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Abstract. Next-generation scientific instruments will collect data at un-
precedented rates: multiple GB/s and exceeding TB/day. Such runs will
benefit from automation and steering via machine learning methods, but
these methods require new data management and policy techniques. We
present here the Braid Provenance Engine (Braid-DB), a system
that embraces AI-for-science automation in how and when to analyze
and retain data, and when to alter experimental configurations. Tra-
ditional provenance systems automate record-keeping so that humans
and/or machines can recover how a particular result was obtained—
and, when failures occur, diagnose causes and enable rapid restart. Re-
lated workflow automation efforts need additional recording about model
training inputs, including experiments, simulations, and the structures
of other learning and analysis activities. Braid-DB combines provenance
and version control concepts to provide a robust and usable solution.
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1 Introduction

Modern science must increasingly deal with high data rates and volumes; as a
consequence, machines are supplementing humans as decision makers: for exam-
ple, concerning how and when to analyze and retain data, and when to alter
experimental configurations. Thus it becomes essential to automate also record
keeping so that humans and/or machines can determine how a particular result
was obtained—and, when failures occur, diagnose causes. Such records must fre-
quently be recursively structured, for example when raw data are supplemented
by ML model predictions that depend on training data. These factors, plus highly
automated, dynamic, and adaptive execution, make capture of provenance in-
formation essential. We need methods for capturing sufficient information about
all data products produced, both to enable inspection of workflow progress and
to make data findable, accessible, interoperable, and reusable (FAIR).

Interpreting such automatic decisions to understand progress or performance
and to validate scientific results will require new provenance concepts and sys-
tems to capture not just the data obtained, but also the models produced, which
may be more important in the era of artificial intelligence (AI) for science.



Traditional provenance systems automate record-keeping so that humans
and/or machines can recover how a particular result was obtained—and, when
failures occur, diagnose causes and enable rapid restart. Such systems are typ-
ically built to handle static workflow patterns and capture predictable forward
progress.

The Braid Provenance Engine (Braid-DB), introduced herein, provides spe-
cific features for use in an environment dominated by externally-produced data,
such as experiment instruments, and machine learning (ML) data access pat-
terns, as depicted in Figure 1. It develops recursive and versioned provenance
structures to capture how models may be constructed via other models (e.g.,
estimators and surrogates) and frequent model updates, allowing the user to
track past decisions as models make decisions and are retrained. This paper will
also survey partner applications for more detailed use cases and requirements.
Braid-DB is a component of a larger effort within Argonne’s Braid project to
support experimental science workflows.
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Fig. 1. Braid workflows and their connection to Braid-DB. Center top shows an exam-
ple Braid workflow with various actions. The Braid provenance engine captures events
from Braid tools or its API and provides a FAIR interface for the provenance of data
products in the context of experiment, simulation, and learning.

Organization. The remainder of this paper is as follows. In §2, we provide back-
ground on provenance systems and other related efforts. In §3, we describe our
approach in more detail, with its intended benefits. In §4, we describe the soft-
ware architecture of our system. In §5, we outline several motivating case studies
in experimental science that drove our design. In §6, we measure the performance
of our system on a workload meant to stress all of its capabilities. In §7, we outline
future work. In §8, we summarize the paper and provide concluding comments.



2 Background

Computer scientists have developed many provenance systems and related tools
[20]. There is a significant body of prior work in provenance for scalable comput-
ing workflows, but additional developments are needed to address the needs of
AI for Science workflows coupled with experimental science infrastructure. The
need to capture not only data and associated metadata but also derived models
in ways that are Findable, Accessible, Interoperable, and Reusable (FAIR) [26]
is also highly relevant to this topic.

2.1 Provenance needs in AI for Science

A 2020 DOE AI for Science report [22] offered a broad depiction of the future
of AI-supported scientific studies. Data management and provenance were iden-
tified as critical to enabling real-time adaptation in simulation and experiment
workloads. The report noted the “need for enhancements in data storage, ac-
cess, and management that would facilitate rapid identification of relevant data,
transformations between different data representations, and capture of relevant
provenance to assist in reproducibility of results.” The report also noted that
provenance is critical to making AI/ML workflows effective when coupling ex-
periment, AI/ML, and HPC, including for the purpose of managing uncertainty
and validation in results.

