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Abstract—The efficiency and reliability of big data computing
applications frequently depend on the ease with which they can
manage and move large distributed data. For example, in x-ray
science, both raw data and various derived data must be moved
between experiment halls and archives, supercomputers, and user
workstations for reconstruction, analysis, visualization, storage,
and other purposes. Throughout, data locations must be tracked
and associations between raw and derived data maintained; data
accesses, even over wide area networks, must be highly responsive
to allow for interactive visualizations. We use here a typical x-ray
science workflow to illustrate the use of two recently developed
techniques for data movement, archiving, and tagging. The first
is a scalable catalog for referencing, managing, and performing
remote operations on distributed data. The second is a novel
remote object interface for structured (HDF-based) data set ma-
nipulation and visualization. Our description of these techniques
and their application to x-ray science problems sheds light on
big data problems in experimental science, the gap between
conventional big data solutions and scientific requirements, and
ways in which this gap may be bridged.

I. INTRODUCTION

Synchrotron x-ray facilities, such as the Advanced Photon
Source and Advanced Light Source, use a variety of scattering,
imaging, and spectroscopic techniques to address a range of
problems in materials science. The increasing brightness of
such x-ray sources, coupled to recent developments in detector
technologies, means that they must handle significantly greater
data rates than in the past, both on individual beam lines and
across facilities as a whole. Pulsed neutron sources, such as the
Spallation Neutron Source, face similar big data challenges;
their instruments include large multidetector arrays that require
complex data reduction.

Access to such national scientific resources is granted after
a competitive review process, with researchers often waiting
months for a few hours or days of experimental time. Delays in
data analysis can make all the difference between a successful
and failed experimental session. Thus, techniques that can
enable more rapid and effective (and, in particular, real-time)
analysis can greatly enhance the productivity of both individ-
ual researchers and these large-scale scientific investments.

Single crystal x-ray scattering experiments provide a good
illustration of the challenges associated with experimental data
analysis. A focused beam of x-rays is scattered by a small
crystalline sample into a large pixelated detector. A typical
detector collects images of size 2,048 x2,048 pixels at around
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Figure 1: APS data workflow, showing the automated data
ingest and interactive data examination phases.

10 Hz and thus can generate data at 160 MB/s, but frame
rates of over 100 Hz are now possible. Given inevitable pauses
for experiment setup, and so forth, a week-long experimental
campaign may produce 10 TB of raw data.

Such large data sets must be subjected to both automated
and interactive analysis. Some data reduction tasks are com-
mon to many scattering experiments, and others may be unique
to a single experiment. Software tools are required to transform
raw data from instrumental coordinates to the reciprocal lattice
coordinates defined by the crystal structure. Sharp Bragg
peaks that are periodic in the reciprocal lattice can be used
to determine the average crystalline structure. In disordered
materials, such as those used for batteries or electronics, the
real structure deviates from this average, producing substantial
diffuse scattering between the Bragg peaks. Computational
techniques exist to fit potential defect structures against this
experimental data through simulation [1]. Those techniques
require optimization over large data volumes.

Here we treat single-crystal x-ray scattering as a big data
problem and present techniques for organizing both raw ex-
perimental data and subsequent derived data and for managing
and interacting with such large data over networks. We show
how these techniques can accelerate real-time analysis of x-
ray scattering data and thus improve the effectiveness of large-



scale scientific investments.

Our approach to x-ray data organization and access is based
on the construction of ad hoc data lakes for x-ray science. A
data lake, in contrast to a data warehouse, 1) retains all data
in its natural state [2] so that 2) data requirements can be
defined at query time [3]. In so doing, it avoids the need for
extensive preparatory extract-transform-load (ETL) processing
before data can be accessed, at the expense of potentially more
complex data accesses subsequently. The data lake approach is
appropriate for x-ray science because we need to enable rapid
access to data as soon as it is generated and to support a wide
variety of analysis methods.

As illustrated in Figure 1, the data processing supported
by our data lake implementation thus comprises two phases.
The simple preparatory (automated) phase performs only
processing essential to the creation of the data lake, with the
goal of making data available to users as soon as possible.
The interactive phase involves direct user interaction with the
data lake’s contents. Here, we implement powerful remote
abstractions and software interfaces to maximize scientific
utility without bulk data movement

This paper has two key generalizable contributions to the
construction and use of data lakes for x-ray science. First,
we describe a scalable catalog model that provides the basis
for tracking the provenance, status, and structure of all data
loaded into the data lake. Second, we describe a remote object
interface for HDF5 data files that permits easy and efficient
interactive access to even extremely large datasets over com-
modity Internet connections. This interface allows materials
scientists to manipulate big data sets from the experiment hall,
from the office, or from home without bulk data transfer or
copy. The interface provides the application-specific ‘smarts’
to make the bulk data lake useful.

