
Bootstrapping In-situ Workflow Auto-Tuning via Combining
Performance Models of Component Applications

Tong Shu
Southern Illinois University

Carbondale, IL, USA
tong.shu@siu.edu

Yanfei Guo
Argonne National Laboratory

Lemont, IL, USA
yguo@anl.gov

Justin Wozniak
Argonne National Laboratory

Lemont, IL, USA
woz@anl.gov

Xiaoning Ding
New Jersey Institute of Technology

Newark, NJ, USA
xiaoning.ding@njit.edu

Ian Foster
Argonne Natl. Lab and Univ. Chicago

Lemont and Chicago, IL, USA
foster@anl.gov

Tahsin Kurc
Stony Brook University
Stony Brook, NY, USA

tahsin.kurc@stonybrook.edu

ABSTRACT
In an in-situ workflow, multiple components such as simulation and
analysis applications are coupled with streaming data transfers. The
multiplicity of possible configurations necessitates an auto-tuner for
workflow optimization. Existing auto-tuning approaches are compu-
tationally expensive because many configurations must be sampled
by running the whole workflow repeatedly in order to train the auto-
tuner surrogate model or otherwise explore the configuration space.
To reduce these costs, we instead combine the performance models
of component applications by exploiting the analytical workflow
structure, selectively generating test configurations to measure and
guide the training of a machine learning workflow surrogate. Be-
cause the training can focus on well-performing configurations, the
resulting surrogate model can achieve high prediction accuracy for
good configurations despite training with fewer total configurations.
Experiments with real applications demonstrate that our approach
can identify significantly better configurations than other approaches
for a fixed computer time budget. For example, with a budget of 50
training samples, it reduces execution time and computer time for a
realistic workflow by 18.5% and 47.5% relative to random sampling,
and by 11.2% and 39.8% relative to a state-of-the-art algorithm,
GEIST.

1 INTRODUCTION
Scientific workflows couple multiple component applications, each
of which can be run independently: e.g., a simulation application
plus tools to analyze, visualize, and learn [54] from the simulation
results. Conventionally, component applications are often executed
only post-hoc; the simulation application saves the results to persis-
tent storage from which downstream applications read the results.
This approach is increasingly infeasible due to the high I/O costs
incurred when saving results and corresponding delays in down-
stream processing. In-situ workflow solutions address these issues

ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for government purposes only.
SC ’21, November 14–19, 2021, St. Louis, MO, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8442-1/21/11. . . $15.00
https://doi.org/10.1145/3458817.3476197

by allowing simulation applications to pass results to downstream ap-
plications on the fly, via network or shared memory, without writing
to storage [3, 17, 19].

Despite their advantages, in-situ workflows raise performance tun-
ing challenges. The performance of a workflow is largely determined
by configuration parameters, such as the number of nodes, processes,
and threads used to run each component application, among other
settings. The component applications in an in-situ workflow run
concurrently and often exchange data while executing. Thus, they
contend for hardware resources, such as processor cores and network
bandwidth, making it impossible to tune the application configura-
tions separately. When tuning the applications together, the multi-
plicative increase in the number of potential configurations form a
huge configuration space that human experts can rarely handle.

Thus, auto-tuners, particularly model-based auto-tuners, become
a promising method. However, it is still a challenging problem to
build such an auto-tuner for an in-situ workflow. The core of an auto-
tuner is a surrogate model of the coupled workflow performance
that can be used to predict the performance that would be observed
for a specific workflow configuration. To build an accurate surro-
gate model of this sort, the complete workflow must be run for a
large range of selected configurations (a.k.a. samples) to collect the
performance data required for model training. Given the huge con-
figuration space and high cost of each workflow run, users usually
cannot afford the cost of building such an auto-tuner.

Performance modeling conventionally involves the use of either
black-box or white-box models. However, neither approach is effec-
tive for the above problem. Black-box modeling based on machine
learning (ML) can build an accurate model if sufficient sample con-
figurations are tested. However, the large size of the potential config-
uration space means that this approach is unlikely to be affordable for
production applications running representative workloads [30, 57].

White-box modeling has been used to tackle large configuration
spaces for conventional workflows [40–44]. It focuses on analyzing
the interactions (particularly data dependencies) between compo-
nent applications, with an analytical coupling model (ACM) used
to combine the performance models of individual applications into
a workflow model. This divide-and-conquer method reduces com-
plexity, because each application has a relatively small configuration
space and its component model can be obtained with existing meth-
ods (mainly black-box modeling methods) [8, 11, 34, 49]. However,

https://doi.org/10.1145/3458817.3476197

while this approach works well for workflows in which compo-
nent interactions occur before or after component executions (i.e.,
are separable), allowing an analytic model to reflect such interac-
tions accurately, it does not work well for in-situ workflows. Due
to the frequent run-time interaction (particularly synchronization)
and more complex resource contention between component applica-
tions, component models built based on observations of applications
running separately cannot accurately predict the performance that
components display when they are run together in an in-situ work-
flow. Furthermore, ACMs cannot easily incorporate representations
of such interactions. Thus, a workflow model built with an ACM
and component models only often lacks the accuracy required for
auto-tuning of in-situ workflows [21]. To build accurate models,
performance data from actual workflow runs must be integrated.

To address this challenge in auto-tuning in-situ workflows, we pro-
pose to combine the ACM-based white-box modeling and ML-based
black-box approaches so as to leverage both the cost-effectiveness
of the white-box approach and the greater accuracy of the ML-based
black-box approach. We will show that this combined approach can
allow accurate auto-tuning models to be built at low cost.

To implement this idea, the first and foremost issue is a method
that can make the two approaches work synergistically. After com-
paring a few possible methods (e.g., boosting an ACM with ML
and auto-selection of ACMs) in §8.2, we developed a bootstrapping
method to combine these approaches. Specifically, we first use the
white-box approach to build a low-fidelity model of the workflow;
second, we use the low-fidelity model to test configurations selec-
tively and guide the training of a high-fidelity ML-based model for
use in the auto-tuner.

The bootstrapping method is based on the observation that the
auto-tuner does not require its performance model to have high
prediction accuracy for all possible configurations. Notably, for con-
figurations that lead to poor performance, the accuracy requirements
are relatively low, and as long as the model does not predict that
poor configurations will lead to high performance, the auto-tuner
will not mistakenly recommend these configurations. For good con-
figurations leading to high performance, the accuracy requirements
are relatively high so that optimal configurations can be identified.
By exploiting this observation we reduce the number of poor config-
urations selected for experimental measurement and model training.
This reduces the required workflow runs, particularly long-running,
high-cost workflow runs. Our bootstrapping method achieves this
using the low-fidelity model formed by the white-box approach.

Two technical issues must be addressed in the bootstrapping
method. The first issue is how to determine the number of poor
configurations and good configurations selected as training samples,
so as to minimize the total number of samples and to make the model
have a reasonable accuracy on poor configurations at the same time.
To address this issue, we continually monitor the prediction accuracy
of poor and good configurations, and dynamically adjust the number
of configurations of each type.

The second issue is how to determine when bootstrapping should
be stopped. The ML-based model is gradually refined in the training
process. After its accuracy is higher than the ACM-based model, it
becomes a better choice for selecting training samples. Thus, for
the black-box techniques that can select training samples actively

Persistent
StorageSimulation

Log generation

Stats generation

VisualizationB
ig

 d
at

a

S
m

al
l d

at
a

(a) Traditional application

Persistent
Storage

Simulation Visualization

ControlB
ig

 d
at

a

S
m

al
l d

at
a

Experiment
Learning

Feedback

(b) Integration-learning application

Figure 1: Typical in-situ workflow application patterns.

using their own models, such as active learning (AL) [29], reinforce-
ment learning (RL) [39], and Bayesian optimization (BO) [32], the
bootstrapping should be stopped. To stop the bootstrapping at an
appropriate moment, we continually monitor the accuracy of both
the ACM-based model and the ML-based model.

This paper makes the following contributions: 1) As far as we
know, our approach is the first work to auto-tune in-situ workflows
under a tight budget on measurements. 2) To build accurate in-
situ workflow auto-tuning models, we synergistically combine ML-
based black-box modeling and ACM-based white-box modeling
using the bootstrapping method. 3) We implement the idea in a new
in-situ workflow auto-tuning algorithm, CEAL (Component-based
Ensemble Active Learning). 4) We use three in-situ HPC workflows
to experimentally verify the superiority of CEAL over other auto-
tuning algorithms. With just 25 training samples, CEAL can reduce
the computer time of a realistic workflow by 12–48% in comparison
with other existing auto-tuning algorithms.

2 MOTIVATION AND BACKGROUND
In this section, we first illustrate the importance of in-situ processing
in scientific applications. Then, we describe the basic mechanisms
used in auto-tuners and identify the challenges in designing such
auto-tuners for in-situ workflows.

2.1 Importance of In-situ Workflow Applications
Recent workshop reports [24, 37] have highlighted the importance of
in-situ workflows to scientific applications as simulation-generated
and experimental/observational data sizes increase. These reports
call for advanced systems that can manage streaming data and effi-
ciently propagate data through multiple stages of processing. The
benefits of this approach include reducing the load on persistent
storage technologies, and enabling AI-centric scientific studies.

An example of traditional uses of in-situ technologies is shown in
Figure 1a. For example, a computational fluid dynamics simulation
running at half system scale on a near exascale machine could output
data at a rate that exceeds the capability of the parallel file system,
blocking simulation progress and impacting other users. The raw
simulation data may not be needed, but rather human-readable logs,
statistics, and visualizations [20]. In-situ technologies are even more
critical in the emerging AI for Science paradigm [47] as shown in
Figure 1b. Consider the case of a material for analysis via neutron
scattering, in which a sample is scanned at the beamline while a

2

digital twin of the sample is represented in a supercomputer. The
operations in visualization and machine learning could be applied on
the live data before it is stored persistently, enabling feedback to the
experiment in real-time [15]. While these uses are transformative in
obtaining high system utilization and in the application of AI, they
are also sensitive to configuration, as the wrong settings could cause
catastrophic slowdowns. Workflow-aware tools must be developed
to optimize performance by exploiting the known workflow structure
of these composite applications.

2.2 Empirical Model-Based Auto-tuners
These applications are often run repeatedly on similar computers and
problems, and the similarities can make it beneficial to tune configu-
ration parameters to improve performance in a reusable way. Given
the growing complexity of applications and HPC infrastructures,
empirical model-based auto-tuners must be leveraged, which run ex-
periments in the configuration space and train a performance model
and select a good set of configuration parameters. Although many
auto-tuning approaches exist [5], this paper focuses on empirical
model-based auto-tuning because of its effectiveness and prevalence.
For brevity, hereon we will refer to “empirical model-based auto-
tuning/auto-tuners” as “auto-tuning/auto-tuners.”

