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Abstract—We seek to enable efficient large-scale parallel exe-
cution of applications in which a shared filesystem abstraction
is used to couple many tasks. Such parallel scripting (many-
task computing, MTC) applications suffer poor performance and
utilization on large parallel computers because of the volume
of filesystem I/O and a lack of appropriate optimizations in the
shared filesystem. Thus, we design and implement a scalable
MTC data management system that uses aggregated compute
node local storage for more efficient data movement strategies.
We co-design the data management system with the data-aware
scheduler to enable dataflow pattern identification and automatic
optimization. The framework reduces the time to solution of
parallel stages of an astronomy data analysis application, Mon-
tage, by 83.2% on 512 cores; decreases the time to solution of a
seismology application, CyberShake, by 7.9% on 2,048 cores; and
delivers BLAST performance better than mpiBLAST at various
scales up to 32,768 cores, while preserving the flexibility of the
original BLAST application.

I. INTRODUCTION

Many interesting applications can be constructed naturally
and easily with the scripting paradigm [14]. We focus here
on many-task computing (MTC) applications [17], in which
existing sequential (or parallel) programs are linked by files
output by one program being used as input by others. The
Montage astronomy image processing application [7] is con-
veniently expressed in these terms.

One approach to parallelizing a scripting application is to
rewrite it as a monolithic program by using a parallel library
such as MPI or a PGAS language [32]. Communications that
originally occurred via filesystem operations then occur via
messaging. However, this approach can be labor intensive
and can lead to code maintenance problems if the original
program’s authors continue to evolve it in the original style.
For example, while the popular mpiBLAST [10] rewrite of
BLAST has good parallel scalability and high efficiency, the
substantial effort required to re-engineer BLAST for MPI
execution means that its latest version was built from NCBI
BLAST 2.2.20, while BLAST itself has evolved to 2.2.26 as of
April 2012. In contrast, substituting one version of a program
for another in a script is a trivial task, unless the program’s
interface changes substantially.

A scripting application that involves the processing of many
files can provide numerous opportunities for parallel execu-
tion, as when—to give a trivial example—we run sequential
BLAST over many files. However, we can encounter problems
scaling the scripting paradigm to large parallel computers
because of the bottleneck inherent in having all interprocess

communication occur via filesystem operations. Even if a
parallel computer provides a shared filesystem accessible from
all nodes, the volume and frequency of filesystem operations
generated by a large scripting computation will often be
overwhelming [33].

To illustrate the problem, we show in Figure 1 the core-time
distribution of a Montage benchmark problem on 512 cores
of an IBM BG/P with intermediate results stored on GPFS.
Even on this small number of cores, I/O dominates: 73.6% of
the core-time is consumed by I/O, 13.4% of the core-time is
consumed by task execution; and 13.0% of the core-time is
consumed by scheduling overhead and CPU idle time due to
workload imbalances. Of the latter time, around 39% (5.1%
of total time) is idle time due to a gather operation, in which
all but one core sit idle while data is fetched from GPFS.

Fig. 1. Time distribution of generating a 6x6 degree mosaic with Montage
on 512 IBM BG/P cores, using GPFS.

We describe here an approach to MTC intertask communi-
cation optimization based on (1) the interception of filesystem
operations performed by the programs composed by an origi-
nal script and (2) the implementation of the communications
implied by those operations in more efficient ways. For exam-
ple, we use RAM disk rather than a disk-based filesystem to
hold intermediate results, and we identify and optimize specific
dataflow patterns (defined in §II-A), one of which is that a
single task reads (as input) all the files output by tasks in the
previous stage. The result can be message-passing efficiency
without program rewriting, as we will show for two different
applications, Montage and BLAST.

We implement our approach within an MTC execution
framework that is built upon two subsystems: an execution
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engine AME [34] (Any-scale Many-Task computing Engine)
and a data management system AMFS (Any-scale Many-
Task File System). AMFS implements collective data man-
agement functionality that optimizes data movement within
dataflow patterns at large scale. AME executes large-scale
MTC applications, invoking AMFS functions when it detects
relevant dataflow patterns. AMFS and AME together allow
us to schedule tasks according to data locality at large scale,
identify dataflow patterns at runtime, and apply data movement
optimization automatically. As a side benefit, AME can resolve
task dependencies based on file availability in a distributed
manner.

This work has two major contributions. First, we introduce
and demonstrate the effectiveness of automated methods for
identifying, at runtime, dataflow patterns that are amenable
to collective optimizations, with no need for programmer or
compiler effort to identify collective operations. Second, we
show that these methods plus related optimizations for caching
of intermediate files can be used to execute MTC applications
at high speeds on parallel computers.

As shown in Figure 2, we can characterize a filesystem by
the following metrics: read and write bandwidth (bytes/sec),
read and write throughput (operations/sec), locality support,
and collective operations support, all normalized to being able
to support 100% of applications. Today’s global shared filesys-
tems can fully address the I/O requirements of only a subset
of applications. Our approach extends the filesystem interface
with operations that our execution engine can use to access
collective operation and file location discovery capabilities.
The engine can query the filesystem for file locations through
both synchronous and asynchronous interfaces, for existing
files and not-yet-produced files, respectively. By providing a
data cache layer between compute node RAM disk and the
global shared filesystem, our mechanisms eliminate unneces-
sary global filesystem accesses, thus enhancing both read/write
bandwidth and throughput.