Another DOE report, on Data and Models for AI [10], identified provenance
as a critical component of the AI for Science effort. The report noted that “[w]hen
used for control or autonomous decision making in a scientific workflow, the
trained model may be an important digital artifact for reproducibility of the
results.” This need to capture trained models is precisely why the conception of
provenance needs to be expanded in the the context of ML and experiment-in-
the-loop computing efforts. More broadly, the report considered the challenges
faced by scientists attempting to use popular tools for scientific problems, and
the need to manage data in AI for Science contexts in ways that satisfy FAIR
principles. The report also stressed the importance of human oversight of science
workflows; as we describe in the following, the Braid-DB effort stresses human
interpretability as a key driver.

A report on Scientific Machine Learning [5] stressed the importance of changes
to the types of scientific questions that can be asked of computing systems. The
report considered the question of how to perform data acquisition, a mode of op-
eration which creates complex data provenance structures. The report also noted
the importance of being able to interpret results of ML-driven studies. Another
report [8] noted the difficulties of creating data that are useful for humans and
machines, and of defining and measuring FAIR.

Overall, the AI for Science paradigm emphasizes the need for increased au-
tomation at all levels of experimental science and the resulting need to reuse
data analysis techniques and systems in new ways.



2.2 Developments in provenance concepts for machine learning

Traditional provenance models are designed to capture key aspects of a dataset,
including its derivation history from other data, quality, and ability to be repli-
cated or reproduced [20]. The derivation history of a dataset is a description
of the computational processes that produced it, and the input data consumed
by those processes. It is generally assumed that provenance captures a coarse-
grained view of dataset production; fine-grained information such as delineating
particular predictions in a model are not captured. Conventionally speaking, we
are interested in capturing provenance data at a file and version level, not at the
record level, to reduce the overheads associated with storing records about such
small data.

The Open Provenance Model [17] defines provenance concepts without re-
gard to the underlying technologies or systems used to represent them. These
concepts include “artifacts”, or data objects in the system; “processes”, actions
caused by artifacts that produce new artifacts; and “agents”, the contexts that
control processes. For example, artifacts could be files, processes could be run-
ning programs, and agents could be computer systems running programs and
managing files. These concepts are connected with various kinds of edges that
represent various types of dependencies. For a particular workflow, the result is
an OPM graph that captures the causal dependencies among all data products.

Souza et al. [21] considered provenance management for ML workloads in
sciences. They defined human actors in the ML work cycle, and integrated model
training data and other ML-specific concepts, such as ML hyperparameters,
into the provenance model. This study, however, did not consider the evolving
versions of an ML model that may be produced during an iterative study, in
which different ML predictions are produced over time by varying versions of a
model. This is a key contribution of the Braid-DB model and is critical for the
integration of provenance techniques in experiment-oriented computing.

Polyzotis et al. [18] similarly identified human factors as critical in the ML
pipeline. This study considered aspects of raw data manipulation needed for
ML training, including cleaning and enriching datasets for training. The paper
also touches on privacy-sensitive and limited-access datasets. Metadata tracking
schemes for ML workloads have been proposed previously. In ModelDB [24], a
ML metadata and training data architecture is easily accessible from within ML-
oriented programming environments, including a graphical front-end. Notably,
ModelDB, like our Braid-DB, uses a branching history model to track changes
over time. An Amazon prototype [19] develops a formal database schema for
tracking models and their training data, based on previous but more narrowly
defined models [15]. This schema allows for the creation of graphs of data trans-
forms in the ML workflow. Neither system, however, explicitly tracks versions
of models in model-model interactions or after iterations of model-experiment
iterations. Additionally, neither explicitly mentions the hardware used for ML
training and inference, an increasingly important factor for flows that include
deep learning and heterogeneous systems [12,2].



2.3 Globus Flows

The Braid project within which Braid-DB is developed uses Globus Flows to
describe and execute workflows [3]. This cloud-based service is designed to auto-
mate various data management tasks such as data transfer, analysis, and index-
ing. Flows are defined with a JSON-based state machine language which links
together calls to external actions. Flows implements an extensible model via
which external action providers (e.g., for transferring data with Globus Trans-
fer, executing functions with funcX, associate identifiers via DataCite) can be
integrated by implementing the Globus Flows action provider API. Flows relies
on Globus Auth [23] to provide secure, authorized, and delegatable access to
user-defined flows and to action providers.