An auto-tuner typically has three components: collector, mod-
eler, and searcher [6, 9, 22, 30, 31, 45, 50, 51]. The collector runs
the target application with different configurations selected by the
modeler, and collects performance measurements. The modeler se-
lects configurations from the parameter configuration space of the
target application, drives the collector to obtain the corresponding
performance measurements, and uses the measurements as training
data to construct a surrogate performance model: a high-dimensional
function of configuration parameters, usually obtained by ML. The
searcher uses the model to search for a good configuration, i.e., one
that produces good performance. During the search, the searcher
uses the model to predict the performance for the configurations be-
ing examined, and selects the configuration with the best predicted
performance.

The core of an auto-tuner design is a modeling algorithm. Factors
to consider when designing this algorithm include model type and
the methods used to select configurations used as training samples,
to train the model, and to search configuration space. Thus, for
example, neural networks (NN) [33], which require many training
samples, are not used in our solution, because the cost of collecting
so many samples is prohibitive for HPC workflows.

A well-designed modeling algorithm can substantially both re-
duce the cost and improve the performance of an auto-tuner. For
resource-intensive applications, such as HPC programs, auto-tuner
cost is dominated by the time required to run the target application
repeatedly to collect training data. Model training and configura-
tion space search, in contrast, are inexpensive: Some traditional ML
models, such as boosted trees (BT) and random forests (RF), may
take only a few minutes. Auto-tuner performance, the capacity to
find good configurations and improve application performance, is
determined primarily by how well the model predicts application per-
formance for given configurations, particularly good configurations,
because a bad configuration is rarely choosen as the top configura-
tion as long as its prediction error is not very high to make it seem

Persistent Storage

S S S
Step 1 Step 2 Step n

A/V A/V A/V

Simulation
Analysis/Visualization

… …

Workflow’s exec. time
A/V’s

exec. timeS’s exec. time

DAG: S A/V

Big data

(a) Post-hoc processing

Persistent Storage

S S S
Step 1

Big data

Step n

A/V A/V A/VIdle Idle …

…

Workflow’s exec. time
A/V’s exec. time

S’s exec. timeS’s exec. time

Small data

(b) In-situ workflow

Figure 2: Post-hoc processing vs. in-situ workflows

like a good one. (It is also affected by how the parameter space is
searched, but as search mechanisms are mature, most efforts focus
on improving the model.) Accurately modeling a complex target
depends on the power of the ML model and the number of training
samples. If there are only a limited number of training samples, tra-
ditional ML methods, such as BT and RF, achieve better prediction
accuracy than the more powerful NN, because they typically have
many fewer weights to be trained.

2.3 Auto-Tuning for In-situ Workflows
In our context, a workflow is a directed acyclic graph (DAG), with
application components as nodes and data dependency as edges.
Components are typically coupled by using a high-level program-
ming language or library, thus exposing a structure that can be
exploited for performance modeling and optimization.

In a file-based post-hoc processing workflow, component applica-
tions are executed in an order determined by their data dependencies,
and thus have no interactions during their respective execution. For
example, in Fig. 2a, when the simulation finishes, it saves data to
persistent storage; only then can the analysis/visualization, which
processes the data, be started. Modeling for performance optimiza-
tion can then proceed in two steps. First, we model the performance
of each component independently. Second, we build an analytical
workflow model based on the DAG and the component models. Such
white-box modeling is accurate enough to optimize a file-based
post-hoc processing workflow.

In contrast, as shown in Fig. 2b, component applications in an
in-situ workflow run concurrently, frequently exchanging data via
network or shared memory during their respective execution. Work-
flow performance is determined by the complex interplay of the
applications, which may involve factors such as load imbalances,
contending network bandwidth, synchronizations, and locks [21].
High performance requires that the component applications execute
in a balanced and coordinated way.

For in-situ workflow optimization, performance modeling cannot
simply be done through an analytical model combining separate per-
formance models of component applications due to the complicated

3

run-time interactions among component applications. Instead, a per-
formance model for the whole workflow must be built by leveraging
the accuracy of ML-based black-box modeling, and all parameters
from all components should be optimized together. For empirical
model-based auto-tuners, the fact that an in-situ workflow includes
multiple coupled components raises considerable challenges. Be-
cause all parameters from all components must be considered to-
gether, the potential parameter combinations increases multiplica-
tively. For example, in the two-component workflows of §7.1, the
configuration space sizes are more than 105× larger than those of
their component applications. This dramatically raises the number
of configurations to be measured as training samples for building
a usable surrogate model. However, for in-situ workflows, it is not
realistic to measure many parameter combinations, given the high
resource consumption of running HPC applications.

Without fundamentally renovating auto-tuning algorithms, partic-
ularly the techniques used to build the surrogate model, auto-tuners
for in-situ workflows face a difficult dilemma—whether to suffer a
prohibitive cost in creating the accurate surrogate model needed for
optimal performance, or to tolerate the poor performance associated
with an inaccurate surrogate model generated at an affordable cost.

The CEAL algorithm proposed in this paper fundamentally im-
proves the techniques to build surrogate models, such that auto-tuner
cost can be reduced substantially while retaining high performance.
The large resources needed to run a complete workflow repeatedly
when building an auto-tuner are usually limited in practical settings
by a resource budget. Thus, in this scenario, the advantage of the al-
gorithm is reflected by improving the performance of the auto-tuner
within a cost budget.

3 BOOTSTRAPPING METHOD OVERVIEW
This section gives an overview of the bootstrapping method, focus-
ing on the main idea and the major steps in this method. We will
introduce its major techniques in detail in §4 and §5. We implement
the bootstrapping idea and the techniques with the CEAL algorithm,
which is introduced in §6.

As auto-tuning cost is dominated by the collection of training
samples, we must select training samples carefully and use them
effectively, instead of selecting training samples indiscriminately
and extensively (e.g., by random sampling). The general idea of
intelligent sampling has been explored in different ways in ML and
in auto-tuner designs [6, 29, 30, 50]. Our work is distinguished by
how we exploit the workflow structure (§2.3) to develop techniques
that are particularly effective for auto-tuning in-situ workflows.

Our bootstrapping method leverages the following two charac-
teristics of in-situ workflows: 1) An in-situ workflow consists of
multiple components, which can run independently and may be
reused across workflows. 2) The synchronization among compo-
nents means that if any component performs poorly, the workflow is
unlikely to achieve high performance.

Based on the principle that more training samples collected in a
region of good configurations lead to higher accuracy of the trained
model in the region, we should avoid collecting samples in which a
workflow performs poorly, as such samples are unlikely to help with
finding well-performing configurations. But how are we to avoid
collecting poor-performing samples in the absence of a performance

Measure
workflow

performance

Collector

END

M
o
d
el
er

Build component models with
historical or new measurements
Build component models with
historical or new measurements

Use MH to search for the optimal configuration c*Searcher

Phase 1: White-box modeling

Build an analytical coupling
model with workflow structure
Build an analytical coupling
model with workflow structure

ML model
training/refining

ML model
training/refining

Model switch
detection

Model switch
detection

Initial random
configurations

Measured configurations
(training samples)

Trained model MH

High-fidelity model

Selected model
(ML or MH)

Phase 2: Black-box modeling

P
ar

am
et

er
s

A
pp

 n

 A
pp

 1

Component
performance
predictions

Low-fidelity workflow model ML

Score of a
workflow

configuration
⋮

Rank configurations
in a sample pool
Rank configurations
in a sample pool

Mn
cpnt

M1
cpnt

Analytical
coupling
model

Unmeasured top
configurations

Figure 3: In-situ workflow auto-tuning with bootstrapping.

model, which is why we want those samples in the first place? We
employ two ideas. 1) Leveraging the first characteristic, we build
performance models for individual component applications. Because
the parameter spaces of component applications are much smaller
than that of the in-situ workflow, these models can be built at low
cost, i.e., with only a few component application runs. Also, the
models of component applications can be reused or built on historic
measurements during their previous standalone uses or reuse in other
workflows, further lowering costs. 2) Leveraging the second charac-
teristic, plus the component models that we have just developed, we
build a simple low-fidelity model that we use to guide our search for
well-performing configurations for the whole in-situ workflow, and
focus sample collection on these configurations.

Note that the low-fidelity model itself has intrinsic limitations.
First, the component models are built based on the solo runs of each
application. Thus, they cannot accurately predict the performance
of the applications when they run together in a workflow, where
they interact frequently and contend hardware resource with each
other. Second, the component models are combined in a simple
way and cannot reflect the interactions and resource contentions
between component applications. Therefore, it is not realistic to
refine this model with more component training samples to achieve
high accuracy and then use the refined model in auto-tuning.

We refer to the surrogate model used in the auto-tuner as a high-
fidelity model. For the training of the high-fidelity model, any black-
box modeling techniques can be used and “bootstrapped” with the
low-fidelity model. The techniques that can select training samples
actively using their own models are preferred and can be integrated
with the bootstrapping method more seamlessly, as we will show
later. For example, active learning iteratively uses the model that is
being refined to identify configurations that may lead to good perfor-
mance, and focuses sample collection on those configurations [6, 29].
Other techniques include RL and BO. In the paper, we select to use
the active learning technique as an example to describe and evaluate
our bootstrapping method.

Fig. 3 gives an overview of auto-tuning an in-situ workflow with
the bootstrapping method, including collecting samples and building
the models to searching optimal configurations. As highlighted in
the figure, with the bootstrapping method, building the surrogate
model consists of two main phases:

4

• Phase 1: Low-fidelity Model Generation via Component Model
Combination. As shown in the upper part of the modeler in Fig. 3,
we generate performance models for a workflow’s component ap-
plications and build an ACM which is used to combine component
models to form a simple yet integral workflow model. This simplicity
means that the integral model can be obtained at low cost but yields
only approximate predictions. We use this low-fidelity workflow
model (𝑀0 in Fig. 3) in the second phase, to evaluate configurations.
• Phase 2: High-fidelity Model Generation via Dynamic Ensem-
ble Active Learning. As shown in the lower part of the modeler
in Fig. 3, we use a series of samples selected based on low-fidelity
model scoring to establish and improve a second, high-fidelity model
of the workflow (𝑀1 in Fig. 3). The high-fidelity model is the sur-
rogate model that the searcher will use to predict workflow perfor-
mance so as to find an ideal configuration. To refine it, we use a
model selected from 𝑀0 and 𝑀1 to rank all configurations in a sam-
ple pool and measure the performance of top ranked configurations
as incremental training data for 𝑀1. The high-fidelity model is prim-
itive when first established, but keeps evolving as more samples are
collected and used in training, and may become a better choice for
evaluating configurations than the low-fidelity model. Thus, we use
a model switch detection module to monitor the two models, and
switch to using the high-fidelity model to evaluate configurations
when it becomes a better choice. We stop evolving the high-fidelity
model when the cost budget is reached (i.e., we have tested a preset
number of configurations).