Fig. 2. Applications filesystem requirements as addressed by a global
filesystem and by a filesystem extended by AMFS (qualitative).

Benchmark tests show that the collective operations built
in AMFS scale to 32,768 cores and fit the model we define

in §VI-A2. Application performance evaluation shows that
the data management system reduces the time to solution of
parallel stages of Montage by 57.3% for a 6x6 degree mosaic
on 512 cores, decreases the time to solution of CyberShake
by 7.9% on 2,048 cores, and provides BLAST performance
comparable to that of mpiBLAST, on 256 cores to 32,768
cores.

II. BACKGROUND

We introduce the dataflow patterns that we consider in this
work, and we review previous work on the implementation
and identification of collective operations.

A. Dataflow Patterns

Dataflow patterns have been well studied in previous pa-
pers [31], [28]. Building on our previous work [8], we define
five primitive dataflow patterns, as shown in Figure 3:

• Gather: A small number of tasks take as input the
output from a large number of tasks. Examples include
a task that checks the results of previous tasks for a
convergence criterion and a task that calculates summary
statistics from the output of many tasks.

• Reduce: A small number of tasks take as input the
processed output from a large number of tasks, where
the processing is done by a user-specified function. The
user must ensure that the function can be applied to any
subset of the outputs, and the input and outputs of the
function must have the same type, so that the function
can be repeatedly applied. Examples include WordCount,
Distributed Grep, and PageRank [2].

• Pipeline: A set of tasks operates on given data in
sequence, with the output of one task becoming the input
of the next. An example is preprocessing the input file,
then applying the analysis to the preprocessed file.

• Scatter: A set of data must be distributed to a set of
subsequent tasks. This could be the output of a previous
task, or it could be data from the global filesystem. An
examples is a single task extracting a group of small
pieces from a large database, and distributing them to
a group of subsequent tasks for further processing.

• Multicast: One piece of data is consumed by more
than one subsequent task. An example is a database
processed by a group of tasks on a set of nodes.

B. Related Work on Collective Operations

MPI [26], [23] libraries and Partitioned Global Address
Space (PGAS) [32] languages introduce specialized collective
operations to implement a range of dataflow patterns. They are
concerned mainly with in-memory data, not files. Allthough
proper interfaces can be implemented [25], [24], the collec-
tive primitives in MPI and in PGAS languages coordinate
processes for collective operation only on one file at a time
and are not flexible enough to handle the complex POSIX file
management in MTC.

Chirp [22], a runtime shared filesystem for clusters and
grids, provides limited collective-style data management.
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Fig. 3. Dataflow patterns.

The Chirp distribute function is identical to MPI broadcast.
HDFS [1], the shared filesystem for Hadoop, replicates data a
fixed number of times for fault tolerance but not according to
file usage for load balancing.

Many precursors to our work on scheduling methods exist.
For example, Ranganathan and Foster have conducted exten-
sive simulation studies of data-aware scheduling methods [20],
and Chakrabati et al. [3] and Desprez and Vernois [4] have
studied the integration of scheduling and data replication. Our
work differs in its focus on specific dataflow patterns, in
particular collective patterns, and its evaluation in the context
of a large, realistic application on a modern supercomputer.
Work in data diffusion [19] implements data-aware scheduling-
based data management and explores various algorithms for
data replacement policy. This work is limited by its centralized
metadata server design, and it does not provide a data man-
agement facility for various dataflow patterns of the tasks.

A preliminary version of a collective data management
system [33] was previously implemented within Swift [29].
That system used RAM disks on the BG/P I/O nodes to
cache data before transferring it to GPFS, in order to improve
write speeds to GPFS: once intermediate data stored in cache
exceeded a size limit, the system flushed the cache to GPFS.
It also used the BG/P I/O nodes in order to improve the
performance of broadcasting common input files to multiple
tasks. However, its design was limited to the BG/P, and it
required user directives to use one of these optimizations.

C. Related Work on Dataflow Pattern Identification

Dataflow patterns can be identified by the user, the compiler,
or an optimizer.

User Input: MPI [26], [23] and PGAS [15] programming
languages require users to explicitly declare when and where
to invoke collective primitives; the user is responsible for guar-
anteeing the correctness of synchronization among processes.
Pattern identification in [27] is based on Swift CDM (collective
data management) [30]; both require users to explicitly define
dataflow patterns based on a regular expression of the file

names.
Compiler Analysis: Pegasus [21] uses label-based task

clustering in order to optimize data locality in the pipeline
dataflow pattern for intersite task scheduling. This idea can
also be applied to intrasite scenarios. Nevertheless, this work
employs a static approach at compile time, whereas our
solution is based on runtime analysis.

Application Profiling: Preissl et al. [16] propose to identify
hand crafted collective operations in MPI by profiling the
execution trace. The issue solved by this work is conceptually
equivalent to ours. But in our scenario, there is no explicitly
annotated data transfer using send() or recv(). Instead, the data
transfer is shown by a file being an input or an output.

