
A Configurable Algorithm for Parallel Image-Compositing
Applications

Tom Peterka
Argonne National Laboratory
tpeterka@mcs.anl.gov

David Goodell
Argonne National Laboratory

goodell@mcs.anl.gov

Robert Ross
Argonne National Laboratory

rross@mcs.anl.gov
Han-Wei Shen

The Ohio State University
hwshen@cse.ohio-

state.edu

Rajeev Thakur
Argonne National Laboratory

thakur@mcs.anl.gov

ABSTRACT
Collective communication operations can dominate the cost
of large-scale parallel algorithms. Image compositing in par-
allel scientific visualization is a reduction operation where
this is the case. We present a new algorithm called Radix-k
that in many cases performs better than existing composit-
ing algorithms. It does so through a set of configurable
parameters, the radices, that determine the number of com-
munication partners in each message round. The algorithm
embodies and unifies binary swap and direct-send, two of
the best-known compositing methods, and enables numerous
other configurations through appropriate choices of radices.
While the algorithm is not tied to a particular computing
architecture or network topology, the selection of radices al-
lows Radix-k to take advantage of new supercomputer inter-
connect features such as multiporting. We show scalability
across image size and system size, including both powers of
two and nonpowers-of-two process counts.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

Keywords
Image compositing; Communication; Parallel scientific visu-
alization

1. INTRODUCTION
Image compositing is the last stage in sort-last parallel vi-
sualization algorithms. In these applications, the dataset is
partitioned into subdomains, and each process performs the
visualization independently on its region; the compositing
step blends these images into a final result. As image sizes
and processor counts increase, the time to composite can
dominate the cost of the entire visualization process. Just
as scientific computations utilize parallelism to achieve new

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage, and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. SC09

November 14-20, 2009, Portland, Oregon, USA
(c) 2009 ACM 978-1-60558-744-8/09/11... $10.00

scales, parallelism is an important ingredient for analysis ap-
plications such as scientific visualization at large scale. An
essential ingredient in many parallel problems is the merg-
ing of partial results; in parallel visualization, the results are
images, and this merging step is image compositing.

1.1 An Improved Compositing Algorithm
Image compositing has been studied for over twenty years,
but the best-known algorithms were invented when the com-
puting landscape looked quite different from today. In devel-
oping a new algorithm, we strived to keep the best features
of existing algorithm because, as we found, they perform
their functions efficiently. At the same time, new hardware
features such as multiported networks and network commu-
nication hardware that does not require CPU intervention
present new opportunities to improve the state of the art in
image compositing.

To this end, we developed a new algorithm called Radix-
k. By configuring its parameters, we can enable the algo-
rithm to encompass and unify binary swap and direct-send,
well-known methods previously considered distinct. It offers
many more combinations than those, however; and by judi-
cious selection of its parameters (the radices or k-values), we
can attain higher compositing rates than before, in particu-
lar when the underlying hardware offers support for multiple
communication links and the ability to perform communica-
tion and computation simultaneously. Furthermore, Radix-
k is not limited to processor counts that are powers of two;
it exhibits good behavior over a variety of process counts.

The key to improved performance is to utilize available re-
sources, both computational and networking. Like earlier al-
gorithms, Radix-k keeps processors busy and load balanced
in each message round. By using higher radices, however,
it increases concurrency by exchanging messages in parallel
and by computing in parallel with messaging. When hard-
ware in support of increased parallelism is not available and
the image size or number of processes dictates that binary
swap or direct-send is the best approach, Radix-k accommo-
dates those techniques as well.

1.2 Problem Definition
The image compositing task is a reduction problem. Each
process communicates its results with all others, reducing

results along the way. It is not necessary for this result to
end up at one process; a distributed answer is acceptable and
often desirable. For example, writing the image to storage
can be done more efficiently in parallel than from a single
source. In MPI terminology, this is equivalent to a reduce-
scatter problem. Because the particular composite operator
depends on ordering, this reduce-scatter is noncommutative.

The problem can be formally defined by the following four
postulates. (1) Each of p processes owns one vector xp, its lo-
cal image, where x has length n components, and each com-
ponent is a pixel. (2) Let over [23] be a binary, component
wise linear combination of two vectors. Over is associative
but not commutative, and a correct ordering of operations
is established by the visualization algorithm. In our tests,
we impose process rank order to be the correct ordering of
images. (3) All xi are blended with all other xj using the
over operator. Because of the associative property, however,
this does not require all-to-all communication. For example,
if A, B, C are processes and ⊕ is the over operator, A ⊕ B
suffices if B already contains the result of B ⊕ C. A does
not need to composite with C explicitly. (4) The resulting
vector is distributed among one or more processes. Com-
positing has completed when each pixel has a final, correct
value. Each process ends with a contiguous subset of all of
the finished pixels.

