud-based, secure, multi-tenant deployment of
the Braid-DB implementing the AP interface so it is available
to all of our users without any self-hosting.

REFERENCES

[1] J. M. Wozniak, Z. Liu, R. Vescovi, R. Chard, B. Nicolae, and I. Foster,
“Braid-DB: Toward AI-driven science with machine learning prove-
nance,” in Proc. Smoky Mountains Conference, 2021.

[2] Y. L. Simmhan, B. Plale, and D. Gannon, “A survey of data provenance
in e-science,” ACM Sigmod Record, vol. 34, no. 3, pp. 31–36, 2005.

[3] M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton,
M. Axton, A. Baak, N. Blomberg, J.-W. Boiten, L. B. da Silva Santos,
P. E. Bourne et al., “The FAIR guiding principles for scientific data
management and stewardship,” Scientific Data, vol. 3, no. 1, pp. 1–9,
2016.

[4] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth, N. Kwas-
nikowska, S. Miles, P. Missier, J. Myers, B. Plale, Y. Simmhan,
E. Stephank, and J. V. Busschef, “The Open Provenance Model core
specification (v1.1),” Future Generation Computer Systems, vol. 27,
no. 6, pp. 743–756, 2011.

[5] R. Souza, P. Valduriez, M. Mattoso, R. Cerqueira, M. Netto, L. Azevedo,
V. Lourenço, E. F. de S. Soares, R. Melo, R. Brandão, D. Salles Civ-
itarese, E. Vital Brazil, and M. Ferreira Moreno, “Provenance data in the
machine learning lifecycle in computational science and engineering,”
in Workshop on Workflows in Support of Large-Scale Science at SC, 11
2019, pp. 1–10.



6

[6] N. Polyzotis, S. Roy, S. E. Whang, and M. Zinkevich, “Data
management challenges in production machine learning,” in 2017 ACM
International Conference on Management of Data, ser. SIGMOD ’17.
New York, NY, USA: Association for Computing Machinery, 2017,
p. 1723–1726. [Online]. Available: https://doi.org/10.1145/3035918.
3054782

[7] M. Vartak, H. Subramanyam, W.-E. Lee, S. Viswanathan, S. Husnoo,
S. Madden, and M. Zaharia, “ModelDB: A system for machine
learning model management,” in Proc. Workshop on Human-In-the-
Loop Data Analytics, ser. HILDA ’16. New York, NY, USA:
Association for Computing Machinery, 2016. [Online]. Available:
https://doi.org/10.1145/2939502.2939516

[8] S. Schelter, J.-H. Böse, J. Kirschnick, T. Klein, and S. Seufert, “Au-
tomatically tracking metadata and provenance of machine learning
experiments,” in Machine Learning Systems Workshop at NIPS, 2017.

[9] Machine Learning Schema Community Group, “W3C machine learning
schema,” 2017.

[10] R. Vescovi, R. Chard, N. Saint, B. Blaiszik, J. Pruyne, T. Bicer,
A. Lavens, Z. Liu, M. E. Papka, S. Narayanan, N. Schwarz,
K. Chard, and I. Foster, “Linking scientific instruments and
HPC: Patterns, technologies, experiences,” 2022. [Online]. Available:
https://arxiv.org/abs/2204.05128

[11] “Advanced Photon Source,” https://www.aps.anl.gov. Accessed April 8,
2022.

[12] “Stanford Synchrotron Radiation Lightsource,” https://www-ssrl.slac.
stanford.edu. Visited April 8, 2022.

[13] K. Riley, M. E. Papka, J. Collins, N. Heinonen, B. Cerny, H. Kim, and
L. Wolf, “2019 Argonne Leadership Computing Facility science report,”
Argonne National Laboratory, Lemont, IL, USA, Tech. Rep., 2019.

[14] O. G. Shpyrko, “X-ray photon correlation spectroscopy,” Journal of
Synchrotron Radiation, vol. 21, no. 5, pp. 1057–1064, 2014.