3 Approach

We now describe how the Braid Provenance Engine capture various aspects of
the computing-experiment loop for inspection and analysis.

3.1 Contributions

Our work in this area is motivated by two goals: to enable inspection of workflow
progress and to produce workflow data products that are FAIR. To this end,
we design Braid-DB data structures to be comprehensive, by which we meant
that they capture information about not only those outputs that are eventually
associated with publications, but also intermediate products that may or may
not ultimately prove to be important [9,16]. Braid-DB captures metadata about
not only static data, such as well-established experimental data, but also live
experimental data, which are treated separately before being promoted to static
data.

Braid-DB, like traditional provenance systems (§2), captures simulation in-
puts and outputs and model training inputs and outputs. Importantly, it inte-
grates provenance records with model version history so as to record how a pos-
sibly complex ensemble of variably-accurate models were trained and updated
over time. As training data may come from experiment, simulation, or other
models (e.g., a higher-accuracy, higher-cost model, or an ensemble of lower-cost
models) Braid-DB includes structures that allow a user to ask how a model infer-
ence result was obtained, in the form of a defensible statement. The provenance
structure is designed to be portable so that provenance histories can be merged
with other records from collaborating teams, as when a user borrows a model
from another team.

We intended that the continuous generation and collection of records con-
cerning inputs, code versions, locations, progress, and outputs of both individual
actions and complete flows enable the construction of externally visible dash-
boards for monitoring application progress, and tools for tracking and reporting
on, for example, the locations and sizes of data produced to date. These same



records can also be leveraged to synthesize metadata records for loading into
catalogs. The system is designed to integrate with external capabilities such as
those provided by the Materials Data Facility [6] and associated data ingest
tools [7].

Realizing our goal of policy-driven automation demands machine-level un-
derstanding of flows (§2.3). We investigate what metadata representations and
relationships are needed to maintain this understanding so as to enable auto-
matic decisions, such as those to be made by workflow policy engines that are
being developed within the Braid project (§4). Second, analyses often involve
ML modules that are updated continuously by new data from multiple sources.
This is a challenging provenance and version control problem. Thus in designing
Braid-DB, we consider how to mix and match concepts from the provenance
literature (§2) with popular version control concepts to provide a robust and
usable solution to this model management problem.

3.2 Provenance structure
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Fig. 2. Braid provenance internals and interfaces. Static records include experimental
observations, data from literature, and algorithm definitions. Updateable records in-
clude simulation runs, surrogates, and models derived from other records. Small arrows
indicate data accesses recorded as provenance information (e.g., model inputs).

We design Braid-DB data structures and implementation to enable auto-
matic generation of identifiers [9,11], collection of descriptive metadata, and
construction of provenance records to enable reproducibility, post-mortem anal-
ysis, and auditing of computations. We show the provenance structure of our
system in Figure 2. Inside the “Braid Provenance Engine” box, all boxes are
Braid Records, and the arrows indicate Braid Dependencies. At the base of the
structure, shown in green, are static Records, such as quantities from the litera-
ture, outputs from physical experiment runs, and methods encoded in software.
The objects included in the Braid-DB model include:



1. BraidRecord: A super-class for Braid-DB provenance records. Each such
entity has a unique ID, a (possibly not unique) string name, a list of depen-
dencies, and a dictionary of user-specified, string-keyed metadata tags,

2. BraidFact: A simpler object consisting of static data: for example, pre-
existing trusted data or software, etc. BraidFacts may have a provenance
outside the Braid-DB system.

3. BraidData: The Braid-DB representation of traditional provenance-tracked
data, with traditional conceptions of its derivation history from other Braid-
Data and/or BraidFacts. A Braid-DB containing only BraidData and Braid-
Facts would be functionally indistinguishable from a traditional provenance
database.

4. BraidModel: An ML model tracked by Braid-DB. A BraidModel has the
additional capability update(), which represents model exposure to other
BraidRecords, possibly including other models. This includes the possibility
of dependency cycles that capture complex interactions among models and
data as experiment workflows progress.

4 Architecture

We now describe the software implementation of the Braid-DB system. The
software-level goals of Braid-DB are to develop a system that implements the
provenance structure described in §3 in a way that is easy to use and integrate
with existing systems, and thus to provide a toolkit that can be rapidly adopted,
shared, and extended.