The length of our vectors corresponds to image sizes encoun-
tered in high-quality scientific visualization. They range
from a 1-megapixel image (for example, 1024 x 1024 pixels)
to an 8-megapixel image (for example, 4096 x 2028 pixels).
In terms of display devices, 2 megapixels is approximately
high-definition television (HDTV) resolution; a 30-inch mon-
itor has 4 megapixels, and a 4K projector used in digital cin-
ema has 8 megapixels. We maintain a 4-byte floating-point
value per channel, or 16 bytes per pixel, during the com-
positing process so that quantization errors do not accrue.
Therefore, our starting images are 16 MB for 1 megapixel
to 128 MB for 8 megapixels. (If only 4 bytes per pixel were
used, our 128 MB image would contain 32 megapixels.) The
image owned by a process may be sparse. Image composit-
ing algorithms can be optimized to take advantage of this
property, but we do not include these optimizations in our
tests. Instead, we consider the worst-case scenario where all
pixels are transmitted.

2. BACKGROUND
Relevant literature on this problem comes from the scien-
tific visualization and from the high-performance computing
communities. We survey each of these sources and conclude
this section by evaluating the theoretical cost of various al-
gorithms cited.

2.1 Image Compositing and Collective Com-
munication Algorithms

Parallel rendering can be classified according to when raster-
ized images are sorted [18]; our work applies to sort-last ren-
dering only. The dataset is partitioned among processors at
the beginning of the process; rendering occurs locally at each
processor, and the resulting images are depth-sorted (com-
posited) at the end. Stompel et al. [27] survey methods for
sort-last compositing, and Cavin et al. [7] analyze relative

theoretical performance of these methods. These overviews
show that compositing algorithms usually fall into one of
three categories: direct-send, tree, and parallel pipeline.

In direct-send, each process requests the subimages from all
of those processes that have something to contribute to it
[11, 21, 16]. Rather than sending individual point-to-point
messages, tree methods exchange data between pairs of pro-
cesses, building more complete subimages at each level of the
compositing tree. To improve load balance by keeping more
processes busy at higher levels on the tree, Ma et al. [17] in-
troduced binary swap, a distance doubling and vector halv-
ing algorithm. Recently, Yu et al. [32] extended binary swap
compositing to nonpower-of-two numbers of processors in 2-
3 swap compositing. Pipeline methods are also published
for image compositing, but their use is infrequent. Lee et
al. [15] discuss a parallel pipeline compositing algorithm for
polygon rendering.

Hybrid combinations of the above also have been studied.
Nonaka et al. [22] combine binary swap with direct send and
binary tree in two stages to improve performance. Nodes are
partitioned into several groups and binary swap is executed
in each of those groups. The results from each of the par-
titions are then combined by using either direct-send or a
simple binary tree.

The above methods can be optimized by exploiting the spa-
tial locality and sparseness in images resulting from scien-
tific visualization. Run-length encoding images before trans-
mitting among processes achieves lossless compression [2].
Using bounding boxes to identify the nonzero pixels is an-
other way to reduce image size [17]. These optimizations
can minimize both communication and computation costs.
Takeuchi et al. [28] accelerate binary swap with bounding
rectangles, interleaved splitting, and run-length encoding to
mitigate any remaining sparseness. The Radix-k algorithm
can likewise benefit from these optimizations, although in
this paper, all of our tests are based on worst-case, full-size
images.

Image compositing has also been combined with parallel ren-
dering for tiled displays. The IceT library, based on More-
land et al. [19] is one example of a hybrid algorithm that
performs sort-last rendering on a per-tile basis. Within each
display tile, the processors that contributed image content
to that tile perform either direct-send or binary swap com-
positing. By limiting the composited image size to that of
a physical display tile, the problem of compositing large im-
ages (tens of megapixels) arising from tiled display walls is
alleviated. Humphreys et al.’s Chromium [12] is another sys-
tem that supports compositing across cluster nodes and tiled
displays. While its default compositor for sort-last rendering
is a single node, the authors demonstrate that a binary-swap
stream processing unit (SPU) can be built using Chromium.
Radix-k is a general message-passing algorithm that in prin-
ciple can serve as the compositing module in other libraries
such as IceT, although we have not tested this. Our tests
simulate volume rendered images but Radix-k can support
polygon rendering (as in IceT and Chromium) by including
a depth value per pixel and modifying the compositing op-
erator. The only prerequisite for including Radix-k in other
rendering libraries is the existence of MPI.

One may group collective communication algorithms into
tree-order, linear or ring-order, and dimension-order. Tree-
order algorithms are optimal for short messages where the
message latency dominates total time, with log2(p) number
of steps, where p is the number of processes. Messages are
sent between nodes of a minimum spanning tree, and the
distance between nodes doubles while message length is di-
vided by two. Bernaschi and Ianello [5] expand the idea to
make it more flexible by controlling the depth and width
of the spanning tree with an α parameter that changes the
spanning tree from a single-level flat tree to a binomial tree
(α = 0, α = .5, respectively).

Linear and ring-order algorithms perform better for long
messages, especially when pipelined so that steps overlap.
Barnett et al. [4] present a pipelined algorithm, and Traff
et al. [31] show that dividing nonuniform message lengths
into uniform size blocks and pipelining those blocks produces
significant speedup in a linear ring all-gather. Dimension-
order algorithms perform operations dimension by dimen-
sion, where the later dimensions use the results of the ear-
lier. Barnett et al. [3] use a general-purpose scatter-collect
template to implement a variety of collective primitives on
a mesh, including broadcast, scatter, gather, collect, and
reduce.