In essence, our approach is not to reduce the configuration space
to be explored in model building. It still selects configurations from
all parts of configuration space. (We show in Section 6 that the con-
figurations selected from all the areas of the configuration space
are used in training.) But, it aims to control the number of samples
selected from different areas based on the corresponding perfor-
mance of the workflow. In the areas where the workflow performs
poorly, a relatively small number of samples are selected to keep
the total number of samples low; in the areas where the workflow
performs well, a relatively large number of samples are selected, in
order to achieve high accuracy and thus increase the capability of
the auto-tuner to find optimal configurations in these areas. Building
and using a low-fidelity model ensures that such control can be im-
posed as early as possible and these benefits are maximized. This
approach requires that well-performing configurations are not evenly
distributed in configuration space. (Actually, most applications show
this trait.) It is most effective when well-performing configurations
are concentrated in a small region.

4 LOW-FIDELITY MODEL GENERATION
We use the low-fidelity model to evaluate configurations by predict-
ing how well the workflow may perform. The main challenge is to
build a useful model with a minimal cost.

We build the low-fidelity model by first constructing and then
combining predictive models of the component applications (see the
red dashed rectangle in Fig. 3). Each individual component model,
𝑀𝑗 (𝑗 = 1, 2, · · ·), outputs a performance prediction for its component
for a given configuration. Its predictions should be aligned with the
optimization goal of the auto-tuner; for example, execution times if
the goal is shortening workflow execution time. Component models

can be built by using conventional methods, e.g., by randomly se-
lecting configurations to collect samples and then training a boosted
tree ML model. Since component applications are independent, they
may be used separately or in other workflows. Thus, costs can be
reduced by incorporating measurements collected in earlier runs into
training data, or by reusing component models developed for other
workflows. Due to space limitations, we do not elaborate here on
how to build or reuse these models, but focus on how to combine
component models to form the integral low-fidelity model.

There are two issues in forming the low-fidelity model. The first
is what the model should produce. As we will use this model only to
choose among configurations, we do not need it to predict workflow
performance directly. Instead, we make it output for each configura-
tion just a score indicating how well the workflow performs relative
to other configurations.

The second issue is how to combine per-component model results
to build a low-fidelity model with minimal cost. A black-box model-
ing approach, which we implemented in an algorithm called ALpH
for later quantitative comparison, is to train a component-combining
model 𝑀 ′0 from both component model predictions and actual work-
flow runs. That is, for each candidate configuration 𝑐, we use the
component models {𝑀 ′

𝑗
} (𝑗 = {1, 2, · · ·}) to predict the performance

values {𝑣 𝑗 } of the components for 𝑐; run the workflow with 𝑐, mea-
suring its performance 𝑣; and use {𝑐, {𝑣 𝑗 }, 𝑣} as the training data
for 𝑀 ′0. ALpH uses AL [29] to select the configurations for which
it generates such workflow training samples. A deficiency of this
approach is that it does not exploit any knowledge of the workflow
structure, thus incurring high training data collection cost.

A white-box modeling method, which we use in CEAL, is to use
a simple function (e.g., max, min, or sum), chosen according to the
performance metric being optimized by the auto-tuner, to combine
the component model predictions. We select this function as follows.
If the performance metric is determined largely by the bottleneck
components, such as execution time and throughput, we use max (for
execution time) or min (for throughput). If the performance metric
is largely an aggregation of the shares from all components, such as
computing resource and energy consumption, we use sum. Notice
that the component model combination approach in CEAL, unlike
that in ALpH, does not need to run the workflow. We examine the
relative accuracy and costs of CEAL and ALpH in §7.5.

We postpone detailed evaluation to §7.5, but report here on a
motivating study in which we use two optimization objectives with
different metrics—shortening execution time and minimizing com-
puter time—to illustrate and characterize the function approach. We
define execution time as wall-clock time and computer time as the
number of core-hours consumed by workflow execution. We define
the functions used to determine a configuration’s scores as

Scoree(𝑐) = max
𝑗
𝑡e(𝑐 𝑗), (1)

Scorec(𝑐) =
∑︁
𝑗

𝑡c(𝑐 𝑗), (2)

where for a configuration 𝑐, Scoree(𝑐) and Scorec(𝑐) are the execution
and computer times (the lower, the better) of configuration 𝑐; 𝑐 𝑗 is
the parameter values related to component 𝑗 extracted from 𝑐; and
𝑡e(𝑐 𝑗) and 𝑡c(𝑐 𝑗) are the model-predicted execution and computer
times of the 𝑗 th component.

5

1 3 5 7 9 11 13 15 17 19 21 23 25

Number of Top Configurations

0

10

20

30

40

50

60

70

80

90

100
R

e
c
a

ll
S

c
o

re
 (

%
)

Sum of computer time

Random selection for computer time

Maximum of execution time

Random selection for execution time

Figure 4: Recall scores based on combination functions.

To illustrate the effectiveness of this approach, Fig. 4 shows the
recall scores (RS) of the low-fidelity models (Eqns. 1 and 2) when
used to score 500 randomly selected configurations for workflow
LV. (For details on experimental settings, see §7.1.) Recall scores
reflect the possibility that the highest-scoring configurations lead
to high workflow performance (§7.2.2). To calculate recall scores,
we rank configurations based both on their model-predicted scores
and on the performance observed when the workflow is executed
with them. The recall score of the top 𝑛 configurations is then the
ratio between 1) the number of common configurations found in
the top 𝑛 configurations on these ranked lists and 2) 𝑛; and it varies
with 𝑛 increasing. If the goal is to minimize computer time, we rank
configurations with two methods: 1) sorting their scores based on the
model in Eqn. 2 and 2) placing them in a random order, and refer the
two methods to as “sum of computer time” and “random selection for
computer time,” respectively. It is similar to the goal of minimizing
execution time. We see that the models achieve recall scores above
30% for top 2 to 25 configurations, much higher than those of
random selection. This verifies that even using simple functions in
the low-fidelity model can effectively locate good configurations.

The solution described in this section mainly targets loosely-
coupled in-situ workflows [21, 48], in which components are cou-
pled via high-level libraries (e.g., ADIOS [27], Flexpath [12], DataS-
paces [14], FlexIO [59], GLEAN [52], DIMES [58], Decaf [16], or
Zipper [21]). The relative ease of development and deployment of
loosely-coupled in-situ workflows relative to tightly-coupled in-situ
workflows makes the former much more prevalent. However, our
solution can easily be adapted to optimize tightly-coupled in-situ
workflows.

5 HIGH-FIDELITY MODEL GENERATION
To build the high-fidelity model, CEAL first creates a sample pool
𝐶pool by selecting configurations randomly from the workflow’s con-
figuration space 𝐶. All configurations used subsequently to train the
high-fidelity model are selected from𝐶pool. As we evolve the model,
we repeatedly evaluate and rank all configurations remaining in
𝐶pool; thus, we want |𝐶pool |≪ |𝐶 | to keep evaluation costs manage-
able. However, we also want 𝐶pool to be reasonably representative
of 𝐶 and, in particular, to contain enough well-performing configu-
rations to train a good high-fidelity model. Say that we want the best
configuration in 𝐶pool to be in the top 1/𝑛 of all configurations, with
probability 𝑃 . With a pool size 𝑝, the chance of selecting 𝑝 configu-
rations each not in the top 1/𝑛 is less than (1 − 1/𝑛)𝑝 . Thus, we want

𝑝 ≈ −𝑛 · ln(1−𝑃), because 𝑃 > 1− (1−1/𝑛)𝑝 = 1− [(1−1/𝑛)𝑛]𝑝/𝑛 >

1 − (1/𝑒)𝑝/𝑛 . For example, if 1/𝑛 = 1/500 = 0.2% and 𝑃 = 98.2%,
then 𝑝 ≈ 2000.

To establish the high-fidelity model, CEAL selects𝑚0/2 config-
urations at random from 𝐶pool (as at most𝑚0 random samples are
chosen totally); selects the 𝑚𝐵 best of the configurations remain-
ing in 𝐶pool, based on scores from the low-fidelity model; runs the
workflow with the𝑚0/2 +𝑚𝐵 selected configurations; and uses the
results as samples to train an initial high-fidelity model. We discuss
the factors influencing the choice of𝑚𝐵 and𝑚0 in §6.

To evolve the model, CEAL evaluates the configurations remain-
ing in 𝐶pool and selects the 𝑚𝐵 highest-scoring. Then, it runs the
workflow with those configurations and uses those results to train
the high-fidelity model further. It repeats these operations until the
cost budget is reached.

The high-fidelity model is initially primitive and thus the low-
fidelity model is a superior choice for evaluating configurations. As
more training data are acquired, the high-fidelity model eventually
outperforms the low-fidelity model. Thus, we monitor the capability
of the high-fidelity model in evaluating configurations, and substi-
tute it for the low-fidelity model when it becomes a better choice.
Specifically, each time that we perform more runs, we use the new
data to compute the top-1, top-2, and top-3 recalls (see §7.2.2) of the
low- and high-fidelity models: that is, the extent to which their best
1, 2, and 3 configurations, respectively, match the best 1, 2, and 3 as
determined by experiment. When these scores for the high-fidelity
model (summed to increase stability) exceed the low-fidelity sum,
we switch to the high-fidelity model.

As we show quantitatively when we present experimental results
in §7.4.2, the power of the CEAL approach derives from the fact
that it selects mostly top configurations when collecting data to train
the high-fidelity model. The rationale here is this: our ultimate goal
is a surrogate model that the searcher can use to find the best config-
urations, and for that purpose it should be highly accurate for good
configurations, but can be less accurate for bad configurations. Thus,
we prefer to use our limited sample budget for samples collected
for high-performing configurations. (Focusing sample collection on
high-performing configurations also has the expedient side effect
that these samples, by definition, take less time.)