4.1 Software performance targets

We design the Braid-DB prototype to be flexible and compatible with existing
techniques and file formats, rather than a prescriptive framework. An HPC access
module will be available via a MPI4Py library so that records can be rapidly
ingested during an HPC run, and later merged with other records; this module
will be used by our HPC features. The system will be scalable to the needs of
an ML training-based workload. For reference of scale, we consider a challenge
problem workflow from the ECP CANDLE project [28]. In this workflow, one
training epoch is completed per node every five minutes. On an exascale system
of 10K nodes, that is 33 records/second. Over one week of facilities experiment
time, that would record 20M records. Achieving these rates will be the target of
our database and HPC module.

We record metadata from Braid Flows in the provenance component in the
form of structured metadata regarding data flows as they relate to objects
represented in external storage, that is, reads and writes to/from flows. Thus,
the provenance of an flow object in the store is the metadata history of the
flows that have affected it, and so on.



4.2 Software components

We show the principal components of the Braid-DB implementation in Fig-
ure 3. At the top level, applications and/or workflow systems drive usage
of Braid-DB. These components could include application workflows written us-
ing workflow systems such as Parsl [4] or Swift/T [27], which make it easy to
call directly into Python libraries. Scientific applications and analysis systems
such as NeXpy [1] could also access the system directly. A shell script library
will also be provided to support such scripts.

Supporting the top layer are the HPC cache and import/merge tools.
The HPC cache, a system component to support scalable Braid-DB workloads on
exascale-class machines, will use a combination of database operation forwarding
and aggregation to prevent overloading the underlying databases during bursty
workloads. The import/merge tools will enable data slicing and extraction from
Braid-DB instances so that subsets of data can be shared with others. These
tools will also allow users to import external database records as a basis for the
provenance of future experiments, to support use cases that involve reproducing
and/or extending other experiments.

Fig. 3. Software architecture of the Braid Provenance Engine.

The recursive, versioned model record structures implement the ab-
straction described in §3. They provide Python access to Records and Depen-
dencies and allow for these objects to be easily created, searched, loaded, manip-
ulated, and stored. The data storage model persists the record structures in
a non-volatile, consistent way, mapping Records and Dependencies, along with
typical metadata such as timestamps and user tags, into a database schema.
Our current implementation uses a standard SQL-based approach for capturing
this information. In this model, given a record ID, its dependencies and other
metadata can quickly be traced back to original static Records with minimal
complexity.



4.3 Software implementation

We have developed a Braid-DB prototype [29] as an object-oriented Python
library in which Braid-DB objects such as Records and Dependencies can be
constructed, manipulated, and persisted to a data storage backend. A high-level
API allows existing workflows to construct these objects persistently with just
one or two additional lines of Python code.

We are developing methods for capturing sufficient information about all data
products produced by flows to enable regeneration in supported workflow sys-
tems. To this end, we are working to combine existing and new capabilities to ar-
chitect auto-documentation methods that collect provenance data automatically,
with automated recording of identifiers, descriptive application-level metadata,
and data access and dependency records to enable both reproducibility and post-
mortem analysis and auditing of computations. Open questions include how to
associate sufficient identifiers and metadata with the data, code, and resources
involved in a computation, including dynamically updated ML models, auto-
matically from workflow systems. The broader Braid project will orchestrate
data flows using modular actions and integrate them with HPC resources, while
enforcing data policies, e.g., to data capture quality and performance.

5 Case studies

We briefly describe two of the experimental science case studies that are guiding
Braid-DB development, and one synthetic Braid-DB application workflow that
we are using to evaluate the performance of Braid-DB implementations.

5.1 Provenance flow capture for training DNNs in x-ray science

Extremely high data rates at modern synchrotron and X-ray free-electron laser
light source beamlines motivate the use of ML methods for data reduction, fea-
ture detection, and other purposes. Regardless of the application, the basic con-
cept is the same: data collected in early stages of an experiment, data from
past similar experiments, and/or data simulated for upcoming experiments are
used to train a deep neural network (DNN) model that, in effect, learns spe-
cific characteristics of those data; this model is then used to process subsequent
data more efficiently than would general-purpose models that lack knowledge
of the specific dataset or data class [13]. In many cases, the DNN needs to be
updated (retrained and fine-tuned) frequently to keep up with changes in ex-
periment setup and sample conditions. Thus, a key challenge is to train models
with sufficient rapidity that they can be deployed and applied within useful
timescales. There are two common approaches to rapid DNN training: 1) using
more powerful systems, such as purpose-built AI accelerators: e.g., TPU, Cere-
bras, SambaNova, GraphCore; and 2) use new data to fine-tune a similar model
trained in the past.