Thakur et al. [29] show that MPICH collectives can be opti-
mized when message length is considered, so that latency is
minimized for short messages and bandwidth is minimized
for long messages. They perform tests in the context of
switched clusters and concluded that for reduce operations,
binomial tree (MST) is ideal for short messages < 2 KB and
for user-defined reduce operations that may be difficult to
divided into scatter-collect. For larger library operations,
they recommend Rabenseifner’s [25] dimensional order al-
gorithm, similar to that of Barnett et al. [4].

Newer interconnects are multiported; based on this idea,
Chan et al. [10] rewrote the tree and ring algorithms to
communicate with multiple neighbors at each stage. Bruck
[6] also studies multiporting in the context of all-to-all col-
lectives. In recent work, Kumar et al. [13, 14] incorporate
a number of these optimizations in collective interfaces that
exist at different layers of the messaging stack. They show
that performance saturates at different number of links, de-
pending on the message protocol used.

Another new advance is the availability of programmable
network processing units (NPUs). Pugmire et al. [24] have
shown that image compositing can be accelerated using NPUs
in fixed, tree configurations of up to 512 rendering nodes.
Presently, the NPU is a standalone device, but programmable
network adapters may eventually find their way into general-
purpose compute nodes, enabling message communication
patterns such as those in Radix-k to be accelerated in hard-
ware.

2.2 Communication and Computational Cost
To model the communication and computation cost of var-
ious algorithms, we adopt a simple cost model as in Chan
et al. [9]. The assumptions in this model are the follow-
ing. (1) There are p processors indexed from 0 to p − 1 in
a distributed-memory parallel architecture. (2) There are n

Table 1: Lower Bounds for Commutative Reduction
Collectives
Collective Latency Bandwidth Computation
Reduce α log2(p) nβ nγ(p− 1)/p
Allreduce α log2(p) 2nβ(p− 1)/p nγ(p− 1)/p
Reduce-scatter α log2(p) nβ(p− 1)/p nγ(p− 1)/p

data items in the original vector size. In our application, a
data item is one pixel, and the original image size has n total
pixels. A pixel occupies 16 bytes. (3) The communication
cost is α + nβ, where α is the latency per message and β is
the transmission time per data item (reciprocal of single link
bandwidth). (4) The computation time to reduce one data
element is γ, making the total time to transmit and reduce
a message consisting of n data elements α + nβ + nγ. (5)
For cost calculations, we assume a fully connected network,
nonoverlapping communication and computation, and zero
link contention.

Parts of the last assumption are not always true, but cal-
culating the relative cost of communication algorithms is
simplified under these conditions. After computing the the-
oretical cost, we compare the actual cost of our algorithm
with the predicted cost. Three MPI collective reduction op-
erations, along with binary swap, form our baseline analysis:
reduce, allreduce, and reduce-scatter. For our Blue Gene/P
MPI implementation, Figure 1 shows how these compare.

 0.1

 1

 10

64 128 256 512 1024

Ti
m

e
(s

)

Number of BG/P procs

Compositing Time for 2.0 Mpixel Image

allreduce
reduce

reduce-scatter
binary swap

 0.1

 1

 10

 100

1.000 2.000 4.000

Ti
m

e
(s

)

Image Size (Mpixel)

Compositing Time for 1024 Processes

allreduce
reduce

reduce-scatter
binary swap

Figure 1: Top: Comparison of binary swap with
built-in MPI collectives for image compositing. Bi-
nary swap performs faster and more consistently
across number of processes. Bottom: All of the al-
gorithms scale similarly with image size.

Figure 2: Example of the Radix-k algorithm for 12 processes, factored into 2 rounds of k = [4, 3].

Binary swap performs consistently across a wide range of
processor counts and is approximately two times faster than
its closest competitor, reduce-scatter. All of these algo-
rithms scale similarly with image size.

In the following, we review the theoretical lower bounds for
reduce, allreduce, and reduce-scatter. Then we compare
these bounds to binary swap and direct-send. Chan et al. [9]
define lower bounds on the latency, bandwidth, and compu-
tation terms (see Table 1) for commutative and associative
operations. The latency term counts the number of com-
munication steps, not the total number of messages; within
each step p messages are exchanged simultaneously. The
bandwidth and computation terms count the total number
of data elements exchanged and computed, respectively.

In binary swap, the number of communication rounds is
log2(p), with one message sent and one message received
by each process in each round. Since we assume at least one
communication link in each direction, the latency compo-
nent achieves the same lower bound as in Table 1. Ma et al.
[17] compute the total number of pixels reduced; if inactive

pixels are ignored, their result simplifies to
Plog2 p

i=1 2−in =
n(p−1)/p, matching the values in Table 1 for the bandwidth
and computation terms.