The remainder of this paper is organized as follows. In §II,
we describe the scientific problem in more detail. In §III, we
describe the catalog used to manage data. In §IV, we describe
the architecture of our remote object interfaces for big data.
In §V, we consider related work. In §VI, we evaluate the
techniques from a performance perspective. In §VII, we offer
summarize our conclusions. In §VIII, we discuss future work.

II. SCIENTIFIC OVERVIEW: X-RAY DIFFUSE SCATTERING

We illustrate in Figure 2 a scientific workflow that motivates
this work. This workflow spans systems at the Advanced
Photon Source (APS) at Argonne National Laboratory (ANL),
the Argonne Leadership Computing Facility (ALCF) at ANL,
and the cloud-hosted Globus Catalog service [4].

At the APS @ detector data is collected at a beamline
station, a lead-lined hutch containing the sample, area detector,
and a beamline computer [5], typically a PC with a specialized
I/O interface to the detector hardware. This PC must not be
delayed by any work other than transferring detector data to
storage; if its buffers are filled, it will drop detector images. In
our architecture, data is stored in a RAM-based filesystem, so
storage is highly constrained. Data must be transferred from
this computer to a larger hard disk-based storage system. We
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Figure 2: Overview of APS beamline workflow.

do so by running a lightweight rsync-based script at a high
nice level (that is, low priority) and deleting the data once
it has been safely transferred.

Data sizes and other parameters vary from experiment to ex-
periment. In our most recent use of the APS beamline facility,
in April 2015, scattering data was collected as a sample was
rotated 360 degrees in tenth-of-a-degree increments, yielding a
total of 3,600 images. Each image comprises 2048 x2048 32-
bit pixels, (i.e., 16 MB) and thus a full dataset is 56 GB. (This
high resolution is required in order to capture the subtle signals
associated with the sample’s structural defects.) Images are
produced at a rate of 10 per second and thus at a peak rate of
160 MB/s. Following the collection of a complete 3,600-image
dataset, which takes about 10 minutes, sample conditions may
be changed (e.g., by changing temperature), and the process
is repeated. Or, a new sample may be substituted. The former
process can be fully automated, allowing data collection to
proceed 24/7 during the experimental window. Overall, data
collection rates averaged 14.5 MB/s during our last one-week
session (April 2015).

Once on ALCF resources @ automated data-intensive

operations perform data bundling, metadata creation,
and cataloging quickly and automatically. Background noise

from the detector, determined via an earlier calibration process,
is subtracted from the data @ Each rotation of 3,600
image files is then assembled into a single NeXus-format
file [6]. NeXus is a set of conventions for the use of the
HDFS5 structured data format [7]. Each file is tagged with
appropriate metadata such as wavelength, temperature, and
other instrumental and sample parameters.

We also store this metadata and file location (host and
physical path) in the Globus Catalog to enable browsing,
search, and inspection through the web browser or the NeXpy
GUI [8]. NeXpy recently was extended to allow users to
browse Catalog entries and view remote data (§IV). This
feature makes it easy for scientists to check for experimental
errors while in the experiment hall, allowing for detection of
calibration errors or other anomalies that could, after the fact,



invalidate an entire campaign [9].

Automated data analysis operations are then performed. A
maximal value search is performed over all data to provide
input to the peak search algorithm that is used to find all
Bragg peaks in the experimental data. (These peaks span the
2D image files in 3D.) These locations are then fed into a
coordinate transform that requires significant computation and
data movement.

The transformed data, which has been mapped onto the
sample’s reciprocal space coordinates, can be used for two pur-
poses, both requiring large computation. An inverse modeling
scheme is used to compare against simulated crystal struc-
tures, iteratively converging on a good approximation to the
true crystal structure, including defects. This scheme employs
an evolutionary algorithm to evaluate a large “population” of
simulated crystal structures by running them through a forward
model that produces the simulated scattering image for that
structure [10].