Thus, as described above, we use the low-fidelity model to boot-
strap the sample selection process, and transition to the high-fidelity
trained model as the number of collected samples grows. But what if
our low-fidelity model is biased in such a way that it never gives good
scores to high-performing configurations? Then the high-fidelity
model may never improve. This concern motivates us to select, in
the initial phase,𝑚0/2 random configurations and the𝑚𝐵 configura-
tions selected with the low-fidelity model, and dynamically adjust
them in the subsequent phase. We discuss the sensitivity of CEAL
to these hyper-parameters in §7.6.

6 CEAL ALGORITHM
The CEAL algorithm, Alg. 1, takes as input a data collection budget
(𝑚), expressed in terms of the number of workflow runs for sim-
plicity. (If a budget on real resource consumption is preferred, the
algorithm can be adapted to monitor the resource consumption of
the workflow and its component applications.)

6

Algorithm 1 Component-based Ensemble Active Learning
Inputs: Workflow runs budget 𝒎; budget used to run component applications
𝒎R; for each component application 1 ≤ 𝑗 ≤ 𝐽 , configuration space 𝑪 𝑗

and historical measured configuration-performance samples 𝑫hist
𝑗

; sample
pool 𝑪pool; upper bound on the number of random samples 𝒎0; number of
iterations 𝑰 .
Output: High-fidelity workflow model 𝑴H.

1: for 𝑗 ∈ {1, 2, · · · , 𝐽 } do
2: Randomly select𝑚R configurations from𝐶 𝑗 as𝐶meas

𝑗
;

3: Run 𝑗 th component with configurations in𝐶meas
𝑗

, giving 𝐷meas
𝑗

;

4: 𝐷meas
𝑗
← 𝐷meas

𝑗
∪𝐷hist

𝑗
;

5: Train component model 𝑀cpnt
𝑗

with 𝐷meas
𝑗

for the 𝑗 th application;

6: Generate low-fidelity model 𝑀L from component models and combination function
(see §4);

7: Move𝑚′0 = 𝑚0/2 randomly selected configurations from𝐶pool to form𝐶meas;
8: 𝑚𝐵 ← (𝑚 −𝑚0 −𝑚R)/𝐼 ;
9: Score all configurations in𝐶pool with 𝑀L;

10: Move top𝑚𝐵 configurations from𝐶pool into𝐶meas;
11: 𝑀 ← 𝑀L; // Set the model used for evaluating configurations
12: 𝑀H ←ML model (e.g., boosted tree [10]); // Initialize high-fidelity model
13: for 𝑖 ∈ {1, · · · , 𝐼 } do
14: Run workflow for all configurations in𝐶meas, giving 𝐷meas;
15: 𝐶meas ← ∅;
16: if 𝑀 = 𝑀L then // Begin model switch detection
17: // Score models: recalls for top 1, 2, 3 configurations
18: 𝑆H = ∑

𝑖=1,2,3 𝑆𝑟 (𝑖,𝐶meas, 𝑀𝐻 , 𝐷meas); // See §7.2.2
19: 𝑆L = ∑

𝑖=1,2,3 𝑆𝑟 (𝑖,𝐶meas, 𝑀𝐿, 𝐷meas); // See §7.2.2
20: if |top(3, 𝑀𝐻) ∩ top((𝑚′0 + 𝑖 ×𝑚𝐵)/2, 𝐷meas) |< 3 then
21: Move (𝑚0 −𝑚′0)/2 random configurations from𝐶pool to𝐶meas;
22: 𝑚′0 = 𝑚′0 + (𝑚0 −𝑚′0)/2;
23: if 𝑆H ≥ 𝑆L then
24: 𝑀 ← 𝑀H;𝑚𝐵 ←𝑚𝐵 + (𝑚0 −𝑚′0)/(𝐼 − 𝑖);

// End model switch detection
25: Use 𝐷meas to train/refine 𝑀H, and update 𝑀 if it switched to 𝑀H;
26: Use 𝑀 to evaluate the configurations in𝐶pool;
27: Move the top𝑚𝐵 configurations from𝐶pool to𝐶meas;
28: return 𝑀H.

Lines 1–6, the phase of low-fidelity model generation via com-
ponent model combination, run each component application 𝑚R
times to test randomly selected configurations and build component
models. The cost is equivalent to running the complete workflow
𝑚R times, incurring a charge of 𝑚R from budget 𝑚 (Line 8). If a
component application has been tested earlier, some configuration-
performance data 𝐷hist

𝑗
can be reused to further improve component

model quality (Line 4), in which case 𝑚R should be close to 0.
Otherwise,𝑚R is generally set to be from𝑚 · 25% to𝑚 · 75%.

The second phase, high-fidelity model generation via dynamic
ensemble active learning, is Lines 7–28. First,𝑚′0 = 𝑚0/2 random
training samples are selected (Line 7) to characterize the overall
performance distribution of the workflow over all configurations.𝑚′0
will be increased up to𝑚0, if needed. In general,𝑚0 is set to be from
𝑚 · 5% to𝑚 · 30%, depending on workflow structure and optimization
objective. Sensitivity studies reported in §7.6 show that CEAL is
insensitive to𝑚R and𝑚0 values, over a large range. We recommend
that𝑚0 ≈ 35% ·𝑚 when |𝐷hist

𝑗
|≫𝑚 (𝑗=1,...,𝐽), and𝑚0 ≈ 15% ·𝑚 if

no historical measurements are available (i.e., |𝐷hist
𝑗
|=0). Then, top

configurations are selected (Lines 10 and 27) based on the evaluation
with model𝑀 . Lines 16–24 handle the switching from low-fidelity to
high-fidelity model. The high-fidelity model is retrained repeatedly
as more training data are acquired (Lines 13–27), and returned as
the output of the algorithm.

7 EXPERIMENTAL EVALUATION
We describe our benchmarks (§7.1), evaluation metrics (§7.2), and
comparison targets (§7.3). Then, we evaluate the performance of
CEAL and other algorithms in a general auto-tuning scenario with-
out historical measurements, and investigate reasons for CEAL’s
superiority (§7.4). We also consider optimization with historical
component measurements, and compare CEAL with an algorithm
that incorporates component performance by training a ML model
(§7.5). Finally, we study CEAL’s sensitivity to hyper-parameter val-
ues (§7.6).

7.1 Experimental Setup
We implemented our auto-tuner system following the EMEWS
Framework [36] and using the high-performance dataflow comput-
ing language Swift/T [2]. To enable job-level fault-tolerance of the
collector in our auto-tuner, we enhanced Swift/T by developing a
noval MPI function MPI_Comm_launch [55]. Then, we conducted
experiments on a 600-node cluster with Intel Omni-Path Fabric In-
terconnect. Each node has two 18-core 2.10GHz Intel Broadwell
Xeon E5-2695 v4 processors with hyperthreading disabled and 128
GB DDR4 SDRAM. We ran each workflow with exclusive access
to node resources, on allocation sizes up to 32 compute nodes. We
used three in-situ workflows coupled via the I/O library ADIOS [1]
in our experiments:

LV couples two components: the LAMMPS [25] molecular dy-
namics simulator and Voro++ [53], a Voronoi tesselator. LV involves
full-featured, realistic applications. The sample run used here simu-
lates 16 000 atoms and streams position and velocity data into the
tesselator for analysis and visualization. This application is a model
for many cases in particle simulation and visualization.

HS also couples two components: a Heat Transfer [23] simulation
with an analysis application, Stage Write. Heat Transfer is a mini-
application that runs the heat equation over the grid of a given size
and forwards simulation state to Stage Write, which produces output
in the file system. This application executes the heat equation over
the grid of a given size and forwards the state of the simulation to the
Stage Write application, which writes it. This application is a model
for many cases in numerical PDE calculations and I/O buffering and
forwarding.

GP couples four components: Gray-Scott reaction-diffusion sim-
ulation; an analysis application, PDF calculator, applied to the Gray-
Scott output; a visualization application, G-Plot, also applied to
Gray-Scott output; and a second visualization application, P-Plot,
applied to PDF output. GP involves applications of intermediate com-
plexity. Two component applications, Gray-Scott and PDF calculator
are configurable, but G-Plot and P-Plot are not. This application is
a model for many cases in chemical reaction dynamics and more
complex multi-purpose analysis workflows.

Application configuration options, shown in Tbl. 1, form a total
of 2.9 × 109 possible configurations for LV (LAMMPS: 7.6 × 104;
Voro++: 7.6 × 104), 5.1 × 1010 ones for HS (Heat Transfer: 5.4 × 106;
Stage Write: 1.9 × 104), and 8.5 × 107 ones for GP (Gray-Scott: 1.9
× 104; PDF calculator: 9.0 × 103). We obtained expert-recommended
configurations for each workflow.

In order to compare expert-recommended vs. good configurations,
we generated for each workflow, as 𝐶pool, 2000 configurations of

7

Table 1: Parameter spaces for our three target workflows

Workflow Application Parameter Options
processes 2, 3, · · ·, 1085

LAMMPS # processes per node 1, 2, · · ·, 35
LV # threads per process 1, 2, 3, 4

processes 2, 3, · · ·, 1085
Voro++ # processes per node 1, 2, · · ·, 35

threads per process 1, 2, 3, 4
processes in X 2, 3, · · ·, 32

Heat # processes in Y 2, 3, · · ·, 32
transfer # processes per node 1, 2, · · ·, 35

HS # outputs 4, 8, · · ·, 32
buffer size (MB) 1, 2, · · ·, 40

Stage # processes 2, 3, · · ·, 1085
write # processes per node 1, 2, · · ·, 35
Gray- # processes 2, 3, · · ·, 1085
Scott # processes per node 1, 2, · · ·, 35

GP PDF # processes 1, 2, · · ·, 512
calculate # processes per node 1, 2, · · ·, 35
Gray plot # processes 1
PDF plot # processes 1

Table 2: Configurations and performance of benchmarks

Wf. Objective Option Performance Configuration
Exec. time Best 24.6 secs (561, 25, 1, 75, 14, 1)

LV Expert 36.8 secs (288, 18, 2, 288, 18, 2)
Comp. time Best 3.13 core-hrs (112, 28, 1, 36, 18, 4)

Expert 4.07 core-hrs (18, 18, 2, 18, 18, 2)
Exec. time Best 6.02 secs (13, 17, 14, 4, 29, 19, 3)

HS Expert 28.0 secs (32, 17, 34, 4, 20, 560, 35)
Comp. time Best 0.517 core-hrs (5, 25, 35, 4, 3, 5, 3)

Expert 0.894 core-hrs (8, 4, 32, 4, 20, 35, 35)
Exec. time Best 98.7 secs (175, 13, 24, 23, 1, 1, 1)

GP Expert 102 secs (525, 35, 525, 35, 1, 1)
Comp. time Best 6.95 core-hrs (66, 34, 41, 22, 1, 1)

Expert 5.85 core-hrs (35, 35, 35, 35, 1, 1)

randomly selected parameter values. Then, for each such configura-
tion, we launched all workflow components at once and recorded the
end-to-end wall-clock time of each component in the in-situ mode.
We then used the longest component execution time as the configura-
tion’s execution time, and the product of execution time, number of
computing nodes used, and number of cores per node as the configu-
ration’s computer time. We list in Tbl. 2 the expert-recommended
and best configurations for each workflow and optimization objec-
tive, and their achieved performance. The expert recommendations
only do well for GP. (Since the unconfigurable G-Plot is the bottle-
neck in GP, many GP configurations have similar execution times,
close to that of G-Plot alone, 97.0 seconds.)