This is the same lower bound reported by Neumann [20]
for direct-send, again ignoring the active pixel optimization
and assuming perfect load balancing. However, the aver-
age number of message steps in direct send is p1/3, assum-
ing an orthogonal view direction along one of the principal
axes and all active pixels. Thus, at higher process numbers,
direct-send leads to a higher latency for short messages and
potential network congestion.

Binary swap incurs an added expense when the number of
processors is not a power of two. Rabenseifner and Traff
[26, 30] present a 3-2 elimination step in a hybrid butterfly
algorithm. For an arbitrary number of processes, the latency
term is at most 2 log2 p+1, while the bandwidth term is less
than 3m, and the compute term is less than 3/2m. Yu et al.
[32] also present an extension to binary swap for nonpower-
of-two number of processes. Compared to Table 1, their 2-3
swap is four times greater in the latency term, 1.3 times
greater in the bandwidth term, and two times greater in the
computation term.

3. METHOD
In this section, we describe the operation of the Radix-k
algorithm. We begin with a high-level description of mes-
sage rounds, what processes communicate in each round,
and what portion of the image is exchanged. Then, we com-
pute the theoretical cost using the previous cost model and
compare it to the optimal cost of the algorithms in the pre-
vious section. To show features of the algorithm that the
cost model does not account for, such as overlapping opera-
tions, we log and profile message transfers and compositing
calculations. By tracking communication and computation
and operations and by viewing them with an information
visualization tool, we can better understand the subtleties
of the algorithm.

3.1 Algorithm Description
In this discussion, we refer periodically to Figure 2, which
shows an example of 12 processes. To begin, the total num-
ber of processes, p, is factored into r factors. These fac-
tors constitute the vector k = [k1, k2, ...kr] such that p =Qr

i=1 ki. There are r communication/compositing rounds.
In each round i, there are p/ki groups, and each group has
ki participants. Within a round, only the participants in

a group communicate with each other. In Figure 2, the 12
processes are factored into two rounds, with k = [4, 3]. The
processes are drawn in a 4× 3 rectangular layout to identify
the rounds more clearly. In this example, the rows of the
grid form groups in the first round, and the columns form
second-round groups. (Recall that the algorithm makes no
assumptions about actual topology.) The outermost rectan-
gles represent the image held by each process at the start of
the algorithm.

During the current round i, the current image piece is fur-
ther divided into ki pieces. Each of the ki group partici-
pants is responsible for compositing one of these pieces. The
other members in the group send the appropriate piece to
this member for compositing. For example, the first group
member receives the first image piece from the other ki − 1
members. In the next round i + 1, the image pieces are fur-
ther subdivided by the new ki+1 number of group members,
such that the image pieces grow smaller with each round.
The original image size does not need to be a multiple of
the number of processes, nor do current round image pieces
need to be evenly divisible by the current number of group
participants. In Figure 2, first-round messages travel hori-
zontally, and second-round messages travel vertically. The
image pieces are shown as colored boxes in each round.

As a group member receives image pieces from the other par-
ticipants, it composites them with its own, one at a time,
accumulating the current result. These messages may arrive
out of order, in this case they are buffered until ready to be
composited in the correct order. A message may be com-
posited immediately if it is either directly over or directly
under the accumulated result, or directly over or directly un-
der another message that has already arrived. By directly,
we mean that no other messages are between these two in
the sequence.

At a new round, groups are formed from participants that
are (in rank order) farther apart from each other than they
were in the previous round. In the first round, the k mem-
bers in a group are nearest neighbors in rank order; in the
second round, each member is k apart; in round i, the rank-
order distance between members is

Qi−1
j=1 kj . A convenient

way to think about forming groups in each round is to envi-
sion the process space as an r-dimensional virtual lattice,
where the size in each dimension is the k-value for that
round. Imagine the processes are mapped onto that lat-
tice in row-major order, extended to r dimensions. In the
first round, groups are formed by taking rows in the lattice;
the second-round groups are columns; and so on. This is the
convention followed in Figure 2.

3.2 Computing Theoretical Cost
Using the same cost model as earlier, one can compute the
cost of the Radix-k algorithm in terms of latency, band-
width, and computation terms. The latency term is simply
αr, because there are r rounds. Compared to binary swap
and the latency terms in Table 1, this is less than α log2(p)
provided that there exists some ki > 2.

The bandwidth term is slightly more complex. There are r
rounds, each consisting of one less message than ki of the
current round. Hence, the number of messages communi-

cated by a process is
Pr

i=1 ki − 1. The size of the message
in round i is divided by a factor of the current ki in each
round, so the current message size at round i is

Qi
j=1 1/kj .

Combining these expressions, we arrive at the bandwidth
term: nβ

Pr
i=1[(ki − 1)

Qi
j=1 1/kj]. The computation term

is the same except that β is replaced with γ; every pixel that
is transmitted also needs to be composited.