ITI. CATALOGING DISTRIBUTED BIG DATA

A single x-ray dataset may contain thousands of files, dis-
tributed over several locations and at various stages of analysis.
Simulations and analyses may further create additional files
that are meaningful only in relation to the raw data from
which they are derived. Thus, the task of managing and
performing operations on large distributed datasets is both
difficult and time consuming. To simplify this task we have
developed a scalable cloud-hosted data catalog that allows
users to define “datasets”—collections of remote data (files,
directories) with associated metadata. The catalog provides a
location-independent view of datasets from which users can
manage, describe, query, and perform actions on (e.g., analyze,
transfer, share) as a single abstract entity. Thus, operations can
be aligned with scientific activities rather than physical storage
resources.

A. Globus Catalog

Globus Catalog is a cloud-based service that allows users to
create and manage datasets. Datasets exist within the context
of a catalog — a user-defined namespace for grouping related
datasets (e.g., for a research group, project, or user). Catalogs
contain one or more datasets; datasets contain references to
one or more members (remote files or directories); and meta-
data (in the form of key-value annotations) may be associated
with members and datasets. Figure 3 provides a high-level
view of Globus Catalog.

Globus Catalog provides a level of abstraction from un-
derlying and potentially distributed data. Rather than working
with individual files and directories that are locally hosted,
users can group data across storage repositories, compute
resources, and even cloud storage and then perform remote
operations on them such as browsing, annotation, and sharing.
Since Globus Catalog is designed for collaborative use, it has
features to support independent access-controlled views of the
same underlying data. Catalogs and datasets can be shared
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Figure 3: Globus Catalog showing two catalogs (Neutron
Scattering Catalog and X-Ray Catalog). Neutron Scattering
Catalog has two datasets with a number of members (files
hosted on different resources within APS and externally) and
annotations on each. X-Ray Catalog has several members as
well as annotations automatically extracted from files hosted
on the rightmost APS compute resource. Services and tools
that interact with the catalog are shown on the left.

with groups of users, allowing specified control of read/write
operations on their contents.

Globus Catalog is hosted as a highly available cloud-
based service. A single instance of the service is operated
for all users; and its self-service interfaces allow users to
create, customize, and manage personalized collections. All
capabilities are exposed via an intuitive web interface as well
as programmatic REST APIs. We have also developed client
libraries and a command line interface for interacting with
catalogs.

B. Referencing remote data

Globus Catalog relies on the remote access mechanisms
provided by Globus [11] to reference and perform remote op-
erations on distributed data. While Globus is most well known
for providing high performance and secure data transfer, syn-
chronization, and sharing, it also implements a standard model
for addressing and securely accessing distributed storage.

Globus exposes a network of over 8,000 registered “Globus
endpoints”—logical representations of storage resources that
implement Globus data access APIs. These APIs provide a
common interface to storage systems that may be deployed on
various operating systems, architectures, and file systems, (for
example, Linux, MacOS, Windows, HPSS, and even Amazon
S3 cloud object storage). Systems can be made accessible
to Globus by installing Globus Connect, a lightweight agent
that exposes Globus security and access APIs. Currently,
Globus relies on the GridFTP protocol [12] to perform remote
operations on data; however, it will soon also support secure
HTTP access.

In the catalog, remote data (“dataset members”) are regis-
tered with a uniquely composed URI that references a file or



directory with respect to its Globus endpoint name and the
path within that endpoint. These URIs both identify the data
and enable operations to be performed on that data remotely.
For example, data member URIs can be retrieved and passed
to the Globus transfer service to move or synchronize data, or
by a Swift script to download and process data.

Globus Catalog also enables remote data to be shared with
other users. To provide this capability we build upon the
Globus shared endpoint model [13]. Here, shared endpoints
are created by defining a mapping to a specific path within an
existing Globus host endpoint. The shared endpoint abstracts
this mapping via a new endpoint name that can be accessed
in the same way as a host endpoint. However, rather than
using host endpoint access control mechanisms—which typi-
cally authorize access based on local user accounts—shared
endpoints instead delegate access control decisions to the
Globus service. Read and/or write access permissions may
be assigned to files and directories contained within a shared
endpoint. As shared endpoint access control lists (ACLs) are
managed by the Globus service they are evaluated when
accessing data and may be modified (e.g., revoked) at any time
with changes reflected immediately. Thus, any data referenced
by a cataloged dataset member and contained within a shared
endpoint can be shared via the Globus APIs. When Globus
Catalog users choose to share such data, Globus Catalog forms
a request to Globus to update data access ACLs accordingly
for all contained members.