III. MOTIVATING APPLICATIONS

We have worked with three well-known applications with
MTC characteristics: Montage, BLAST, and CyberShake. To-
gether these three applications span a range of CPU, memory,
and disk I/O needs, as shown in Table I. Because of space lim-
its, we describe only BLAST and Montage here; CyberShake
is described elsewhere [11], [6].

TABLE I
RESOURCE USAGE

Application CPU Memory Disk I/O
Montage Low Low High
CyberShake Mid High Low
BLAST High Mid Mid

A. Montage

Montage [7] is an astronomy application that builds mosaics
from a number of small images. It has been successfully run
in parallel with MPI, Pegasus [9], and Swift [18]. In the MTC
version of Montage, we divide the code into eight stages, as
shown in Table II.

TABLE II
MONTAGE TASKS

Stage Description
mProject reprojects raw images
mImgtbl aggregates reprojected image metainfo
mOverlaps identifies the overlapped reprojected images
mDiffFit fits a plane to the overlapped images
mConcatFit aggregates output of mDiffFit
mBgModel produces background rectification coefficients
mBackground applies coefficients to the reprojected images
mAdd aggregates corrected images

B. BLAST

BLAST (the Basic Local Alignment Search Tool) searches
one or more nucleotide or protein sequences against a
sequence database and calculates similarities. It has been
parallelized with different frameworks. For example, mpi-
BLAST [10] wraps BLAST as a library within an MPI frame-
work, CloudBLAST [13] uses MapReduce as the wrapper, and
Parallel BLAST [12] uses PVM as the parallel framework and
maintains a POSIX file interface among stages. We start with
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Fig. 4. Montage Dataflow Patterns: G©, Gather; P©, Pipeline.

TABLE III
BLAST TASKS

Stage Description
fastasplit splits the database into several slices
formatdb formats each database slice
blastp searches protein sequence against database slice
merge merges the results for each query

Parallel BLAST as our base case and scale this implementation
with our runtime and data management system.

Figure 5 shows the dataflow patterns in Parallel BLAST,
and Table III explains the tasks in each stage.
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IV. DESIGN ALTERNATIVES

The basic idea in the AMFS data management system is
to cache intermediate data in RAM disk on compute nodes in
order to avoid unnecessary data movement between compute
nodes and the global filesystem. We discuss here alternative
solutions to the problems we found in building the system,

and we evaluate them and make decisions based on these
capabilities.

A. Data Movement at Large Scale

Assuming a task knows the number and location of its input
files, the execution framework could fetch those input files to
a single node and then start running the task. After the task
completes, it has produced one or more output files. Assuming
that the worker is aware of where to send those output files, a
naive transfer scheme might move the files in a sequential
manner. A straightforward improvement is to transfer the
files with multiple processes in order to parallelize the file
movement. Thakur and others have studied data movement
extensively in the context of MPI [26], [23] and found that a
minimum spanning tree (MST) is often an effective solution.

Figure 6 shows the runtime for the multicast, gather, and
scatter patterns on varying numbers of nodes and when using
sequential, parallel, and MST methods. MST is fastest in all
cases studied, because all transfers considered are dominated
by network latency rather than by bandwidth. We apply an
asynchronous transfer (§IV-C) scheme when network band-
width overhead dominates.

B. Dataflow Pattern Identification

We next discuss approaches to identifying dataflow patterns
in MTC computations. The user could identify the patterns
in the higher-level programming language through annotation,
or an intelligent compiler could detect patterns at compile
time. Or, the runtime could identify the dataflow patterns
using the tasks it is allocated, which is the most challenging
solution because the runtime might not have the insight of an
application programmer or the global view of data and tasks
of a compiler. We nonetheless pursue this approach in order to
alleviate the burden on domain scientists and compiler writers.

C. Gather Pattern Operation

For the gather data movement pattern, we focus on two
cases: (1) files that are so small that file transfer time is
dominated by network latency; and (2) files that are suffi-
ciently large that file transfer time is dominated by network
bandwidth. For the first case, we use the collective gather,
which synchronously moves all files for a gather pattern task
in a MST topology. For the second, we use another gather
implementation, called asynchronous gather, which transfers
the input files for a gather pattern task based on file availability.
A worker that is to gather files with the second scheme
proceeds as follows. For each of the task’s input files, it
requests that file from AMFS. If the file is available, then
the worker copies the file. Otherwise, the worker proceeds
to the next input file and uses another thread to wait for
acknowledgments of all the not-yet-available files. As each
file is produced, the worker is notified and copies the file.
We call this asynchronous gather in order to differentiate it
from the collective gather, which is synchronous with the task
completion of the previous stage. Collective gather benefits
from the parallel transfer at each step, whereas asynchronous
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Fig. 6. Performance comparison of (from left to right) multicast, gather, and scatter dataflow patterns, using sequential, parallel, and AMFS data transfer.

gather benefits from overlapping computation and file transfer.
We model the performance of the two schemes in §VI-A. We
apply collective gather when tasks prior to the gather operation
finish close to each other or files are small; and we apply
asynchronous gather when tasks prior to the gather operation
finish irregularly or files are large.