This expression can be simplified so that it can be com-
pared with the optimal lower bound, (p− 1)/p. Converting
the terms in the above summation to a common denomi-
nator yields

Pr
i=1[(ki − 1)

Qi
j=1 1/kj

Qr
n=i+1 kn/kn]. The

denominator is the product of all of the k-values, or simply
p. The numerator is

Pr
i=1[(ki−1)

Qr
n=i+1 kn] or, expanded,

k1k2k3...kr−k2k3k4...kr+k2k3k4...kr+...−kr−1kr+kr−1kr−
kr + kr − 1. Canceling all of the inner terms leaves p− 1 in
the numerator.

Radix-k has the same theoretical communication and com-
putation cost as does binary swap; in essence it combines
multiple binary swap rounds into one round by using a higher
radix than 2. It performs these higher-radix rounds using
direct-send inside each round, which also has the same op-
timal bandwidth and computation cost. When all of the
k-values are 2, the result is binary swap. When there is only
a single round and k = [p], we have direct-send. Between
these two extremes are multiple rounds of direct-sends in
each group.

3.3 Profiling Actual Cost
The preceding cost computations make some simplifying
assumptions, such as a fully connected network, nonover-
lapped communication and computation, and the ability to
receive multiple messages simultaneously. Depending on the
hardware, some of these assumptions may not hold. We turn
next to profiling tools to see these effects. By comparing the
communication and computation profiles using MPE and
Jumpshot [8] we can better understand how Radix-k com-
pares, for example, to binary swap.

Figure 3 show traces of binary swap and Radix-k for k = [8,
8], using 64 processes on Blue Gene/P. In these figures, the
horizontal axis measures time, and the vertical axis denotes
process ranks. Only the first 32 processes are shown in the
figure; the other 32 processes have similar patterns. The
red and blue boxes denote computation of a pair of compos-
ited images. In binary swap, the green boxes indicate the
time spent in communicating via MPI Sendrecv. In Radix-
k, the salmon-colored boxes indicate the time spent waiting
for nonblocking messages to arrive (MPI Waitany). In both
diagrams, white arrows represent message transmission be-
tween processes.

The patterns are quite different for the two algorithms. Bi-
nary swap is entirely synchronous; the six rounds in this
example are easy to see. Each is composed of a communica-
tion followed by a computation. The time for each round is
one-half of the previous round because message size is cut by
one-half in each round. The synchronous nature of binary
swap does not permit any overlap between communication
and computation.

Radix-k is designed to be asynchronous when the architec-

Figure 3: Top: Jumpshot profile of the binary swap
algorithm for 64 processes. Bottom: Jumpshot pro-
file of the Radix-k algorithm for 64 processes, fac-
tored into 2 rounds of k = [8, 8].

ture supports multiple messages arriving concurrently with
computation. Not all architectures support these features,
as our second case study below shows. When such hardware
support does exist, however, Radix-k can exploit it. In the
right side of Figure 3, computation blocks are drawn on top
of the communication blocks, and the communication block
extends until the last computation block in a round. Com-
putation begins early, as blocks are composited as soon as
possible. Rounds also begin asynchronously, as soon as a
process has completed the previous round. This approach
makes the boundary between rounds less defined in Figure
3.

4. RESULTS
Our tests were conducted on two platforms at Argonne Na-
tional Laboratory. The IBM Blue Gene/P Intrepid is a 557-
teraflop supercomputer currently ranked fifth on the Top
500 list. It consists of 40 racks, each rack containing 1,024
nodes, for a total of 40,960 nodes. Each node has four cores,
for a grand total of 163,840 cores. The nodes are connected
in a 3D torus topology. Our tests are conducted in smp

mode, that is, one process per node. The second platform
is a graphics cluster consisting of 100 compute nodes and
200 Quadro FX5600 graphics processing units. At 111 ter-
aflops, Eureka is the world’s largest NVIDIA Quadro Plex
installation. The compute nodes are connected by a Myrinet
switching fabric. Both machines are operated by the Ar-
gonne Leadership Computing Facility [1].

All tests were run multiple times to check for variability;
mean times are reported. On both Intrepid and Eureka,
standard deviation averaged 5 ms over all of our tests. The
test images were synthetic checkerboard patterns, where each
process contained a slightly different pattern offset from the
previous one. Test results were cross-checked for correctness
against a serial code that performed the image compositing.
Images were composited in process rank order: process 0’s
image over process 1’s, which in turn was over process 2’s,
and so forth.

In the following graphs, we compare our results with binary
swap because, as we noted in the background section, it
is the de facto standard in image compositing. We do not
apply optimizations such as bounding the active pixels in ei-
ther algorithm, but, instead, consider the worst case, where
all pixels of all images are used. K-values are set manually
based on initial tests of good values for a particular archi-
tecture.

4.1 Scalability
In order to evaluate scalability over a variety of system scales
and problem sizes, Figure 4 shows four image sizes: 1, 2, 4,
and 8 megapixels. At 16 bytes per pixel, starting message
vectors range from 16 MB to 128 MB. Results are taken
at power-of-two numbers of processes from 32 to 16384. In
initial tests of what k-values work well for this architecture,
we found 8 to be a good choice. Thus, in our selection of k-
values, we favored 8 whenever possible in early rounds and
then used 4 or 2 as needed in later rounds. The Radix-k
results are never worse than binary swap and are up to 1.51
times faster. On average, Radix-k is 1.45 times faster across
all of the data points in this test. The slight bump in some
of the curves in Figure 4 is due to moving beyond a single
rack to multiple Blue Gene racks. This is an artifact of the
architecture, not of the algorithm.