C. Flexible annotation

An important aim of Globus Catalog is to support flexible
user-oriented annotation. Annotations provide a way for de-
scribing datasets and their members; they may be used for
managing datasets, for understanding datasets when shared,
and for conducting future search and discovery. Rather than
impose strict metadata schema and vocabularies, Globus Cat-
alog instead allows users to define and associate their own
typed metadata with datasets and members. When defining
an annotation, the user needs only to select a unique name
and then describe its type (string, int, float, etc.), multiplicity
(single or multi-valued), and uniqueness. The new annotation
along with its value (or values) can then be associated with
a dataset or member. Catalogs and the datasets and members
they contain do not share the same annotation namespace;
hence, they avoid collisions across catalogs and allow annota-
tions to be interpreted differently depending on context.

The flexibility of our annotation model leads to signifi-
cant implementation challenges. User-oriented tagging mod-
els typically result in sparse data, since researchers tend to
characterize data in varied ways, and only a few annotations
may be applied to any one item. Given the potentially huge
range of attributes that can be applied and the requirement
to support rich search across these attributes, researchers are
actively investigating scalable, secure, and efficient models. To
address these challenges, we built on the Tagfiler [14] tagging
system. Tagfiler imposes a decomposed Entity-Attribute-Value
(EAV) model that allows tags of the type (subject, tagname,

object) to be efficiently stored. Each tag is stored in a separate
table that enforces tag constraints (e.g., typing). This model is
optimized for tag insertion and query but is not well equipped
to handle storage and retrieval of many tags.

D. Automated metadata extraction

Much valuable metadata is locked within various data for-
mats. For example, in x-ray scattering, the widely used NeXus
and other HDF5 formats include metadata describing sample
materials, experimental protocols, investigators, and other in-
formation important for understanding the underlying data. On
some occasions, important metadata is written to a co-located
text file or even encoded within file and directory names.
Often this metadata is represented in proprietary formats and
using various ontologies and vocabularies. Associating such
information with datasets and members in a catalog provides
enhanced management and search capabilities for users. Doing
so in an automated way reduces user overhead, increases
utilization, and improves the value of the catalog.

Since much of our x-ray scattering data is contained within
NeXus files, we have developed a NeXus parser to extract
common NeXus-defined metadata such as metadata describing
instrument components and state (e.g. source, beamline used,
collimator, attenuator, detector); the specific sample (e.g.,
sample dimensions, material composition, and processing de-
scription and history); data and compute resource locations;
and links to plottable data from NeXus HDFS files. We have
implemented this parser as a lightweight Python script that
leverages the Globus Catalog APIs to automatically register
metadata with cataloged files.

E. Querying and discovering data

Once data is effectively cataloged, we aim to support brows-
ing and discovery of the data. Researchers are increasingly
accustomed to search-based discovery methods (e.g., Google,
Google Scholar, Web of Science). Given the amount and
wide variety of data and metadata that could potentially be
cataloged, we focus on supporting intuitive query methods
such as free text search, range queries, and faceted search. Free
text search enables partial text matches and rankings based on
text importance. For example, users can search for datasets
containing the word “tomography” or the name of a particular
material.

Range queries may be combined with free text searches to
filter the results to a particular subset of search results. For ex-
ample, a researcher may be interested in finding “tomography”
datasets for which 8 keV < photon energy < 10 keV.

Faceted search [15] is an intuitive technique for explor-
ing classified or categorized information such as consumer
products in online retailers. It is especially effective for large
amounts of data because it both provides a summary of the
data and allows drill down via increasingly specific filters.
Globus Catalog provides customized faceted views for users
based on the metadata available to them in a specific catalog.

These query methods allow users to find datasets and mem-
bers quickly based on their associated annotations. They can



combine free text and faceted search results to explore their
data across different dimensions. They can apply increasingly
precise queries and complex combinations to further filter
search results. Results are ranked based on the proximity of
the match, and only datasets accessible to users are shown.

FE. Supporting remote operations

Many tools and services have been designed with an implicit
assumption of single and/or local file access. In domains such
as x-ray science, such assumptions are no longer tenable.
Rather, researchers must often interact with large collections
of distributed data. The Globus Catalog dataset abstraction
provides a framework not only for organizing and managing
such distributed data collections but also for implementing
remote operations on this data. External services can use the
Globus Catalog and Globus data access APIs to leverage the
structured dataset representation to perform remote operations.