We also measured the execution and computer times of 500 con-
figurations randomly selected from the parameter space of each
configurable component application, and used these samples as
component measurements, from which CEAL may select training
samples for component models.

7.2 Evaluation Metrics
We use three metrics to evaluate auto-tuning algorithms.

7.2.1 Performance of best predicted configuration. Execution
time is the better metric to minimize when seeking to optimize
a single workflow, while computer time is better when multiple
workflows are active at the same time. As our goal is to optimize
the execution and computer times of in-situ workflows, the time
achieved by the best configuration predicted for a workflow is an
important evaluation metric.

7.2.2 Robustness in finding top configurations. We use recall
score [30] to measure the error tolerance of an autotuning algorithm
in predicting top configurations. Recall score is, for a value 𝑛, the
percentage of configurations as predicted by the algorithm that are
within the top 𝑛 configurations. Given a set c of configurations
for which we have workflow performance data Dc, a model M for
scoring configurations, and a function top(𝑛, S) for selecting the top
𝑛 entries from a set S of scored configurations, the recall score for 𝑛
is:

𝑆𝑟 (𝑛, c,M,Dc) = |top(𝑛,M(c)) ∩ top(𝑛,Dc)|/𝑛 × 100%. (3)

A higher recall score indicates a more robust auto-tuning algorithm;
in general, 𝑆𝑟 (𝑖) is more important than 𝑆𝑟 (𝑗) (𝑖 < 𝑗). For 𝑛 = 1,
the recall score also represents the probability of finding the best-
performing configuration.

7.2.3 Practicality in performance optimization. Since the data
collection cost is considerable and unignorable for empirical auto-
tuning algorithms, we monitor the least number of workflow runs
required to pay off the auto-tuning cost, and use that metric to eval-
uate the practicality of auto-tuning algorithms. The least number
of uses is 𝑁 = 𝑐/∆𝑝. Here, ∆𝑝 is the actual improvement per work-
flow run in the optimization objective (execution time or computer
time reduction) achieved by the auto-tuning algorithm relative to
an expert recommendation, and 𝑐 is the training data collection cost
incurred in achieving the performance optimization objective, i.e.,
the sum of the workflow’s execution times or computer times over
all training samples.

7.3 Comparison Targets
Since there exist few auto-tuning algorithms customized for in-situ
workflows, we compare CEAL with three auto-tuning algorithms
for general HPC applications. RS selects training data by random
sampling. AL is a typical AL algorithm that iteratively selects as
training samples a batch of the best configurations predicted by
gradually refined models [6, 29]. GEIST, a state-of-the-art AL-
based auto-tuning algorithm for finding performance-optimizing
configurations [50] is guided by a parameter graph to choose training
samples with a high possibility of being optimal (defined as in top
5% configurations) in each iteration. We also report in §7.5.2–7.5.4
on comparisons with a variant of CEAL, ALpH (introduced in §4)
that uses black-box modeling to combine component models.

In all algorithms, we use the xgboost.XGBRegressor implemen-
tation of extreme gradient boosting regression as the original ML
model. We adjust the hyperparameters of GEIST, AL, ALpH, and
CEAL with and without historical measurements, such as 𝐼 , 𝑚0,
and 𝑚R in CEAL, and select the best settings for each algorithm.
Hyperparameter optimization methods [56] are beyond the scope of
this paper. In all experiments, we report the average of 100 runs of
each algorithm.

7.4 Autotuning without Historical Measurements
We first examine the overall performance of our auto-tuner in the
absence of historical measurements. We compare the actual perfor-
mance of workflows auto-tuned by CEAL and others (§7.4.1), and
explain CEAL’s superiority by experimentally validating its design

8

50 100

Number of Training Samples

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

N
o

rm
a
liz

e
d
 E

x
e
c
u
ti
o
n

 T
im

e

RS GEIST

AL CEAL

2.09 1.71

25 50

Number of Training Samples

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

N
o
rm

a
liz

e
d

 C
o
m

p
u

te
r

T
im

e

RS GEIST

AL CEAL

(a) LV

2.29 1.91

50 100

Number of Training Samples

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

N
o
rm

a
liz

e
d
 E

x
e
c
u
ti
o
n
 T

im
e

RS GEIST

AL CEAL

6.63 2.36 3.30 2.90

25 50

Number of Training Samples

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

N
o
rm

a
liz

e
d
 C

o
m

p
u
te

r
T

im
e

RS GEIST

AL CEAL

(b) HS

25 50

Number of Training Samples

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

N
o

rm
a

liz
e

d
 C

o
m

p
u

te
r

T
im

e

RS GEIST

AL CEAL

(c) GP

Figure 5: The best configuration auto-tuned w/o historical measurements (dashed lines: the best configuration in the test set)

LV
Computer time

50 samples

HS
Execution time
100 samples

GP
Computer time

25 samples

Top 2% All Top 2% All Top 2% All

Test Dataset

0

20

40

60

80

100

120

140

160

M
d

A
P

E
 (

%
)

RS GEIST AL CEAL

Figure 6: Prediction accuracy of models in
autotuning w/o historical measurements

1 2 3 4 5 6 7 8 9

Number of Top Configs

0

10

20

30

40

50

60

70

80

90

100

R
e
c
a
ll

S
c
o
re

 (
%

)

LV: Exec. Time (100 spls)

RS

GEIST

AL

CEAL

1 2 3 4 5 6 7 8 9

Number of Top Configs

0

10

20

30

40

50

60

70

80

90

100

R
e
c
a
ll

S
c
o
re

 (
%

)

HS: Exec. Time (100 spls)

RS

GEIST

AL

CEAL

(a) Optimizing execution time of LV and HS

1 2 3 4 5 6 7 8 9

Number of Top Configs

0

10

20

30

40

50

60

70

80

90

100

R
e
c
a
ll

S
c
o
re

 (
%

)

LV: Comp. Time (50 spls)

RS GEIST

AL CEAL

1 2 3 4 5 6 7 8 9

Number of Top Configs

0

10

20

30

40

50

60

70

80

90

100

R
e
c
a
ll

S
c
o
re

 (
%

)

GP: Comp. Time (50 spls)

RS GEIST

AL CEAL

(b) Optimizing computer time of LV and GP

Figure 7: Robustness of autotuning w/o historical measurements

Computer Time (50 Traning Samples)

LV HS

Workflow

0

5

10

15

20

25

30

35

40

L
e
a
s
t
N

u
m

b
e
r

o
f
U

s
e
s
 (

x
1
0
0
)

AL

CEAL

Figure 8: Practicality of autotuning w/o
historical measurements

LV (50) LV (100) HS (50) HS (100)

Workflows (Number of Training Samples)

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

N
o
rm

a
liz

e
d
 E

x
e
c
u
ti
o
n
 T

im
e

CEAL w/o histories

CEAL w/ histories

(a) Execution time of predicted best conf.

LV (25) LV (50) HS (25) HS (50) GP (25) GP (50)

Workflows (Number of Training Samples)

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

N
o
rm

a
liz

e
d
 C

o
m

p
u
te

r
T

im
e

CEAL w/o histories

CEAL w/ histories

(b) Computer time of predicted best conf.

Figure 9: Effect of historical measurements on CEAL (dashed lines: best test config.)

principle (§7.4.2). Also, we investigate CEAL’s robustness and prac-
ticality (§7.4.3 and §7.4.4). (When comparing costs, we consider the
cost of running an in-situ workflow as being comparable to the total
cost of running all of its component applications separately.)

7.4.1 Actual performance of auto-tuned workflows. We mea-
sured the actual execution and computer times of the best configura-
tions of LV, HS, and GP predicted by RS, GEIST, AL, and CEAL,
and plot normalized values in Fig. 5, with the performance of the
best configuration in the test set shown as “1” (the same for Figs. 9
and 10). We test CEAL with different numbers𝑚 of training samples
by doubling𝑚 from 25 until the auto-tuned performance of LV is at
most 5% worse than the best. We show here results for the largest
two values of𝑚 tested: 100 and 50 for execution time and 50 and

25 for computer time. For consistency, we also select the same𝑚
for all workflows in all experiments. Fig. 5 shows that the execution
and computer times achieved by CEAL are always better than by
RS, GEIST, and AL. For example, CEAL improves both execution
and computer times by 15–72% relative to RS and 10–60% relative
to GEIST, and reduces LV computer time relative to AL by 12.7%
and 5.7% with 25 and 50 training samples, respectively. CEAL out-
performs AL, because performance models trained with the same
number of training samples are much more accurate for component
applications than in-situ workflows, and our method of determining
workflow performance provides relatively accurate configuration
ranking over top configurations.

9

LV (50) LV (100) HS (50) HS (100)

Workflows (Number of Training Samples)

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

N
o
rm

a
liz

e
d
 E

x
e
c
u
ti
o
n
 T

im
e

CEAL ALpH

(a) Optimizing execution time

LV (25) LV (50) HS (25) HS (50) GP (25) GP (50)

Workflows (Number of Training Samples)

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

N
o
rm

a
liz

e
d
 C

o
m

p
u
te

r
T

im
e

CEAL ALpH

(b) Optimizing computer time

Figure 10: Best configuration auto-tuned with histories (dashed lines: best test config.)