V. SYSTEM IMPLEMENTATION

As noted above, our data management solution is built on
two major components: AME, the Any-scale MTC Engine [34]
and AMFS, the Any-scale MTC File System. These two
components together constitute a system with the follow-
ing capabilities: executing MTC application on large scale
computers, identifying dataflow patterns at runtime, applying
optimized collective operations in the right place, using large-
scale data-aware scheduling, and resolving task dependencies
in a distributed manner. Sections V-A, V-B, and V-C introduce
the system architecture and the communications among the
components. The rest of this section discusses technical solu-
tions to problems that we encountered during implementation.

A. AME Architecture

The solid outlined components in Figure 7 show the AME
architecture. AME has three components: a centralized sub-
mitter, a group of distributed dispatchers (located on compute
nodes), and a set of workers (also located on compute nodes).
The nodes with workers are divided into groups, and each
group is associated with a dispatcher. The submitter reads
in a Swift script or Pegasus workflow definition and, via a
process of either compilation (for Swift) or translation (for
Pegasus), generates a task list that it then partitions into several
pieces, one for each dispatcher. The submitter places these
task lists on the global shared filesystem and instructs the
dispatchers to start executing. Each dispatcher then reads its
assigned task list and dispatches those tasks to its workers
in a round-robin manner. When a worker finishes a task, it
notifies the dispatcher. When all tasks within one dispatcher
have completed, the dispatcher notifies the submitter. The
submitter waits for all dispatchers to return. To remedy load
imbalances resulting from irregular task sizes, we implement
a work-stealing algorithm among AME workers; see §V-I.

B. AMFS Architecture

The dashed outlined components in Figure 7 show the
AMFS architecture. AMFS comprises a set of metadata servers
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foreach i in files{
    temp[i] = produce(files[i]);
    output[i] = consume(temp[i]);
}

FileID Filename State
0        files0      Shared
...
N-1    filesN     Shared
N       temp0    Invalid
...
2N-1  tempN    Invalid
2N     output0   Invalid
...
3N-1  outputN    Invalid

TaskID Binary Input Output Rule
0        -b /bin/produce -i files0 -o temp0 -a files0 temp0
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Fig. 7. Integrated AMFS/AME architecture. The dashed oblongs represent
AMFS components.

and a set of storage servers, each of which runs on compute
nodes. Metadata servers run on dedicated compute nodes,
collocated with dispatchers, while storage servers are collo-
cated with the AME workers just discussed. The ratio between
the numbers of nodes used for metadata servers/dispatchers,
and the ratio of storage servers/workers is set to 1:63 in this
deployment, but is configurable.

1) Metadata Server: The metadata server implements a
distributed hash table (DHT), with the file identifier as the
key and the value as a compound data structure that includes
the file state, location, and subscribers (the dispatcher that
queues the task that takes this file as an input). The file
identifier is the concatenation of the POSIX file path and
the file name. A file identifier is unique in the namespace
within a single application run. The metadata server supports
two types of access: synchronous and asynchronous. When an
AME dispatcher queries a file’s location, if the file has been
produced, the metadata server returns the address. Otherwise,
the metadata server returns an “N/A” message and registers
the dispatcher as a subscriber to that file. When the file is
produced, the location will be broadcast to the subscribers.

2) Storage Server: All other compute nodes are both AME
workers and AMFS storage servers. All intermediate files that
are produced locally on a node are stored in its local storage.
When a task completes, the AME dispatcher that originally
submitted the task updates the metadata server for files that
were produced by the task. The storage server includes a
background FTP daemon for peer-to-peer and collective file



transfers.
3) Collective Operations: Assuming intermediate files are

produced and then physically located in the local storage of a
set of compute nodes, we build a collective data management
toolkit that runs as a daemon (referred to here as “collective
daemon”) on each storage server. This toolkit optimizes the
dataflow of the multicast, scatter, gather, and reduce patterns.
The storage servers that are involved in a collective operation
are organized into a minimum-spanning-tree topology, and the
collective operation is initialized at one of storage servers by
sending to its local collective daemon a message containing
the pattern, the names of the files that it is expecting, and the
addresses of the nodes on which those files are located. The
local collective daemon that receives this message then acts
as the root of the minimum spanning tree. Each collective
daemon that receives an address list starts a loop until that
address list is empty. In each iteration, the daemon removes
half of the remaining address list (a list of children), picks the
first removed address as a target, and sends the other removed
addresses to the target.

In gather, a collective daemon that receives a message
indicating it is a leaf makes an archive of the file(s) named
within the message and acknowledges its parent. Upon re-
ceiving the acknowledgment, the gather daemon will transfer
the archive from the child and check the number of children
and the number of acknowledgments. If they are the same,
that means all of its children returned, and the gather daemon
acknowledges its parent recursively up to the root of the tree.
The file flow is illustrated in Figure 8.

The root node of a reduce operation will produce the chil-
dren lists similarly to gather, replacing the archiving operation
with a user-defined reduce function. The nodes of a multicast
operation produce the children list first, copy the file to the
target of each children lists, then inform the target with the
children lists. They wait for all the targets to return, then
send acknowledgments to their parents. Scatter is implemented
similarly to multicast, except that instead of sending the
same file at each step (as in multicast), scatter makes an
archive of the files that are destined for each children list and
forwards this archive to the target of each children list. Upon
receiving all the acknowledgments from the targets, the node
acknowledges its parent.

1
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Fig. 8. File flow in collective gather on eight nodes. Shaded circles are
nodes; non-shaded circles show timesteps.