The first such example of a remote operation is the ability
to transfer and share an entire or partial dataset. To perform
this operation, we have integrated Globus Catalog with Globus
transfer. When a user chooses to transfer or share a dataset,
we use the Catalog APIs to find all members of a dataset and
construct a series of transfer jobs for each location included
in the dataset. The transfer jobs specify either the remote
endpoint on which to transfer the data or a series of ACLs
for sharing the data with other users.

A second example of a remote operation is the need to
visualize and manipulate remote data. Such examples are
common during the acquisition and analysis phase of an
experiment as researchers interact with their data and modify
their protocols and analyses. To address this need, we have
modified NeXpy to execute queries within a catalog, and select
dataset members for visualization from the resulting list. To
provide remote access within the referenced file, we have
leveraged Pyro4 (§IV-B).

A third example of remote operations is the need to analyze
datasets. For example, users often want to execute a quality
control algorithm on a dataset or process a particular dataset
with a particular analysis routine. For this purpose we have
extended Swift workflows [16], [17], [18] to be able to run
analyses based on dataset references. The scripts operate by
first retrieving the list of dataset members from the Catalog
API and then transferring data (where needed) to the worker
nodes on which the analysis is executing.

These operations demonstrate the potential for performing
remote operations using Globus Catalog. However, many more
operations may similarly benefit from such support. Activities
such as data publication, long-term archival, replication, and
many other types of analyses could all benefit from this
approach. As future work, we intend to enhance other services
to become dataset compliant, so that they can act on collections
of distributed data.

G. Using the Catalog

Globus Catalog plays a central role in our x-ray science
workflow. Specifically, all data that are acquired is first pro-
cessed by customized NeXus HDF5 extraction scripts. For

each batch of files, a new dataset is registered in the catalog,
the files are registered as members of these datasets and
extracted metadata is associated with each member. Aggre-
gate metadata and fixed metadata describing the experimental
samples and conditions are also associated with the dataset.

Other tools in the workflow (e.g., NeXpy and Swift) interact
with data stored in the catalog dynamically. For example,
analyses may be executed on abstract datasets, where the
analysis routine is configured to determine file locations via
catalog queries and then to transfer some or all of the data
for analysis. During execution, workflows may update dataset
members and annotations. New datasets may be created and
references to raw data added in the form of special annotations.

In our x-ray science scenario we have so far created
five production catalogs that collectively contain 59 datasets,
1427 dataset members, 119 unique annotation definitions, and
12,259 user annotations.

IV. REMOTE INTERFACES FOR STRUCTURED BIG DATA

We seek to enable convenient, efficient access to remote data
sets to support visual data inspection, plotting, and scientific
investigations. The NeXpy GUI tool integrates an IPython
shell with matplotlib visualization and NeXus data access to
create a full-featured environment for these tasks.

A. User workflow

Here, we describe requirements for the remote data access
features based on user access patterns.
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Figure 4: NeXpy screenshot.

1) Original usage: NeXpy originally could access only lo-
cal data, which meant that users had to copy NeXus files from
the data store to the local laptop: an expensive process since
files are typically 50 GB. Once copied, the file would be found
and opened using the traditional IPython File—Open widgets.
Once open, the HDF data structure would be shown in the left
pane as an expandable tree, as shown in Figure 4. (If multiple
files were open, multiple trees were presented, allowing users



to rapidly jump from one HDF variable to another.) Double-
clicking on an HDF variable would plot the variable in the plot
pane. Variables were available for manipulation automatically
in the bottom pane. The user could also rapidly zoom in and
out, rotate, and produce 2D projections from 3D data. The user
could thus easily and rapidly access small slices of a large 3D
dataset.

2) Room for improvement: Retrieving an entire file prior
to opening, browsing, and analysis is unnecessary, given the
GUI pattern. The expandable HDF tree widget implies that not
all data or even metadata need to be retrieved immediately
upon remote file open. Typical plots require only a slice of
the underlying 3D data to produce a heat map or XY plot, in
which case only that slice of data must be retrieved.

3) Remote usage: In the remote case, NeXpy usage starts
by using the Globus Catalog widgets in the GUI to perform
a metadata service. The user selects a catalog from the list
managed by the cloud-based server. Then, the user enters key-
value pairs to find the dataset of interest. A dataset contains
multiple members, each typically a file or directory with
associated key-value pairs. (Members were originally intended
to represent files accessible through Globus data transfer, but
these entries have been overridden in this work to refer to
physical file locations. The host servicing the file is provided
in metadata on the file.)