1 2 3 4 5 6 7 8 9

Number of Top Configs

0

10

20

30

40

50

60

70

80

90

100

R
e
c
a
ll

S
c
o
re

 (
%

)

LV: Exec. Time (50 spls)

CEAL

ALpH

1 2 3 4 5 6 7 8 9

Number of Top Configs

0

10

20

30

40

50

60

70

80

90

100

R
e
c
a
ll

S
c
o
re

 (
%

)

HS: Exec. Time (50 spls)

CEAL

ALpH

(a) Optimizing execution time of LV and HS

1 2 3 4 5 6 7 8 9

Number of Top Configs

0

10

20

30

40

50

60

70

80

90

100

R
e
c
a
ll

S
c
o
re

 (
%

)
LV: Comp. Time (25 spls)

CEAL

ALpH

1 2 3 4 5 6 7 8 9

Number of Top Configs

0

10

20

30

40

50

60

70

80

90

100

R
e
c
a
ll

S
c
o
re

 (
%

)

GP: Comp. Time (25 spls)

CEAL

ALpH

(b) Optimizing computer time of LV and GP

Figure 11: Robustness of autotuning with historical measurements

LV: Exec. time (50 spls) HS: Exec. time (100 spls)

Workflows (Number of Training Samples)

0

50

100

150

200

250

300

350

400

L
e

a
s
t

N
u

m
b

e
r

o
f

U
s
e

s

CEAL

ALpH

(a) Optimizing execution time
16 501

LV (25) LV (50) HS (25) HS (50)

Workflows (Number of Training Samples)

0

4

8

12

16

20

24

28

32

L
e
a
s
t
N

u
m

b
e
r

o
f
U

s
e
s
 (

x
1
0
0
)

CEAL ALpH

(b) Optimizing computer time

Figure 12: Practicality of autotuning with
historical measurements

7.4.2 Why CEAL outperforms RS, GEIST, and AL. The abso-
lute percentage error (APE) of a sample 𝑖 is |(𝑦𝑖 − 𝑦′𝑖)/𝑦𝑖 |, where 𝑦𝑖
is actual performance and 𝑦′

𝑖
is predicted performance. The median

APE (MdAPE) for a set of samples is a commonly used measure of
model prediction quality. To further understand why CEAL beats AL,
GEIST and RS, we plot in Fig. 6 the MdAPEs of models generated
by RS, GEIST, AL, and CEAL when used to predict performance
over all, and the top 2%, of test dataset configurations. The MdAPEs
of CEAL are much less than those of RS, GEIST, and AL for the top
2% of configurations; thus, CEAL outperforms RS, GEIST, and AL,
even though its MdAPEs are comparable to, or a little higher than,
those of RS, GEIST and AL over all configurations. This result veri-
fies our intuition that by picking higher-performing configurations,
CEAL improve prediction accuracy for top configurations and thus
make best use of the few training samples allotted.

7.4.3 Robustness of auto-tuning algorithms. We use the recall
scores (§7.2.2) of the top 𝑛 (𝑛 = 1, · · · , 10) configurations to evaluate
the robustness of RS, GEIST, AL, and CEAL in auto-tuning our
workflows for execution time and computer time. We see in Fig. 7
that CEAL is more robust than RS, GEIST, and AL in all cases. For
the top-one configuration recall score (the most important perfor-
mance measure), CEAL achieves 63% (or 62%) when optimizing
the execution (or computer) time of LV with 100 (or 50) training
samples, as against 2% (or 2%), 15% (or 0%), and 39% (or 31%) for
RS, GEIST, and AL.

7.4.4 Practicality of auto-tuning algorithms. We examine the
practicality of the four auto-tuning algorithms in optimizing the
computer time of LV and HS. Since the computer time of LV/HS
achieved by RS and GEIST with only 25 and 50 training samples is

worse than that at the expert-recommended configuration, the practi-
cality of RS and GEIST is limited. Then, we focus on auto-tuning
the computer time of LV and HS by AL and CEAL with 50 training
samples, and plot the least number of runs (§7.2.3) in Fig. 8, which
reveals that CEAL is superior to AL in terms of practicality. For
example, LV is worth auto-tuning by CEAL because it is expected
to run 716 times, 8.4% less than the 782 times required for AL. We
attribute CEAL’s superiority to its more accurate selection of training
samples that take less computer time, as boosted by the combined
low-fidelity model.

7.5 With Historical Component Measurements
We next examine auto-tuner performance when component historical
measurements can be used. We show that CEAL can make good use
of these component measurements to enhance workflow performance
(§7.5.1). We also demonstrate the superiority of CEAL over ALpH’s
component integration method (§7.5.2–7.5.4).

7.5.1 Effect of previous component measurements. If histori-
cal performance measurements are available for component applica-
tions, then CEAL can use those measurements to train component
application models without charge against its training sample budget,
and then perform more full workflow runs that would otherwise be
possible. In order to explore the benefits that results, we compare
workflow performance when optimized by CEAL with and without
historical measurements. In the first case, we assume no historical
measurements, and thus subtract the𝑚𝑅 component samples used
to train component models from CEAL’s training sample budget; in
the second, we treat those measurements as historical and do not

10

1 2 3 4 5 6 7 8 9 10

Number of Iterations

0

0.4

0.8

1.2

1.6

2

2.4

2.8

3.2

3.6

4

4.4

C
o
m

p
u
te

r
T

im
e
 (

c
o
re

 h
o
u
rs

)

CEAL w/o hist. meas.

(m
0
=0.05 m , m

R
=0.8 m)

CEAL w/ hist. meas.

(m
0
=0.15 m , m

R
=0)

(a) 𝐼

5 15 25 35 45 55 65 75 85 95

Random Samples (x 100%)

0

0.4

0.8

1.2

1.6

2

2.4

2.8

3.2

3.6

4

4.4

C
o
m

p
u
te

r
T

im
e
 (

c
o
re

 h
o
u
rs

)

CEAL w/o hist. meas.

(I=8, m
R

=0.8 m)

CEAL w/ hist. meas.

(I=3, m
R

=0)

(b)𝑚0/𝑚

5 15 25 35 45 55 65 75 85

Coupled Samples Replaced (x100%)

0

0.4

0.8

1.2

1.6

2

2.4

2.8

3.2

3.6

4

4.4

C
o
m

p
u
te

r
T

im
e
 (

c
o
re

 h
o
u
rs

)

CEAL w/o hist. meas.

(I=8, m
0
=0.05 m)

(c)𝑚R/𝑚

Figure 13: Impact of parameter settings.

count them toward the cost. We see from Fig. 9 that historical mea-
surements improve CEAL performance in most cases. In addition,
Fig. 9b shows that historical measurements help CEAL, in the case
of 25 training samples, reduce computer time for LV by 7.8%, HS by
38.9%, and GP by 6.6%. We conclude that CEAL can make effective
use of historical component measurements.

7.5.2 Performance of auto-tuned workflows. Recall from §4
that ALpH differs from CEAL in using black-box rather than white-
box modeling to combine component model performance predic-
tions. We compare these approaches to combining component mod-
els by measuring LV, HS, and GP performance when auto-tuned by
ALpH and CEAL with different numbers of training samples. The
normalized execution and computer times in Fig. 10 show that CEAL
is superior to ALpH in all cases. For example, Fig. 10b shows that
the computer times of LV, HS, and GP when optimized by CEAL
with 25 training samples are 14.7%, 32.6%, and 5.6% less than when
optimized by ALpH, respectively. We attribute CEAL’s superiority
here to the effectiveness of its component combination in improving
sampling distribution for black-box modeling.

7.5.3 Robustness of auto-tuning algorithms. We also evaluate
the robustness of ALpH and CEAL with historical component mea-
surements in optimizing workflow execution and computer times.
The recall scores (§7.2.2) at top configurations are plotted in Fig. 11;
we see that CEAL is always more robust than ALpH. It is worth
noting that CEAL’s best-1, best-2, and best-3 configuration recall
scores are all 100% in optimizing the computer time of GP with only
25 training samples.

7.5.4 Practicality of auto-tuning algorithms. We examine the
practicality of ALpH and CEAL with historical component mea-
surements for auto-tuning LV and HS, and plot the least number
of runs (§7.2.3) in Fig. 12. It can be observed that when CEAL is
used to optimize LV execution time with 50 training samples and
LV computer time with 25 training samples, the number of LV runs
(§7.2.3) required to recoup the auto-tuning cost is only 164 and 160,
implying great practicality of CEAL. As to the execution time cost,
we consider workflow instances at training configurations to run
sequentially, even though the training data collection can sometimes
be completed in parallel.

7.6 Hyperparameter Sensitivity Analysis
To study CEAL’s sensitivity to hyper-parameter values, we use it
to predict the best computer time for LV with 50 training samples.
Fig. 13 shows the actual computer times of the best configurations
predicted in various settings. (1) We run CEAL with from 1 to 10 iter-
ations (𝐼). We see in Fig. 13a that LV computer time converges to the
best after eight iterations for CEAL without historical measurements
and it converges faster for CEAL with historical measurements. (2)
We run CEAL as we increase the number of random samples (𝑚0)
from 5% ·𝑚 to (𝑚 −𝑚R) at an interval of 5% ·𝑚. Fig. 13b shows that
LV computer time is stable over a large range of𝑚0: from 5% ·𝑚
to 15% · 𝑚 for CEAL without historical measurements and from
5% ·𝑚 to 40% ·𝑚 for CEAL with historical measurements. (3) We
test CEAL as the number of coupled random samples replaced by
component samples (𝑚R) is varied from 5% ·𝑚 to (𝑚 −𝑚0) at an
interval of 5% ·𝑚. Fig. 13c shows that LV computer time is stable
over a large range of𝑚R: from 30% to 80% training samples.

Repeating these studies on our other workflows and optimization
metrics gave similar results, except that in two cases we found that an
𝑚0 value of around 30% ·𝑚 was best, indicating that the low-fidelity
model was not performing well (as discussed in §5).

8 RELATED WORK
Our approach is related to the research in the following three areas.

8.1 Analytical Modeling of In-situ Workflows
Few analytical models [26, 28] have been proposed for estimating
in-situ workflow performance. Fu et al. [21] analyzed and modeled
the performance of their Zipper system, which integrates simulation
and analysis to eliminate inefficiency issues in I/O libraries used by
in-situ workflows. They experimentally verified an execution time
model for end-to-end Zipper-coupled in-situ workflows, expressed
as the maximum of simulation time, analysis time, and data transfer
time, similar to our analytical coupling model. Although Zipper, as
an well-optimized in-situ integration tool, almost makes the exe-
cution time of coupled applications approach the lower bound of
the workflow time, this expression still cannot exactly describe the
execution time of Zipper-coupled workflows. At present, there is a
lack of accurate analytical model of in-situ workflows.

11

8.2 Combining White and Black Box Modeling
Didona et al. [13] provided three ensemble algorithms of analytical
modeling and ML, namely𝐾 nearest neighbors (KNN), hybrid boost-
ing (HyBoost), and probing (PR), to enhance performance modeling
and prediction.