C. Integrated Design of AMFS and AME

The key feature of the integrated design is the commu-
nication between AMFS and AME, shown by 4©, 6©, and
8© in Figure 7, which demonstrates the architecture of the

framework as a whole. The AME submitter compiles (which

currently supports only static workflows) a Swift script ( 1©),
and produces one file list ( 2©) and one task list ( 3©). The
file list includes all the input, intermediate, and output files
with their states. The task list includes all (or some, for
a dynamic Swift program) tasks. The file list is partitioned
into several pieces, and fed into the AMFS metadata servers
( 4©). The task list is spread across the AME dispatchers ( 5©).
The communication between the AME dispatcher and AMFS
metadata servers for data-aware scheduling is shown as 6©.
When a task is queued at an AME dispatcher, before the
dispatcher sends the task to a worker, it will query the AMFS
metadata server for the input file states. If the file already has
been produced somewhere, the AMFS metadata server will
return the address of the node. Otherwise, the AMFS metadata
server will subscribe the request address to that particular file
and return a message telling the dispatcher the file has not
yet been produced. Then the dispatcher will put the task away
temporarily and continue with other tasks. Later, when that
file is produced, the AMFS metadata server will broadcast the
location of that file to all the subscribers. The communication
( 6©) is synchronous in the case where the file has already
been produced, and asynchronous in the case of the file is
invalid. Task and notification flow between AME Dispatchers
and AME workers is shown by 7©. AME workers retrieving
files from other storage servers are shown by 8©.

D. Collective Deadlock Avoidance

In our initial design, a deadlock scenario could arise with
two collective operations on overlapped storage servers, when
two servers concurrently consider each other as a child. We
avoid this situation by predefining a global order for each
storage server and requiring the files to flow only from lower
order to higher.

E. Scalable Data-Aware Scheduling

Although AME and AMFS have an integrated design,
their data logic and task logic are fully independent. The
communication between AME and AMFS happens at two
places: first, when AME compiles a Swift script to produce a
file list to feed the AMFS metadata server, and second, when
AME queries a file status from AMFS in both synchronous
and asynchronous ways. If we have only one AMFS metadata
server, it won’t work in a scalable manner beyond some point,
when the scale exceeds a single node’s capacity (either CPU
or memory). To balance load related to metadata, we choose
a hash function that evenly distributes the metadata for each
stage across all the metadata servers.

F. Multicast Handling

We have three subproblems to solve for multicast: (1)
identify the dataflow pattern, (2) determine the number of
replicas, and (3) decide where to place the replicas for load
balancing. We present the details of multicast as an example of
the collective operations because it is the most complicated and
because it involves pattern identification as well as quantitative
decision. Initially we consider a simple example, with one



TABLE IV
STAGE-INFILE-TABLE

Key Value
a []
b [file1, ...,

file100]

TABLE V
SUBTABLE WITH STAGE B

Key Value
file1 [task1, ..., task10]
file2 [task11, ..., task20]
... ...
file100 [task991, ..., task1000]

AME dispatcher, one AMFS metadata server, and 200 AMFS
storage servers. Two stages of computation are involved: a and
b. We have 100 tasks in stage a, and 1,000 tasks in stage b.
The tasks in stage a do not have input files, and each produces
one output file, which will be consumed by 10 tasks in stage
b. Each stage b task has only one input file.

1) Pattern Identification: The single AME dispatcher pre-
processes all the tasks and produces two hash tables. The first
one has the keys being the name of the stage, which could be
the application binary names. The values are a list of input
file names associated with all the stage’s tasks. So in our
simple example, the table, shown in Table IV, has two records.
The dispatcher also produces another nested table with stage
name as key; the value is a subtable, with keys being the
input file names and values as lists of tasks that will consume
each input file, as shown in Table V. Using this table, an
AME dispatcher identifies a multicast pattern by comparing
the number of subsequent tasks of a file with some predefined
threshold.

2) Replica Number Decision: Once a file is produced and
the AME dispatcher is notified of the address of that file, we
compute the fraction of this file’s consumption among its peer
files in the same stage. In this case, file1 will be consumed
by ten stage b tasks. The consumption of file1 is 1% of the
total file consumption for input files in stage b. Thus we need
to multicast file1 to 1% of the AMFS storage servers, which
is two. Since the file is already on one AMFS storage server,
we replicate the file only once.

3) Replica Placement: To distribute the input files within
a single stage in a balanced way, we need the exact AMFS
storage server and data mapping. This information is stored
in a table with storage server address as key and the file list
as value. The table can be initialized when stage a tasks are
dispatched to AME workers. In this case, the AMFS storage
servers are collocated with AME workers on the same node,
so we put the worker’s address and output file name into the
table. Then we select the AMFS storage servers with the least
number of input files in this stage to hold the replicas.