Have identified a file of interest, we want to allow a user
to open it in NeXpy seamlessly, with minimal modification to
NeXpy. We want good performance both for such remote ac-
cess and for low-level IPython manipulation of HDF variables.
Thus, we need to subclass the NeXus API on these variables
so that these HDF-like operations are captured and replayed
on the actual data on the remote host.
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Figure 5: The NXFS system.

B. NXFS

Our solution, the NeXus File System (NXFS), is shown
in Figure 5. Usage starts once NeXpy obtains a host/file
of interest. NeXpy instantiates a Python object of type
NXFileRemote (NXFR), a subclass of the original Python
object NXFile representing a local file. Both classes sup-
port operations such as open, close, and so on, but the
key NeXus API operations are the Python _ getitem_
and __ setitem__ methods, which implement the Python
square bracket operators. For example, if F is a NeXus file,
F["g"] ["v"] would retrieve (multidimensional) variable v

from HDF group g as a Numpy array. This concise syntax
allows for easy data manipulation in the [Python pane.

To achieve remote access, we use the third-party, open
source Pyro4 [19] package (for Python Remote Objects). Pyro
allows the user to register an object x for remote access,
returning a port. This port then listens for connections. A client
process over the network may connect to this port, returning a
proxy object p that apparently supports all of the methods that
x did; thus, from the client perspective, p is x. The methods of
p are populated with the methods of x, and may be accessed
directly by the client. Thus, unmodified code may be passed
a proxy object, as was done in the performance study (§VI).

NXFS is easily run by the user over an SSH tunnel. We
provide a Python library function and command line tool to
automate this step, and we have extended NeXpy to do so as
well. Thus, NXFS runs as the Unix user on the file server.

V. RELATED WORK

Our system blends concepts from ad hoc metadata-rich sys-
tems (MCAT, MCS), remote filesystems (Chirp and SSHES),
and remote object systems (CORBA, Java RMI, etc.).

MCAT is the metadata service for the Storage Resource Bro-
ker (SRB) [20]. It stores and supports searches on system and
user attributes associated with data collections in SRB. The
Metadata Catalog Service (MCS) [21] maps attribute matches
to logical files in a Replica Location Service (RLS) [22],
which then maps to one or more replicas on real servers. The
service is substantially generated from its API, using WSDL
and SOAP, and provides a SQL query interface.

Chirp [23], [24] is a file system protocol with Unix-like
semantics. It can easily be run in user space and allows users
to share data by using a variety of authentication systems
and rich ACL-based authorization. Chirp data can also be
accessed by Parrot [25], which creates a virtual filesystem
on which unmodified applications can run. Parrot does not
require a kernel module; it uses the Linux ptrace interface to
intercept system calls and replay them on remote filesystems.
In addition to Chirp, Parrot supports FTP, HTTP, and other
data services. Parrot has been used previously for high energy
physics studies with data from the Large Hadron Collider
(LHC) at CERN [26].

SSHFS [27] provides a Linux virtual filesystem over the
SSH protocol. No server other than SSH [28] need be run.
SSHES is built on the FUSE [29] filesystem, a kernel module
that allows the easier development of filesystem clients. FUSE
modules are triggered by the kernel but run in user space,
allowing user code to implement system calls. Given FUSE,
the sshfs program sets up the SSH connection to the given
server and establishes the virtual filesystem at the given mount
point on the client.

CORBA [30] provides a language, OS, and hardware-
independent object service. Originally designed for C, CORBA
was extended to support C++, Java, and eventually many other
languages. Its focus on interfaces allows widely disparate
systems to be integrated, such as integrating older applica-
tions with newer services. Java Remote Method Invocation



(RMI) [31] can be used in pure Java systems for remote
method access. Essentially, Java interfaces are compiled into
client and server stubs to link Java programs. RMI+CORBA
systems are also possible: CORBA interfaces can be compiled
into RMI systems, and Java interfaces can be compiled into
CORBA interfaces.

Pyro [19] flexes the powerful introspective features of
Python to dynamically generate remote interfaces. Use starts
when the user instantiates a Pyro service on the server. Python
objects may then be registered with this service with a given
name. Python clients can then connect to the Pyro service port
and look up the desired object, obtaining an instance. Method
invocation is relayed back to the server. Pyro transfers data
using multiple optional techniques with varying performance
and security levels, including Python’s pickle or marshal
features, or external JSON or Serpent techniques.