Although purpose-built AI accelerators can train ML models much more
rapidly than the computing clusters that may be deployed within an experiment



facility, such accelerators must commonly be deployed within a data center due
to their cooling, power supply, ventilation, and fire suppression requirements.
Thus, a distributed workflow is needed to automate DNN training with remote
AI systems deployed at data center. The workflow commonly comprises the
following six basic operations: 1) Collect a datum; 2) Simulate an experiment
to generate a datum, d, without an experiment; 3) Analyze the datum using
a conventional algorithm (e.g., Bragg peak extraction), generating an analysis
(e.g., Bragg peak locations) [14], a; 4) Train (or retrain) a ML model with some
number of {d, a} pairs, generating a new model, m; 5) Deploy the new model m
on an edge-AI device; and 6) Apply the model m to a new experimental datum,
generating an estimated analysis, â.

Provenance information is needed for such geographically distributed work-
flows in order to make their performance interpretable (“on what basis did we
conclude that experimental data record r included feature f1?”) and to enable
troubleshooting (“why did we not detect feature f2 in r?”). Another straightfor-
ward use for provenance records is to support locating a pre-trained model in the
repository to be fine tuned with new data. To support such applications, we need
to record DNN models as they are generated, along with their training dataset,
the convergence curve of the training process, and validation performance. Each
model trained by the workflow must be discoverable by using information about
its training, such as the training data and experiment metadata. Similarly, users
must be able to query a model in the workflow history and obtain its training
data and parameters.

5.2 Serial synchrotron x-ray crystallography

Serial synchrotron x-ray crystallography (SSX) enables novel studies of protein
and enzyme dynamic processes by imaging small crystal samples 1-2 orders of
magnitude faster than traditional crystallography techniques. SSX offers new
opportunities for biologists to manage sensitive conditions such as time resolu-
tion by using light activation for change in conformation or change in pH, very
low x-ray doses for sensitive samples, maintaining room temperature for more
biologically-relevant environments, controlling radiation sensitivity for metallo-
proteins, and observing redox potentials in active sites. However, the increased
data collection rates in SSX make it untenable for humans to manage experi-
ments, because individual samples often result in hundreds of thousands of dis-
tinct images that must be analyzed, organized, and cataloged to deduce protein
structures. Further, solving a protein structure is dependent on the configura-
tions and thresholds used during the analysis and refinement process, necessitat-
ing fine-grained provenance tracking to associate structures with the raw data
and analysis inputs used to create them.

At Argonne’s Structural Biology Center at the Advanced Photon Source
(APS) scientists have developed a Braid-compatible pipeline to process raw data,
catalog and report interim results, and attempt to refine and solve protein struc-
tures [25]. This process captures sample information (including protein, prepa-
ration technique, exposure, and temperature) and feeds it into the analysis and



publication pipeline. We are now working to extend these efforts to capture
and record fine-grained provenance information regarding the sample, beamline
configuration, data, analysis inputs, and results, in order to track how specific
protein structures are derived during an experiment. The development of a com-
plete Braid workflow for the experiment will then simplify the data acquisition
and processing of new samples by tuning the analysis parameters based on previ-
ous experiments. Furthermore, it will allow the experiment control algorithms to
decide what are the next steps to complete the acquisition, for example, acquire
more data and/or move on to the next sample.

5.3 The Mascot workflow

Application workflows such as the two just described tend both to use just a
subset of Braid-DB capabilities and to incorporate numerous application com-
plexities. Thus to illustrate Braid-DB capabilities and to permit flexible testing
and performance evaluation (§6), we have developed the Mascot workflow,
which exercises all Braid-DB capabilities in a synthetic setting.