KNN evaluates the accuracy of several analytical/ML models
and chooses the best one for performance prediction. The measured
samples are evenly divided into two training and test sets with the
same distribution. In total, there are 𝑀 + 1 performance models
including one analytical model (AM) and 𝑀 ML models from 𝑀

different ML regressors trained with the same data. For any given
configuration, its 𝐾 nearest configurations in the test set are used
to verify the accuracy of each performance model. The model with
the smallest prediction error over the 𝐾 neighbors is selected as
the performance model at the given configuration. However, the
method does not only assume that a parameter graph representing
distance among configurations is known, but also fails to improve
any candidate analytical/ML model itself.

In HyBoost, a chain of ML models are used to learn the residual
errors of an AM. The actual performance prediction is based on
the output of AM, adjusted by the error corrector function. This
algorithm assumes that the function that characterizes the error of the
AM may be learned more easily than the original target function that
describes the relation between input and output variables. However,
this assumption requires a relatively higher accuracy of the AM.
Therefore, the aforementioned two ensemble algorithms are not
suitable for auto-tuning an in-situ workflow that has an extremely
huge configuration space but a rough AM.

Along with bootstrapping, PR uses ML to perform predictions
exclusively on the regions of the configuration space in which the
AM does not achieve sufficient accuracy. Although we take inspi-
ration from this idea, PR is to form an accurate model across the
whole space, while we use lower cost to generate a model only for
accurately identify the top configuration.

8.3 Auto-tuning for HPC Applications
This review complements an existing HPC auto-tuning survey [5].

Ritter et al. [39] improved an empirical modeling tool, Extra-
P [7], by reducing the number of its experiments from an exponential
increase to a polynomial increase with the number of parameters.
However, the generated performance model represents the metric by
following a normal form of functions in parameters. The limitation
from the normal form degrades the model accuracy, significantly
affecting subsequent performance optimazation. Our paper targets
building cost-effective models used for performance optimazation.

Sourouri et al. [46] integrated fine-grained auto-tuning with user-
controllable hardware switches and threads to improve the energy
efficiency of a memory-bound HPC application. However, their
application-specific AM is not directly applicable to other applica-
tions. Popov et al. [38] reduced data collection costs by extracting
and running short representative codelets to jointly optimize page
and thread mappings in NUMA systems. However, short representa-
tive codelets extracted from individual applications do not reflect the
complex interaction between component applicaitons. Hence, these
methods cannot be applied to in-situ workflow autotuning.

Others have applied active learning to HPC auto-tuning [4, 18, 35].
Thiagarajan et al. use semi-supervised learning based on a parameter
graph for fast parameter space exploration [50]; it can auto-tune
HPC applications with configuration parameter spaces in the range
of 18000. Our work targets optimizing coupled HPC applications
with configuration space size of 1010 or more at an affordable cost.

Marathe et al. [30] proposed an HPC application auto-tuning algo-
rithm that uses three fully connected NNs to capture the relationship
between configuration parameters and performance metrics from
many cheap and a few expensive training samples. However, the
small, cheap samples often have low similarity to the large, expen-
sive samples, failing to provide transferable knowledge for accurate
model generation.

9 CONCLUSION AND FUTURE WORK
The use of auto-tuners based on pure black- or white-box models
has been considered infeasible for in-situ workflows due to their
large configuration spaces and complex interactions among com-
ponents. Our new approach achieves high-quality auto-tuners for
in-situ workflows even under a tight cost budget, by leveraging the
fact that in-situ workflows often couple multiple component appli-
cations in simple structures and correlate with the components in
terms of performance. Specifically, our CEAL algorithm: 1) com-
bines component models into a low-fidelity workflow model, and 2)
uses the low-fidelity model to guide the collection of samples for
training a high-fidelity model. Experiments with three scientific in-
situ workflows confirm the viability of CEAL, showing it can build
auto-tuners that are better at finding best-performing configurations
than those built with other methods. In one example, CEAL with
just 50 training samples optimizes workflow execution time so well
that only 164 subsequent runs are required to recoup cost.

In future, we will use other black-box techiques such as RL
and BO to improve auto-tuner quality over AL in the bootstraping
method. Generally, auto-tuning cost is considerable and workflow
surrogate models are rarely reused for other workflows. Compared
with other software, HPC applications running on supercomputers
have obvious common characteristics. The agent in RL can achieve
transfer learning from historial HPC application autotuning and be
built on powerful NNs. Specially, our approach can incorporate RL
to dynamically update the sample pool containing higher-performing
configurations according to measured configurations. Also, to avoid
errors and interference (e.g., from network congestion), existing
methods select the average/median of three to five measurements
at each chosen configuration. BO may naturally consider noise in
selecting top configurations, thus reducing actual measurements.

ACKNOWLEDGMENTS
This research was supported by the Exascale Computing Project
(17-SC-20-SC) from U.S. Department of Energy and start-up funds
from Southern Illinois University Carbondale. We also thank the
WORKFLOW and PACC projects’ computer time allocation from
Laboratory Computing Resource Center at Argonne National Lab-
oratory, and Dr. Zhengchun Liu’s help on the usage of the Python
package xgboost.XGBRegressor.

12

REFERENCES
[1] ADIOS, 2021. https://csmd.ornl.gov/adios.
[2] T. G. Armstrong, J. M. Wozniak, M. Wilde, and I. T. Foster. Compiler techniques

for massively scalable implicit task parallelism. In IEEE/ACM Intl. Conf. on High
Performance Computing, Networking, Storage and Analysis (SC), pages 299–310,
Nov 2014.

[3] U. Ayachit, et al. Performance analysis, design considerations, and applications
of extreme-scale in situ infrastructures. In IEEE/ACM Intl. Conf. on High Perfor-
mance Computing, Networking, Storage and Analysis (SC), Nov 2016.

[4] P. Balaprakash, R. B. Gramacy, and S. M. Wild. Active-learning-based surrogate
models for empirical performance tuning. In IEEE Cluster, Sep 2013.

[5] P. Balaprakash, J. Dongarra, T. Gamblin, M. Hall, J. K. Hollingsworth, B. Norris,
and R. Vuduc. Autotuning in high-performance computing applications. Proceed-
ings of the IEEE, 106(11):2068–2083, 2018.

[6] B. Behzad, S. Byna, Prabhat, and M. Snir. Optimizing I/O performance of HPC
applications with autotuning. ACM Trans. on Parallel Computing (TOPC), 5(4):
15:1–15:27, 2019.

[7] A. Calotoiu, T. Hoefler, M. Poke, and F. Wolf. Using automated performance
modeling to find scalability bugs in complex codes. In IEEE/ACM Intl. Conf.
on High Performance Computing, Networking, Storage and Analysis (SC), pages
1–12, Nov 2013.

[8] A. Calotoiu, M. Copik, T. Hoefler, M. Ritter, S. Shudler, and F. Wolf. ExtraPeak:
Advanced automatic performance modeling for HPC applications. In Spring
Software for Exascale Computing, pages 453–482, Jul 2020.

[9] Z. Cao, V. Tarasov, S. Tiwari, and E. Zadok. Towards better understanding of
black-box auto-tuning: A comparative analysis for storage systems. In USENIX
Annual Technical Conference (ATC), pages 893–907, Jul 2018.

[10] T. Chen and C. Guestrin. XGBoost: A scalable tree boosting system. In ACM
SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining (KDD), pages
785–794, Aug 2016.

[11] J. Choi, D. F. Richards, L. V. Kale, and A. Bhatele. End-to-end performance
modeling of distributed gpu applications. In ACM International Conference on
Supercomputing (ICS), pages 30:1–12, Jun 2020.

[12] J. Dayal, D. Bratcher, G. Eisenhauer, K. Schwan, M. Wolf, X. Zhang, H. Abbasi,
S. Klasky, and N. Podhorszki. Flexpath: Type-based publish/subscribe system for
large-scale science analytics. In IEEE/ACM intl. Symp. on Cluster, Cloud, and
Internet Computing (CCGrid), pages 246–255, May 2014.

[13] D. Didona, F. Quaglia, P. Romano, and E. Torre. Enhancing performance predic-
tion robustness by combining analytical modeling and machine learning. In ACM
International Conference on Performance Engineering (ICPE), pages 145–156,
Jan 2015.

[14] C. Docan, M. Parashar, and S. Klasky. DataSpaces: An interaction and coordi-
nation framework for coupled simulation workflows. Cluster Computing, 15(2):
163–181, 2012.

[15] M. Doucet et al. Machine learning for neutron scattering at ORNL. Machine
Learning: Science and Technology, 2(2):023001, jan 2021. doi: 10.1088/2632-
2153/abcf88. URL https://doi.org/10.1088/2632-2153/abcf88.

[16] M. Dreher and T. Peterka. Decaf: Decoupled dataflows for in situ high-
performance workflows. Technical Report ANL/MCS-TM-371, ANL, Jul 2017.

[17] S. Duan, P. Subedi, P. E. Davis, and M. Parashar. Addressing data resiliency for
staging based scientific workflows. In IEEE/ACM Intl. Conf. on High Performance
Computing, Networking, Storage and Analysis (SC), pages 87:1–22, Nov 2019.

[18] D. Duplyakin, J. Brown, and R. Ricci. Active learning in performance analysis.
In IEEE Cluster, pages 182–191, Taipei, Taiwan, Sep 2016.

[19] I. Foster, M. Ainsworth, J. Bessac, F. Cappello, J. Choi, S. Di, Z. Di, A. M. Gok,
H. Guo, K. A. Huck, C. Kelly, S. Klasky, K. K. van Dam, X. Liang, K. Mehta,
M. Parashar, T. Peterka, L. Pouchard, T. Shu, O. Tugluk, H. van Dam, L. Wan,
M. Wolf, J. M. Wozniak, W. Xu, I. Yakushin, S. Yoo, and T. Munson. Online data
analysis and reduction: An important co-design motif for extreme-scale computers.
International Journal of High Performance Computing Applications (IJHPCA),
2021.

[20] G. Fox, S. Jha, and L. Ramakrishnan. Streaming and Steering Applications:
Requirements and Infrastructure final report, 2015.

[21] Y. Fu, F. Li, F. Song, and Z. Chen. Performance analysis and optimization of in-
situ integration of simulation with data analysis: Zipping applications up. In ACM
Intl. Symp. on High-Performance Parallel and Distributed Computing (HPDC),
pages 192–205, Jun 2018.

[22] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and D. Sculley. Google
vizier: A service for black-box optimization. In ACM SIGKDD Intl. Conf. on
Knowledge Discovery and Data (KDD), pages 1487–1496, Aug 2017.