VI. PERFORMANCE RESULTS

We measure the performance of the complete system by
considering its component parts in detail.

A. Catalog

To evaluate the scalability of the catalog, we emulate an
increasing number of datasets and annotations. We use a
test client that uses the catalog REST API to invoke remote
operations on a separate catalog instance. We hosted the test
client and catalog on separate Amazon Web Services (AWS)
EC2 instances in the AWS east-1 region: the test client on a
t2.small (1 vCPU, 2 GB memory, 8 GB disk) and the catalog
on a m3.medium (1 vCPU, 3.75 GB memory, 8§ GB disk). We
executed all client requests sequentially over several weeks.
Reported results are measured at the client application and
include the overhead of REST calls and network latency.

Figure 6 shows the time taken, as the number of datasets
increases from 0 to 150,000, to create a new dataset, add 10
text annotations to that dataset, retrieve an existing dataset at
random, and retrieve the 10 annotations of that dataset. We
see that creating new datasets takes on average 0.49 s (min:
0.38 s, max: 31.54 s, median: 0.45 s, std dev: 0.24 s); adding
10 annotations takes on average 0.56 s (min: 0.47 s, max:
26.80 s, median: 0.54 s, std dev: 0.17 s); retrieving a dataset
takes on average 0.36 s (min: 0.27 s, max: 15.50 s, median:
0.35 s, std dev: 0.15 s); and retrieving 10 annotations for a
dataset takes on average 0.36 s (min: 0.27 s, max: 31.47 s,
median: 0.34 s, std dev: 0.19 s).

Creating and adding annotations are the more expensive
operations because they involve database insertions. Creating a
new dataset involves the creation of eight annotations to record
dataset metadata (e.g., owner, creation data, and ACLs). Re-
trieving a dataset involves fetching seven standard annotations
(id, owner, modified, created, modified by, read, write) and
thus takes appropriately the same time as retrieving 10 user-
supplied annotations. We would expect annotation creation
time and annotation retrieval time to increase with the number
of annotations. These results show no increase with the number
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Figure 6: Catalog performance showing the time to create

datasets, add 10 annotations to a dataset, query for a dataset

based on an annotation, and retrieve a dataset’s annotations.

Data points are shown using a 1000 point moving average.

of datasets, suggesting that the catalog can scale well beyond
the 150,000 datasets considered in our experiments.

B. Server access rates

Once data has been located in the catalog, it can be retrieved
from the data server. For these experiments we stored all bulk
data on a computer with two Intel Xeon E5-2697 processors
totaling 24 cores or 48 hardware threads, contains 400 GB
RAM, and a 2108-based RAID controller for 24 disks. The
server is not accessible to the Internet; it must be accessed
through a login node via multi-hop SSH.

We access the data server from two sites, named LAN and
WAN.

e LAN: We connect from a workstation onsite at ANL,
connected end-to-end by a wired network. This case
models the performance experienced by an APS user (i.e.,
on-site at ANL) accessing data during a run. The LAN
client is an Intel i7-2760QM with 4 cores or 8 hardware
threads, with 8 GB RAM.

o WAN: We connect from an EC2 instance. This case
models the performance experienced by an APS scientist
or visitor accessing the data from home, a hotel, or
their home institution. The instance is an m3.medium,
containing a Intel Xeon E5-2670 v2 and 3.75 GB RAM
in availability zone us-east-le (N. Virginia).

C. Raw performance

We next report on the raw network characteristics of the
LAN and WAN sites.

1) Latency: We measured the basic network round-trip time
(RTT) with a simple Tcl script that accessed cat on the data

server over an SSH tunnel, averaged over 100 accesses. The
RTT for LAN was 1.139 ms. The RTT for WAN was 22.95 ms.



2) Bandwidth: We measured the basic network bandwidth
by SCP transfer times for varying file sizes, averaged over
three attempts. Rates are shown in Figure 7. The LAN peaks
at around 109 MB/s, and the WAN peaks at around 15 MB/s.
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Figure 7: Raw bandwidth for LAN and WAN.