4) Extending the Solution: Multiple AMFS metadata
servers will not make it more difficult to solve the issues
above, since each metadata server will be contacted by only
one AME dispatcher in order to get file state update and
location information. But having multiple AME dispatchers
does raise some issues. While each AME dispatcher could
still produce the tables such as Tables V and IV, some of
the input files of stage b will not be produced within this
dispatcher’s scope. However, the dispatcher will still get an
on-time file state update as long as that file is an input of

some task of stage b and this specific task is in the queue
of this AME dispatcher. Therefore, we need to make a small
change in the above solution in order to make it work with
multiple dispatchers. If the file is not produced within this
dispatcher’s scope, and there should be N replicas from this
dispatcher’s point of view, then we make N copies of that
file within this dispatcher’s scope. Otherwise, if the file is
produced within this dispatcher’s scope, the dispatcher should
make N-1 replicas.

We also introduce a new concept of file group. A file group
is defined by all input files that are also output files of the
previous stage for a stage b task. We replace the role of file
in the Tables V and IV with file group. The files are replicated
based on the production of the whole group.

We also consider a potential problem when the number of
stage b tasks is less than the number of AME workers. In this
case, we simply replicate the stage b input files proportionally
to their consumption.

5) Replicating Tasks: We implement an alternative solution
to replicate tasks that produce intermediate files, rather than
replicating the files. With the information in Tables V and
IV, the system is aware of the number of desired replicas to
balance the workload of the next stage of computation. Hence,
it could replicate the tasks in order to produce multiple copies
of the intermediate files. Then when the AME dispatchers start
to send the stage b tasks, the tasks can be dispatched so that
each replica gets an even number of tasks in stage b.

G. Other Collective Operations Handling

Gather is identified by either the AME dispatcher or the
AME worker counting the number of input files of a task.

Reduce is identified in the same way as gather.
Pipeline is identified by default, as long as AME is capable

of data-aware scheduling.
Scatter can be correctly but not efficiently identified, since

the dispatcher needs to communicate with all AMFS metadata
servers in order to determine the subsequent tasks. If it is a
single task where the input and output file sizes exceed the
compute node memory limit, we run it on the login node.

H. Resolution of Distributed Task Dependency

Task dependency resolution is a side benefit of the integrated
design of AMFS and AME. The AME dispatcher quickly
learns of file production by receiving file location broadcasts
from the AMFS metadata server. It then knows which tasks
are ready to run.

I. Load Balancing

The AME and AMFS framework uses a naive data-aware
scheduling scheme to make scheduling decisions. A task with
multiple input files will be dispatched to where the first input
file is. Thus, a starving situation might occur, where some
AME workers are busy and have extra tasks in their queues,
while other AME workers are idle with empty queues. To
remedy this problem in a scalable way, we implemented a
simple heuristic solution: simplistic work-stealing. When a



AME worker is idle, it will try to steal a task from its
neighbors. This solution is not the global optimal solution;
however, it can remedy the load imbalance issue to some
extent, as shown in application results in §VI-B2a.

VI. EVALUATION

To evaluate our system implementation, we use models and
applications. We model the performance and scalability of the
AMFS collective operations and compare them with measured
data. The applications we discuss in detail are Montage and
mtcBLAST. We show how various combinations of techniques
benefit performance. We run on an IBM BG/P, in which each
compute node has four 850-MHz cores, and most communi-
cation between nodes uses a 3-D torus network, though there
is also a tree network used for collective communication. I/O
communication between compute nodes and GPFS uses a 10-
Gbps Ethernet network.

A. Collective Operation Benchmarks

We first use a theoretical model to describe expected
collective operation performance. We then compare observed
performance against the models, in order to confirm the
correctness of the implementation.

1) Model: We base our model for collective operations on
methods frequently used in parallel computing [5], [26], [23].
In the following, T is the total data transfer time, S is the total
amount of data transferred, N is the number of nodes, M is the
total number of files, a is the latency overhead for each file
transfer, and b is the bandwidth overhead per byte. We extend
the model with c as overhead per file, as used in Scatter and
Gather, where we put the files into an archive and then start
the transfer to reduce the latency overhead of the file transfer.

• Multicast: T = (log2 N) ∗ (a+ b) ∗ S
• Gather: T = (log2 N) ∗ a+ N−1

N ∗ S ∗ b+ (M − 1) ∗ c
• Scatter: T = (log2 N) ∗ a+ N−1

N ∗ S ∗ b+ (M − 1) ∗ c
• Reduce: T = (log2 N) ∗ a+ S ∗ c
2) Performance Benchmark: Figure 9 shows the perfor-

mance and scalability of the multicast, scatter, gather, and
reduce dataflow patterns. In multicast, we send one file to
all other nodes and vary the file size from 1 MB to 10 MB
to 100 MB. In the scatter and gather tests, we fix the total
amount of data that is being transferred. To benchmark the
performance of reduce, we implemented a min() function as
a Linux binary. This function takes a randomly generated file
with integers as input and then outputs the smallest number
within the file. In each test of reduce, we vary the data size on
each node from 1 KB to 1 MB to 16 MB. From Figure 9, we
see that multicast, scatter, gather, and reduce scale well up to
8,192 nodes. The absence of Scatter and Gather data on 8,192
nodes is due to RAM disk size limit and minimum chunk-size
issues. The gap between the measured performance and the
model grows larger as the number of compute node increases,
because our model assumes a uniform latency between any
two nodes; in reality, however, the average distance between
nodes (and the latency) grows with allocation size. Also, our

model does not take network congestion into account, which
may also reduce effective network bandwidth.