[23] Heat Transfer, 2019. https://github.com/CODARcode/Example-Heat_Transfer/
blob/master/README.adoc.

[24] K. Keahey and J. Ahrens. Future Online Analysis Platform workshop report, 2017.
[25] LAMMPS, 2021. https://lammps.sandia.gov.
[26] M. Larsen, C. Harrison, J. Kress, D. Pugmire, J. S. Meredith, and H. Childs.

Performance modeling of in situ rendering. In IEEE/ACM Intl. Conf. on High
Performance Computing, Networking, Storage and Analysis (SC), Nov 2016.

[27] Q. Liu, et al. Hello ADIOS: the challenges and lessons of developing leadership
class I/O frameworks. Concurrency and Computation: Practice and Experience,
26(7):1453–1473, 2014.

[28] P. Malakar, V. Vishwanath, T. Munson, C. Knight, M. Hereld, S. Leyffer, and M. E.
Papka. Optimal scheduling of in-situ analysis for large-scale scientific simulations.
In IEEE/ACM Intl. Conf. on High Performance Computing, Networking, Storage
and Analysis (SC), Austin, TX, USA, Nov 2015.

[29] A. Mametjanov, P. Balaprakash, C. Choudary, P. D. Hovland, S. M. Wild, and
G. Sabin. Autotuning FPGA design parameters for performance and power. In
IEEE Intl. Symp. on Field-Programmable Custom Computing Machines, pages
84–91, May 2015.

[30] A. Marathe, R. Anirudh, N. Jain, A. Bhatele, J. Thiagarajan, B. Kailkhura, J.-
S. Yeom, B. Rountree, and T. Gamblin. Performance modeling under resource
constraints using deep transfer learning. In IEEE/ACM Intl. Conf. on High Per-
formance Computing, Networking, Storage and Analysis (SC), pages 1–12, Nov
2017.

[31] K. Meng, J. Li, G. Tan, and N. Sun. A pattern based algorithmic autotuner for
graph processing on GPUs. In ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP), pages 201–213, Feb 2019.

[32] H. Menon, A. Bhatele, and T. Gamblin. Auto-tuning parameter choices in HPC
applications using bayesian optimization. In IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages 831–840, May 2020.

[33] A. Morcos, H. Yu, M. Paganini, and Y. Tian. One ticket to win them all: generaliz-
ing lottery ticket initializations across datasets and optimizers. In ACM Intl. Conf.
on Neural Information Processing Systems (NeurIPS), pages 1–11, Dec 2019.

[34] J. Mu, M. Wang, L. Li, J. Yang, W. Lin, and W. Zhang. A history-based auto-tuning
framework for fast and high-performance DNN design on GPU. In ACM/IEEE
Design Automation Conference (DAC), pages 1–6, Jul 2020.

[35] W. F. Ogilvie, P. Petoumenos, Z. Wang, and H. Leather. Minimizing the cost of
iterative compilation with active learning. In IEEE/ACM Intl. Symp. on Code
Generation and Optimization (CGO), pages 245–256, Feb 2017.

[36] J. Ozik, N. T. Collier, J. M. Wozniak, C. M. Macal, and G. An. Extreme-scale dy-
namic exploration of a distributed agent-based model with the emews framework.
IEEE Transactions on Computational Social Systems, 5(3):884–895, 2018.

[37] T. Peterka. ASCR Workshop on In Situ Data Management report, 2019.
[38] M. Popov, A. Jimborean, and D. Black-Schaffer. Efficient thread/page/paral-

lelism autotuning for NUMA systems. In ACM International Conference on
Supercomputing (ICS), pages 342–353, Jun 2019.

[39] M. Ritter, A. Calotoiu, S. Rinke, T. Reimann, T. Hoefler, and F. Wolf. Learning
cost-effective sampling strategies for empirical performance modeling. In IEEE
International Parallel and Distributed Processing Symposium (IPDPS), pages
884–895, May 2020.

[40] T. Shu. Performance Optimization and Energy Efficiency of Big-data Computing
Workflows. Dissertation, New Jersey Institute of Technology, Newark, NJ, USA,
Aug 2017. http://archives.njit.edu/vol01/etd/2010s/2017/njit-etd2017-096/njit-
etd2017-096.pdf.

[41] T. Shu and C. Q. Wu. Energy-efficient mapping of big data workflows under
deadline constraints. In Proc. of Workshop on Workflows in Support of Large-Scale
Science in conjunction with ACM/IEEE Supercomputing Conference, pages 34–43,
Salt Lake City, UT, USA, Nov 2016. http://ceur-ws.org/Vol-1800/paper5.pdf.

[42] T. Shu and C. Q. Wu. Energy-efficient dynamic scheduling of deadline-constrained
MapReduce workflows. In Proc. of IEEE eScience, pages 393–402, Auckland,
New Zealand, Oct 2017.

[43] T. Shu and C. Q. Wu. Performance optimization of Hadoop workflows in public
clouds through adaptive task partitioning. In Proc. of IEEE INFOCOM, pages
2349–2357, Atlanta, GA, USA, May 2017.

[44] T. Shu and C. Q. Wu. Energy-efficient mapping of large-scale work-
flows under deadline constraints in big data computing systems. Fu-
ture Generation Computer Systems (FGCS), 110:515–530, 2020.
https://www.sciencedirect.com/science/article/pii/S0167739X17300468.

[45] T. Shu, Y. Guo, J. Wozniak, X. Ding, I. Foster, and T. Kurc. Poster: In-situ work-
flow auto-tuning through combining component models. In Proc. of ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming (PPoPP),
pages 467–468, Virtual Event, Feb 2021.

[46] M. Sourouri, E. B. Raknes, N. Reissmann, J. Langguth, D. Hackenberg, R. Schöne,
and P. G. Kjeldsberg. Towards fine-grained dynamic tuning of HPC applications on
modern multi-core architectures. In IEEE/ACM Intl. Conf. on High Performance
Computing, Networking, Storage and Analysis (SC), Nov 2017.

[47] R. Stevens, J. Nichols, and K. Yelick. AI for Science Report on the Department of
Energy (DOE) Town Halls on Artificial Intelligence (AI) for Science, 2020.

[48] P. Subedi, P. Davis, S. Duan, S. Klasky, H. Kolla, and M. Parashar. Stacker:
An autonomic data movement engine for extreme-scale data staging-based in-
situ workflows. In IEEE/ACM Intl. Conf. on High Performance Computing,
Networking, Storage and Analysis (SC), Nov 2018.

[49] J. Sun, G. Sun, S. Zhan, J. Zhang, and Y. Chen. Automated performance modeling
of hpc applications using machine learning. IEEE Trans. on Computers (TC), 69
(5):749–763, 2020.

13

https://csmd.ornl.gov/adios
https://doi.org/10.1088/2632-2153/abcf88
https://github.com/CODARcode/Example-Heat_Transfer/blob/master/README.adoc
https://github.com/CODARcode/Example-Heat_Transfer/blob/master/README.adoc
https://lammps.sandia.gov

[50] J. J. Thiagarajan, N. Jain, R. Anirudh, A. Gimenez, R. Sridhar, A. Marathe,
T. Wang, M. Emani, A. Bhatele, and T. Gamblin. Bootstrapping parameter space
exploration for fast tuning. In ACM International Conference on Supercomputing
(ICS), pages 385–395, Jun 2018.

[51] P. Tillet and D. Cox. Input-aware auto-tuning of compute-bound hpc kernels. In
IEEE/ACM Intl. Conf. on High Performance Computing, Networking, Storage and
Analysis (SC), Nov 2017.

[52] V. Vishwanath, M. Hereld, V. Morozov, and M. E. Papka. Topology-aware data
movement and staging for i/o acceleration on blue gene/p supercomputing systems.
In IEEE/ACM Intl. Conf. on High Performance Computing, Networking, Storage
and Analysis (SC), Nov 2011.

[53] Voro++, 2021. http://math.lbl.gov/voro++.
[54] J. M. Wozniak, P. Davis, T. Shu, J. Ozik, N. Collier, I. Foster, T. Brettin, and

R. Stevens. Scaling deep learning for cancer with advanced workflow storage
integration. In Proc. of the 4th Workshop on Machine Learning in HPC En-
vironments in conjunction with ACM/IEEE Supercomputing Conference, pages
114–123, Dallas, TX, USA, Nov 2018.

[55] J. M. Wozniak, M. Dorier, R. Ross, T. Shu, T. Kurc, L. Tang, N. Podhorszki,
and M. Wolf. Mpi jobs within mpi jobs: a practical way of enabling task-level

fault-tolerance in hpc workflows. Future Generation Computer Systems (FGCS),
101:576–589, 2019.

[56] Y. Xia, C. Liu, Yuying, and N. Liu. A boosted decision tree approach using
Bayesian hyper-parameter optimization for credit scoring. Expert Systems with
Applications, 75:225–241, 2017.

[57] Z. Yu, Z. Bei, and X. Qian. Datasize-aware high dimensional configurations
auto-tuning of in-memory cluster computing. In ACM Intl. Conf. on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), pages
564–577, Mar 2018.

[58] F. Zhang, T. Jin, Q. Sun, M. Romanus, H. Bui, S. Klasky, and M. Parashar. In-
memory staging and data-centric task placement for coupled scientific simulation
workflows. Concurrency and Computation: Practice and Experience, 29(12):
1–19, 2017.

[59] F. Zheng, H. Zou, G. Eisenhauer, K. Schwan, M. Wolf, J. Dayal, T.-A. Nguyen,
J. Cao, H. Abbasi, S. Klasky, N. Podhorszki, and H. Yu. FlexIO: I/O middleware
for location-flexible scientific data analytics. In IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages 320–331, May 2013.

14

http://math.lbl.gov/voro++

	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 Importance of In-situ Workflow Applications
	2.2 Empirical Model-Based Auto-tuners
	2.3 Auto-Tuning for In-situ Workflows

	3 Bootstrapping Method Overview
	4 Low-fidelity Model Generation
	5 High-fidelity Model Generation
	6 CEAL Algorithm
	7 Experimental Evaluation
	7.1 Experimental Setup
	7.2 Evaluation Metrics
	7.3 Comparison Targets
	7.4 Autotuning without Historical Measurements
	7.5 With Historical Component Measurements
	7.6 Hyperparameter Sensitivity Analysis

	8 Related Work
	8.1 Analytical Modeling of In-situ Workflows
	8.2 Combining White and Black Box Modeling
	8.3 Auto-tuning for HPC Applications

	9 Conclusion and Future Work
	Acknowledgments
	References