4.2 Nonpower-of-two Numbers of Processes
Binary swap is designed to work on a power-of-two number
of processes. Extensions such as 2-3 swap to handle the
nonpower-of-two cases incur a performance penalty because
they are not a part of the original algorithm design. Radix-k
is not designed around a particular radix value, so in theory
it should accommodate arbitrary numbers of processes more
gracefully. In practice, certain numbers of processes will
factor into k-values that map onto a particular architecture
better than others.

Figure 5 shows the test results for a variety of process counts
from 32 to 34,816. The left graph is a higher-resolution test,
where the process count increases by 32 at each data point.
In the right graph, above 1024 processes, the increment is
one additional Blue Gene rack (1,024 nodes). The left graph
exhibits considerable variability from one data point to the
next, but there is not the same dependence on powers of

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

32 64 128 256 512 1024 2048 4096 8192 16384

Ti
m

e
(s

)

Number of Intrepid Processes

Compositing Time for 1.0 and 2.0 Megapixel Images

binary swap, 2 Mpx
radix-k, 2 Mpx

binary swap, 1 Mpx
radix-k, 1 Mpx

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

32 64 128 256 512 1024 2048 4096 8192 16384

Ti
m

e
(s

)

Number of Intrepid Processes

Compositing Time for 4.0 and 8.0 Megapixel Images

binary swap, 8 Mpx
radix-k, 8 Mpx

binary swap, 4 Mpx
radix-k, 4 Mpx

Figure 4: Scalability over a wide range of processor
counts and image sizes. Process counts are powers of
two from 32 to 16,384. Top: 1- and 2-megapixel im-
age sizes. Bottom: 4- and 8-megapixel image sizes.

two as in other algorithms. In comparison, 2-3 compositing
(see Fig. 6 of Yu et al.[32]) displays a constant slowdown of
approximately two times between the data points that are
powers of two and the rest.

4.3 Selecting the k Vector
Radix-k is configurable to various architectures, but one
needs to be able to find what the optimal configurations
are. This subsection studies how to select the best values
for the vector k. These values do not depend on the image,
but are related to the network topology (mesh or torus, for
example) and to physical placement of processes onto that
topology. The following tests are conducted on Intrepid, at
256 processes, but they are representative of larger numbers
of processes. Image size is 2 megapixels.

The left panel of Figure 6 shows the performance for different
combinations and permutations of k-values, listed along the
horizontal axis. At the far left of this graph is binary swap,
while direct-send is at the far right. The upper curve mea-
sures performance when a 3D mesh is selected; at 256-node
partitions and below, the wrap-around links are unavailable
making the network a mesh instead of a torus. By allocating
a 512-node partition, however, even if 256 nodes are used,
a true 3D torus exists. This is the lower curve. The avail-
ability of a torus increases performance, as the graph shows,
and the effect is more dramatic toward the right side of the
graph where the k-values are larger. The irregular spikes
in both curves are not noisy data; rather, they are various

configurations when nodes that need to communicate large
messages are farther apart in the torus or mesh. That is,
messages may need to make several hops or congregate in
hot spots, causing congestion. Overall, the best k-values in
the left graph occur when fairly large radices such as 16 or
32 appear in the k vector.

When using high-radix configurations, it is beneficial to con-
trol where processes land in the network topology, in order
to avoid the hot spots mentioned above. Intrepid provides
a mechanism for process mapping; the right panel of Figure
6 examines the effect of this process mapping on Radix-k
performance. The top curve is identical to the left panel; it
includes no mapping. The lower two curves show the effect
of mapping increasing ranks to 2× 2× 2 and 4× 4× 4 phys-
ical blocks in the torus. For example, in the former case,
the first 8 ranks would map to the first 2× 2× 2 blocks, the
next 8 ranks would map into the next adjacent block, and
so forth. We tested a number of block sizes besides those
shown. The right panel performance improved over that of
the left panel, and the optimal settings have shifted to k
vectors that include the radix 8, such as [8, 8, 2, 2] and [8,
8, 4]. Intuitively, having the early rounds communicate with
radix 8 makes each 2 × 2 × 2 block operate as a 3D hyper-
cube, an efficient communication kernel for a multiported

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100 200 300 400 500 600 700 800 900 1000 1100

Ti
m

e
(s

)

Number of Intrepid Processes

Compositing Time for 8.0 Mpixel Image

binary swap
radix-k

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 5000 10000 15000 20000 25000 30000 35000

Ti
m

e
(s

)

Number of Intrepid Processes

Compositing Time for 8.0 Mpixel Image

binary swap
radix-k

Figure 5: Performance for a variety of proces-
sor counts, both powers of two and primarily
nonpowers-of-two counts, compared with binary
swap at the processor counts that are powers of two.
Top: process counts from 32 to 1,024 in increments
of 32. Bottom: the same test is continued at larger
scale, from 1,024 to 8,192 process in increments of
1,024.