B. Applications

We next present the results of application performance
studies, analyzing the improvement contributed by each of our
techniques for each application. We also compare the perfor-
mance of our MTC version of Montage and BLAST with MPI
versions. (We have also run the CyberShake postprocessing
application, obtaining a performance improvement of 7.9%,
but do not show details here, because of limited space.)

1) Montage: We built a 6x6 degree 2MASS mosaic cen-
tered at Galaxy m101. Table VI shows the number of tasks,
input files, and output files and the amount of I/O performed
for each stage. Figure 10 shows performance results for
the MPI version of Montage and for each of the optimiza-
tion methods data cache (CACHE), data-aware scheduling
(AWARE), collective gather (COGATHER), and asynchronous
gather (ASGATHER). In each case, we show the time-to-
solution ratio for each parallel stage (except mAdd), the sum
of the parallel stages (Sum Para), and the sum of the whole
workload (Sum All) on 512 BG/P cores, compared with a base
case, STAGING. Ratios less than 1 represent improvements,
whereas ratios greater than 1 are slowdowns.

For MPI Montage, we show only the sum of the parallel
stages and the sum of the whole workload, since we cannot
easily separate out the other stages. In the asynchronous
gather column, the ratio given for mImgtbl represents both
mProject and mImgtbl, since these two stages are over-
lapped when using the asynchronous method and thus the time
taken by each cannot be separated; similarly, the ratio given
mConcatFit encompasses both mDiffFit and mConcatFit.

The Montage version that we use as the STAGING base case
is one in which input files are initially stored on GPFS but then
staged to RAM disk for reads and writes. We use STAGING
performance as the base case because the different methods
used to implement the MPI and MTC versions make a stage-
by-stage comparison of the MPI and MTC versions infeasible.
Also, the MPI version performs all reads and writes directly
on GPFS, which is extremely slow: STAGING ran in 45%
of the time of the MPI implementation (with all I/O directly
using the shared file system).

TABLE VI
MONTAGE STAGE TASKS, INPUTS, OUTPUTS, INPUT AND OUTPUT SIZE

Stage # Tasks # In # Out In (MB) Out (MB)
mProject 1319 1319 2638 2800 5500
mImgtbl 1 1319 1 2800 0.81
mDiffFit 3883 7766 3883 31000 3900
mConcatFit 1 3883 1 3900 0.32
mBackground 1297 1297 1297 5200 3700

a) Data Cache: Compared with the STAGING base
case, Data Cache reduces the time to solution by 39.6%,
46.7%, and 1.7%, respectively, for the mProject, mDiffFit,
and mBackground stages. The improvements result from the
elimination of writes to GPFS in the three stages and the
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Fig. 9. Performance of the multicast, scatter, gather and reduce patterns’ data movement.

Fig. 10. Montage workload time-to-solution ratio compared with the GPFS
base case for the parallel stages.

replacement of the input file copies from GPFS with peer-
node file transfers in mDiffFit and mBackground. The
mBackground output files have to be moved to GPFS in
both cases, so the 1.7% decrease is due to the different
input handling scheme. Overall, the Data Cache improvements
are due primarily to reducing GPFS input and output, from
53.6 GB to 8.1 GB.

Stages mImgtbl and mConcatFit are 6.2x and 4.5x slower
with Data Cache than STAGING, respectively. The gather
pattern of these stages causes the lower performance. The
mImgtbl and mConcatFit tasks have 1,319 and 3,883 input
files each, and the sequential file location lookup and transfer
is less efficient than file copies from GPFS.

b) Data-Aware Scheduling: Data-aware Scheduling
eliminates half of the input transfer in the mDiffFit stage and
all of the input transfer in the mBackground stage. In practice,
data-aware scheduling reduces run time by 40.7%, and 45.1%
relative to Data Cache for mDiffFit, and mBackground,
and by 68.4% and 46.1% over STAGING, respectively. Stages
mImgtbl and mConcatFit perform 7.7x and 5.8x slower than
with STAGING, respectively, for the same reason as for Data
Cache.

An unexpected improvement is that the average mDiffFit

runtime decreases from 10 s to 1.2 s. This improvement comes
from a memory cache hit for an input file, since this file is
consumed on the same node where it is produced with Data-
aware Scheduling and thus can be read from memory cache.
We see the same result for mBackground, whose average
runtime decreases from 8.3 s to 6.9 s.

c) Collective Gather: To optimize file transfer in the
stages that have a gather dataflow pattern, we apply Col-
lective Gather along with Data-aware Scheduling. We see a
decrease in runtime of 71.0% and 53.6% for mImgtbl and

mConcatFit, respectively, compared with the STAGING base
case. Looking at just the file transfer time, Collective Gather
saves 77.7% and 86.6% for mImgtbl and mConcatFit. The
combination of these two techniques decreases the whole
workload time to solution by 83.2% compared with that of
the MPI Montage implementation. Table VII shows the time
distribution of mImgtbl and mConcatFit with Collective
Gather. In this table, input is the end-to-end gather time;
execute is the execution time for the task; output is the time to
write the output (short as there is only one output file per task);
and overhead is system overhead. The system overheads for
mImgtbl and mConcatFit, 0.80 s and 1.33 s, respectively,
are due to the need to transfer and process the long task de-
scriptions that enumerates all input files; these descriptions are
21.3 KB and 147.92 KB in size, respectively. Our alternative
Asynchronous Gather solution does not perform as well as
Collective Gather in this case, since the task runtime is not
irregular enough to mask the data movement overhead.