D. NeXus file access

We also measured the performance of different remote
access mechanisms for NeXus data. We varied the underlying
access method but not the test script (NeXus API calls in
Python), as follows.

o Local: The test was performed on the data server; no
data was transferred over the network. This control case
measures the performance of the data server and its RAID
filesystem.

o SSHFS: Data was served over SSH and presented to
an unmodified NeXus/Python client accessing an SSHFS
mount point.

o Chirp: Data was served by a Chirp server on the data
server. An unmodified NeXus/Python client was run
inside a Parrot environment, seamlessly accessing data
on the data server.

o Pyro: Data was served by our NXFS system. The un-
modified test accessed data behind the NeXus file object,
implemented with our NXFS system.

o */L: The given system was on the LAN.

o */W: The given system was on the WAN.

We created a directory of 100 NeXus files on the data server.
Each 14 GB file came from a real APS run and contained
NeXus metadata in addition to a single 3D variable of size
1800 x 2048 x 2048 (7.5B pixels), each a 32-bit floating
point number (HDF type H5T_IEEE_F32LE).

The tests follow a typical user access of open, scan meta-
data, and access pixels.

1) File open rate: This test picked one file at random and
opened it with the given mechanism. The reported number
(Figure 8) is an average of 60 trials.

The Local file open time averages 50 ms but is noisy, as
expected on our complex RAID filesystem. File opens with
NXFS are competitive with Local performance, which is not
surprising with 1 ms network latency.
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Figure 8: File open latency.

2) HDF browsing rate: The next step is to browse the
HDF metadata of the given file with the NeXus API. This
test picked one file at random and browsed down three levels
of the hierarchy. The reported number (Figure 9) is an average
of 60 trials and measures each lookup.
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Figure 9: Metadata access latency.

All lookup methods run in at most tens of microseconds,
indicating that the results are cached from open time, as
expected. (Times are so small and noisy that results should
not be compared with each other.)

3) Random access rate: The last step is to access pixels. In
this case, we focus on latency, since plots over small fractions
of the dataset are critical to APS users during experiments.
(This test provides an estimate for small slab accesses as well.)
A file is opened at random, and then either 100 (for LAN) or
10 (for WAN) random, noncontiguous pixels are retrieved. The
reported number (Figure 10) is an average of three such trials.

For this test, the NXFS latencies are proportionate to Local
access times, even for WAN. At 0.08 s, they are under the
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Figure 10: Random access latency.

effective frame rate of the human eye [32] and exceed the
performance of the application-agnostic systems.

VII. SUMMARY

We have presented a comprehensive system for remote
access to data lakes produced by light source experiments.
The system is highly modular and consists of a metadatabase
(Globus Catalog §IIT), bulk data movement system (Globus
Transfer §III-B), and remote object interface for interactive
operation (NXFS §IV-B). This paper is the first presentation
of the Catalog and NXFS systems and offers insight into the
data management methods used at the APS. It also illustrates a
complete, highly adaptable solution to indexing and accessing
scientific big data in place.

Globus Catalog offers a highly collaborative, user-friendly
metadata annotation system usable in multiple ways, from the
web to Python interfaces to command line tools. It integrates
well with the Globus Transfer system and supports data
annotation at acquisition time, interactive queries, and long-
term data management.

NXFS offers a mix of filesystem and object service features,
seamlessly enhancing a data visualization toolkit with remote
data access techniques. It integrates well with Globus Catalog
and exceeds the performance of application-agnostic remote
filesystem techniques.

VIII. FUTURE WORK

We plan to enhance these systems in multiple ways and
utilize them in other application areas.

With Globus Catalog, we are working to 1) deploy a new
web user interface to improve user experience; 2) support
hybrid storage models (e.g. entity schema for dense data and
decomposed storage for sparse data); 3) build out additional
functionality in the command line interface tools to match the
underlying Python API client and support myriad scripting in-
tegrations (e.g. with SPEC at the APS); 4) enhance provenance
tracking and subsequent visualization; and 5) integrate with

various workflows in the x-ray community at the APS. We
will also investigate the potential to integrate secure Globus
HTTP endpoint access to allow simplified data access through
the catalog web interface.

As we scale the Globus Catalog service to meet demand,
we will investigate best effort approaches for when and where
to provision new catalog service nodes. In addition, we will
investigate best effort approaches for where to place new cat-
alogs, in existing (or new) multitenant catalog service nodes.
The multitenancy of the catalog services and its multiple nodes
will require investigation of the security vulnerabilities of the
system.

We are integrating new features into NXFS, including data
modification operations and remote computation. This will
allow users to visualize the results of data transformations,
such as background subtraction or data projections, while
moving only minimal amounts of data over the network.
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