 0.1
 0.12
 0.14
 0.16
 0.18

 0.2
 0.22
 0.24
 0.26
 0.28

 0.3

[2
 2

 2
 2

 2
 2

 2
 2

]
[4

 2
 2

 2
 2

 2
 2

]
[2

 4
 2

 2
 2

 2
 2

]
[2

 2
 4

 2
 2

 2
 2

]
[2

 2
 2

 4
 2

 2
 2

]
[2

 2
 2

 2
 4

 2
 2

]
[2

 2
 2

 2
 2

 4
 2

]
[2

 2
 2

 2
 2

 2
 4

]
[8

 2
 2

 2
 2

 2
]

[2
 8

 2
 2

 2
 2

]
[2

 2
 8

 2
 2

 2
]

[2
 2

 2
 8

 2
 2

]
[2

 2
 2

 2
 8

 2
]

[2
 2

 2
 2

 2
 8

]
[8

 8
 2

 2
]

[2
 8

 8
 2

]
[2

 2
 8

 8
]

[8
 2

 2
 8

]
[2

 8
 8

 2
]

[8
 8

 4
]

[8
 4

 8
]

[1
6

4
4]

[4
 1

6
4]

[4
 4

 1
6]

[1
6

16
]

[3
2

8]
[8

 3
2]

[6
4

4]
[4

 6
4]

[2
56

]

Ti
m

e
(s

)

K

Different K-values for 256 Processes in 3D Mesh and 3D Torus

Mesh
Torus

 0.1
 0.12
 0.14
 0.16
 0.18

 0.2
 0.22
 0.24
 0.26
 0.28

 0.3

[2
 2

 2
 2

 2
 2

 2
 2

]
[4

 2
 2

 2
 2

 2
 2

]
[2

 4
 2

 2
 2

 2
 2

]
[2

 2
 4

 2
 2

 2
 2

]
[2

 2
 2

 4
 2

 2
 2

]
[2

 2
 2

 2
 4

 2
 2

]
[2

 2
 2

 2
 2

 4
 2

]
[2

 2
 2

 2
 2

 2
 4

]
[8

 2
 2

 2
 2

 2
]

[2
 8

 2
 2

 2
 2

]
[2

 2
 8

 2
 2

 2
]

[2
 2

 2
 8

 2
 2

]
[2

 2
 2

 2
 8

 2
]

[2
 2

 2
 2

 2
 8

]
[8

 8
 2

 2
]

[2
 8

 8
 2

]
[2

 2
 8

 8
]

[8
 2

 2
 8

]
[2

 8
 8

 2
]

[8
 8

 4
]

[8
 4

 8
]

[1
6

4
4]

[4
 1

6
4]

[4
 4

 1
6]

[1
6

16
]

[3
2

8]
[8

 3
2]

[6
4

4]
[4

 6
4]

[2
56

]

Ti
m

e
(s

)

K

Mapping Different K-values to Physical Locations for 256 Processes

None
4x4x4 Blocks
2x2x2 Blocks

Figure 6: Performance of different k-values for 256
processes. K-values increase from left to right. Top:
High-radix values such as 16 and 32 perform better
than low values, and the presence of wrap-around
torus links is significant. Bottom: Performance is
further improved by mapping process ranks to phys-
ical torus locations. The “sweet spot” for this ar-
chitecture occurs when k-values are biased toward
radix-8 in conjunction with mapping successive pro-
cess ranks into physical blocks of 2× 2× 2.

3D topology such as the Blue Gene.

����

����

����

���

����

����

����

� �� �� �� �� �� �� �� �� �� ���

�
��

�
��

�
�

��������� �����������������

�������������������������������������

�����������
���� �������� ��������
���� �������� ��������
���� �������� ��������

Figure 7: Performance on a cluster architecture can
be grouped into regions. A best-fit line for three
regions is shown. Process counts that are multiples
of 4 perform slightly better than multiples of 3 and
5.

4.4 Cluster Performance
As data continue to grow in size, more analysis and visu-
alization operations will be performed on machines such as
Intrepid. Today, however, such machines are still inacces-
sible for many visualization applications, and these tasks
are often performed on smaller clusters. In the next test,
we analyze the performance of Radix-k on the 100-node Eu-
reka cluster, with a Myrinet interconnect. One would expect
some features of supercomputer interconnects such as mul-
tiporting and separate DMA engines for communication to
eventually make their way to commodity interconnects, but
for the time being, we were not surprised to see less per-
formance gain from using Radix-k on this single-ported net-
work. Nevertheless, Radix-k still provides a useful param-
eterization of combinations of binary swap and direct-send
rounds for arbitrary numbers of processes.

Figure 7 shows these results for a 2-megapixel image size.
We tested four image sizes again, from 1 to 8 megapixels;
the graph for 2 megapixels is indicative of all the results.
Process counts range from 4 to 96, in increments of 1. For
our k-values, we factored the process count into prime num-
bers and arranged these factors in ascending order. Earlier
rounds contained smaller factors. For process counts that
are powers of two, this equates to a binary swap where k =
[2, 2, ...].