TABLE VII
TIME (S) DISTRIBUTION IN GATHER PATTERN

Stage Input Execute Output Overhead
mImgtbl (GPFS) 14.74 0.43 0.07 0.55
mConcatFit (GPFS) 44.64 28.49 0.1 1.14
mImgtbl (Coll. Gather) 3.29 0.42 0.07 0.80
mConcatFit (Coll. Gather) 5.97 27.08 0.11 1.33

2) BLAST: Our parallel BLAST (which we refer to as mtc-
BLAST) is based on Parallel BLAST [12]. In our experiments,
we match a random set of sequences selected from nr, a non-
redundant protein database maintained at NCBI, against the
full nr database. On n (256, 1024, 4096, 16384, and 32768)
cores, we randomly choose n sequences from nr. We aggregate
these sequences into n/16 query files, each containing 16
sequences; thus, our scheduling granularity is 16 sequences.
Table VIII shows the number of tasks, the number of distinct
inputs and outputs, and the total input and output sizes. N is
defined as the number of fragments of the nr database, while
M is defined as the number of query files, each of which
contains 16 sequences.

Normally, users simply run fastasplitn and formatdb

once and reuse the formatted database slices. We also run
fastasplitn once, since it just does file fragmentation based
on text; but we put formatdb in our mtcBLAST workload
because it is an intriguing example of the multicast dataflow
pattern and we can run it in parallel. We partition the nr



TABLE VIII
BLAST STAGE TASKS, INPUTS, OUTPUTS, AND INPUT AND OUTPUT SIZE

Stage # Tasks # In # Out In (MB) Out (MB)
fastasplitn 1 1 N 4039 4039
formatdb N N 3N 4039 4400
blastp N*M N+M N*M 73*N*M 2.4*N*M
merge M N*M M 2.4*N*M 4.8*M

database into 63 slices; formatting those slices on 63 nodes
takes 56 s. The number 63 is chosen because we dedicate one
compute node out of every 64 as the AME dispatcher as well
as the AMFS metadata server; the other 63 nodes are AME
workers.

a) Load Balancing: BLAST task lengths are not related
to the query sequence length [10], and we saw several starving
situations in our small-scale test on 256 cores. Therefore, we
apply a simple work-stealing mechanism in the AME worker.
For scalability, we limit stealing to a compute node’s neighbors
(on BG/P, we choose neighbors on the 3D torus network).
While this limited stealing is not a globally optimal solution,
it delivered a 3% to 9% decrease in time to solution for the
blastp stage, as shown in Figure 11.

Fig. 11. Work-stealing improvement in mtcBLAST’s blastp.

b) Asynchronous Gather: To evaluate the choice between
Collective Gather and Asynchronous Gather, we run each on
the same query workload. Collective Gather takes 143.3 s
to finish the blastp and merge stages, while Asynchronous
Gather takes 139.6 s, because of overlapping the computation
of blastp and the input data transfer of merge. We therefore
choose Asynchronous Gather in mtcBLAST.

c) Comparison with mpiBLAST: We compare mtc-
BLAST with mpiBLAST on 256 to 32,768 cores, with the
same queries run against the nr database in both cases.
For a fair comparison, mtcBLAST uses the NCBI legacy
engine. Figure 12 shows that mtcBLAST is somewhat faster
than mpiBLAST at each scale. This improvement is due to
AME/AMFS support for large-scale data-aware scheduling,
data replication, and gather dataflow optimization.

VII. CONCLUSIONS AND FUTURE WORK

We have shown that an intelligent runtime data management
system can significantly improve the performance of many-
task applications in situations in which shared filesystem
access dominates execution time. Our methods as implemented

Fig. 12. Performance comparison of mtcBLAST and mpiBLAST

in AME and AMFS reduce the time to solution for par-
allel stages in Montage by a factor of 83.2% and reduce
the time to solution of CyberShake postprocessing by 8%.
Our mtcBLAST achieves performance comparable to that of
mpiBLAST while preserving the flexibility of the core NCBI
BLAST routines.

We also have described how tasks that feature multicast,
gather, pipeline, and reduce dataflow patterns can be identified
in our system at runtime, either by task analysis or by counting
the number of input files. Subsequent operations and optimiza-
tions can then be applied automatically to the dataflow pattern;
our system design does not require explicit user input, such
as explicit procedure calls or file hints. We show examples in
Montage and mtcBLAST, where either Collective Gather or
Asynchronous Gather performs better; identifying the better
gather techniques automatically at runtime is future work.

Inspired by the mtcBLAST and mpiBLAST comparison, we
plan to characterize the I/O requirements of a group of parallel
applications, identify the I/O characteristics of a set of parallel
computers, and quantitatively study how an MTC middleware
can extend the range of applications that can be supported
on those computers. In this way, we aim to identify those
applications that fit well in the MTC application category and
to categorize MTC applications into those that would benefit
from a proper MTC middleware and those that would not.
This work will help scientists make decisions about selecting
a parallel framework (MTC, MPI, etc.) for new applications
based on I/O characteristics.
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