[15] F. Lehmkühler, W. Roseker, and G. Grübel, “From femtoseconds to
hours–measuring dynamics over 18 orders of magnitude with coherent
x-rays,” Applied Sciences, vol. 11, no. 13, p. 6179, 2021.

[16] A. M. Maiden, M. J. Humphry, F. Zhang, and J. M. Rodenburg,
“Superresolution imaging via ptychography,” JOSA A, vol. 28, no. 4,
pp. 604–612, 2011.

[17] J. V. Bernier, N. R. Barton, U. Lienert, and M. P. Miller, “Far-field high-
energy diffraction microscopy: A tool for intergranular orientation and
strain analysis,” The Journal of Strain Analysis for Engineering Design,
vol. 46, no. 7, pp. 527–547, 2011.

[18] R. Pokharel, “Overview of high-energy x-ray diffraction microscopy
(HEDM) for mesoscale material characterization in three-
dimensions,” in Materials Discovery and Design. Springer
International Publishing, 2018, pp. 167–201. [Online]. Available:
https://doi.org/10.1007/978-3-319-99465-9_7

[19] Gladier Team, “Gladier software,” 2021, https://github.com/
globus-gladier.

[20] ——, “Gladier client templates,” 2021, https://github.com/
globus-gladier/gladier-client-template.

[21] R. Chard, J. Pruyne, R. Richter, U. Mandujano, K. McKee, S. Thompson,
J. Bryan, B. Raumann, R. Ananthakrishnan, K. Chard, and I. Foster,
“Research process automation across the space-time continuum,” arXiv
preprint, 2022.

[22] K. Chard, S. Tuecke, and I. Foster, “Efficient and secure transfer,
synchronization, and sharing of big data,” IEEE Cloud Computing,
vol. 1, no. 3, pp. 46–55, 2014.

[23] R. Chard, Y. Babuji, Z. Li, T. Skluzacek, A. Woodard, B. Blaiszik,
I. Foster, and K. Chard, “FuncX: A federated function serving
fabric for science,” in 29th International Symposium on High-
Performance Parallel and Distributed Computing. New York, NY,
USA: Association for Computing Machinery, 2020, p. 65–76. [Online].
Available: https://doi.org/10.1145/3369583.3392683

VIII. ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Energy,
Office of Science, Advanced Scientific Computing Research,
under contract number DE-AC02-06CH11357.

The following text will be removed in the final
submission:

The submitted manuscript has been created by UChicago
Argonne, LLC, Operator of Argonne National Laboratory
(“Argonne”). Argonne, a U.S. Department of Energy Office
of Science laboratory, is operated under Contract No. DE-
AC02-06CH11357. The U.S. Government retains for itself,
and others acting on its behalf, a paid-up nonexclusive,
irrevocable worldwide license in said article to reproduce,
prepare derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf of the
Government. The Department of Energy will provide public
access to these results of federally sponsored research in
accordance with the DOE Public Access Plan. http://energy.
gov/downloads/doe-public-accessplan

https://doi.org/10.1145/3035918.3054782
https://doi.org/10.1145/3035918.3054782
https://doi.org/10.1145/2939502.2939516
https://arxiv.org/abs/2204.05128
https://www.aps.anl.gov
https://www-ssrl.slac.stanford.edu
https://www-ssrl.slac.stanford.edu
https://doi.org/10.1007/978-3-319-99465-9_7
https://github.com/globus-gladier
https://github.com/globus-gladier
https://github.com/globus-gladier/gladier-client-template
https://github.com/globus-gladier/gladier-client-template
https://doi.org/10.1145/3369583.3392683
http://energy.gov/downloads/doe-public-accessplan
http://energy.gov/downloads/doe-public-accessplan

	Introduction 
	Background 
	Case studies in Experimental Science 
	A Representative Scenario

	Approach 
	System overview
	Invalidation 

	Execution Platform
	Cloud-hosted Service
	Braid-DB implementation

	Integration
	Conclusion and Future Work
	References
	Acknowledgments