The Mascot workflow starts with C configurations, each representing a static
data record such as an instrument control script or some initial model training
data. Each such configuration is stored in Braid-DB. Then, M models are in-
stantiated, each depending on one configuration. These may be any kind of ML
model that consumes training data and makes inferences. Then, N experimental
cycles are run, each consisting of E experiment runs. Each run simulates the use
of an experimental instrument that consumes configuration data and produces
experiment data records. After each cycle, each model is exposed to all of the
new experiment data, producing an updated model version and new provenance
records, all of which are stored in Braid-DB. Each data record in the system,
a configuration c ∈ [0, C − 1] or experiment e ∈ [0, E − 1] produces U URIs,
representing an external data item referred to by the system.

A specific Mascot workflow can thus be configured by specifying the nature
of the ML model used and by varying the values of the paraneters C, M , N , E,
and U .

Fig. 4. Simplified depiction of Mascot workflow.



6 Performance

We describe an initial performance study of the Braid-DB system implementa-
tion (§4). In this study, we ran the Mascot workflow on a local workstation with
an Intel i7-8700 running Ubuntu 20.04.0 and Python 3.8.2, using the Braid-DB
SQLite backend. The Mascot workflow was configured to run using the param-
eterization described in §5.3. The workflow swept over a range of model counts
M ∈ [10, 100] and experiment counts C ∈ [10, 100] with step 10. For each run,
we fixed M = C, and set N = 5, U = 3.

Each experiment ran on a fresh SQLite database file. We ran two batteries
of tests, one with SQLite automatic commits enabled and one with that fea-
ture disabled. We measured execution times internally by Python and counted
the number of database entries (SQL rows) generated to obtain a database in-
sert rate. Each (count, time) pair was run for five trials and the average was
computed.

Fig. 5. Performance results for data insertion workflow

The results, plotted in Figure 5, show that the database insert rate for runs
without commits converges to just under 100 000 inserts per second (the maxi-
mum is 97 166). The run with commits enabled reached a maximum of only 128
inserts/second. Clearly, it will be infeasible to rely on SQLite to handle concur-
rency in this mode, and we will use the integration with the workflow systems
to ensure consistent multiprocess access to the database, as has been done with
prior Swift/T applications.

Additionally, we created a Braid-DB instance with 20 146 000 entries by set-
ting E = 4000 and M = 1000. Constructing this database with the Mascot
workflow took only 169.9 seconds, and thus indicates that the performance goal
based on the CANDLE example (§4.1) is easily achievable at this level of func-
tionality. As we move forward we intend to maintain conformance with these
rate targets as we add additional features and interfaces.



7 Future work

We have reported here on just the initial aspects of the development of a com-
prehensive system for managing provenance data from self-driving experiments.
Remaining challenges include:

1. Deeper integration with experiment management systems
(a) Capturing experiment-level details about conditions
(b) Ability to replay experiment conditions and alternative scenarios

2. Deeper integration with data systems
(a) Capturing resource availability and pressures
(b) Ability to evaluate scenarios under different loads and system-level per-

formance capabilities
3. Deeper integration with learning modules.

(a) Capturing why decisions were made
(b) Capturing available alternatives to decisions that were made

4. Deeper integration with scientific software abstractions
(a) Investigating potential portable provenance abstractions for a range of

scientific software
(b) Developing APIs for use by a wider range of programming models, in-

cluding zero-programming-effort integration via interception of other ac-
tivity.

8 Conclusion

We have argued that modern science workflows require new provenance methods
to meet the needs of machine learning-driven experimental science. Autonomous
experimental science experiments challenge traditional approaches to experiment
workflow reproduction and interpretation. New provenance structures are needed
to capture not just the progress of workloads mandated by the software developer
or experimental user, but also the choices made by ML modules, which may be
based on subtle data variations or changes in underlying computing resources.

The development of ever-increasing automation poses new questions about
the role of humans in experimental science. Initially, the goal of experimental
automation will be to enable experimentalists to focus on higher-level problems
in these workflows. In these cases, provenance will allow users to correct and
improve experimental studies more quickly. Forward-looking replay and scenario
evaluation will maximize the value obtained from time consumed on valuable
infrastructure. A future goal will be to enable human users to specify much
higher-level scientific questions and receive justifiable answers. The goals of the
Braid Provenance Database is to accelerate progress toward these high-level
question-and-answer specifications.
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