The scatterplot in Figure 7 shows a broad spread of results;
but by grouping the points into four categories, interesting
patterns emerge. The points in the lower half of the graph
cluster around three lines. The slopes of these lines is gov-
erned by the interconnect latency and bandwidth, not the
algorithm. By comparison, the slope in the earlier Intrepid
tests was much less.

Process counts that are multiples of four perform better than
the rest. Those points are clustered around a line that ranges
from 0.06 s at the left end to 0.08 s at the right. These
points include the powers of two as well as other points.
The next-best category is composed of process counts that
are multiples of three. These points form a similar line,
slightly offset from the first. Multiples of five have a similar
pattern. The remaining points are scattered; some of these
are prime numbers where Radix-k performs only one direct-
send.

Users do not always choose arbitrary numbers of processes to
run a job. Multiples of two, three, four, five, or ten are com-
mon. Figure 7 shows that for such configurations, Radix-k
performs in approximately 33% of the optimal time across a
variety of process counts, indicated by the distance between
the upper and lower best-fit lines. While Radix-k does not
have the same advantage on Eureka as on Intrepid, this re-
sult shows that Radix-k is a useful tool within a cluster
environment as well as in a supercomputer environment.

5. SUMMARY
5.1 Conclusions
Radix-k trades the number of message partners with num-
ber of rounds, and it does so in a round-by-round, config-
urable manner. The Radix-k algorithm for image composit-
ing builds on the previous contributions of binary swap and
direct-send. By parameterizing the number of message part-

ners in a round, it unifies these two algorithms that previ-
ously were treated separately. By factoring the number of
processes into a number of rounds with a separate radix for
each round, the algorithm embodies binary swap, direct-
send, and combinations in between.

By using higher radices, messages can occur in parallel with
each other and with computation. Of course, this improves
performance only when the underlying architecture can ex-
ploit the additional concurrency. As we saw in the tests
performed on the Blue Gene/P, modern networks that are
multiported and that have DMA access to messages can ben-
efit Radix-k. The case study on Intrepid is relevant for two
reasons. First, as simulations grow in size and scope, more
analysis such as scientific visualization will need to occur on
the same supercomputer as the simulation. This situation
is true whether the analysis is performed after simulation
or concurrent with it. Second, hardware innovations at the
supercomputer scale tend to migrate to other architectures
such as clusters.

In the cluster study, Radix-k did not exhibit the same per-
formance gains as in the supercomputer study, since the in-
terconnect and node hardware, together with (perhaps) the
MPI implementation, saturate at small radices. By selecting
more rounds of small k-values, however, as we did by choos-
ing ascending prime factors, we still were able to achieve
consistent performance over a variety of process counts.

5.2 Future Work
This research offers several avenues for continued exploration.
In the experiments thus far, we did not cull inactive pixels.
Instead, we considered the worst-case scenario when all pix-
els are used. Especially in the early rounds, this may not
be the case in practice. It will be interesting to see how
such an optimization compares between Radix-k and binary
swap, for example. A smaller message size resulting from
the active pixel optimization may favor the use of higher
radices in early rounds. We plan to explore this hypothesis.

We have not done much to optimize the pixel compositing
computation. With the ubiquity of multicore processors,
a natural next step is to parallelize the computing of the
over operator across several pixels. The amount of overlap
between communication and computation depends on the
relative rates of those two steps; maximum overlap occurs
when they are approximately equal. Improving the speed
of the computation on low-power compute nodes such as
the Blue Gene can extend the effectiveness of the algorithm.
Our work in profiling the algorithm with tools such as MPE
and Jumpshot can prove useful as we measure the amount
of overlap and look for ways to increase it.

There exists a trend in communication algorithms toward
self-tuning. So far, we have performed small empirical ex-
periments to select what we think are appropriate k-values
for a particular architecture. Another area for further study
is optimizing and automating this process. We foresee the
algorithm’s being able to select its own optimal set of pa-
rameters for a given set of initial conditions.

6. ACKNOWLEDGMENT

We gratefully acknowledge the use of the resources of the
Argonne Leadership Computing Facility at Argonne Na-
tional Laboratory. This work was supported by the Of-
fice of Advanced Scientific Computing Research, Office of
Science, U.S. Department of Energy, under Contract DE-
AC02-06CH11357. Work is also supported by DOE with
agreement No. DE-FC02-06ER25777.

7. REFERENCES
[1] Argonne Leadership Computing Facility. 2009.

http://www.alcf.anl.gov/.

[2] J. Ahrens and J. Painter. Efficient sort-last rendering
using compression-based image compositing. In Proc.
Eurographics Parallel Graphics and Visualization
Symposium 2008, Bristol, United Kingdom, 1998.

[3] M. Barnett, S. Gupta, D. G. Payne, L. Shuler,
R. Geijn, and J. Watts. Interprocessor collective
communication library (intercom. In In Proceedings of
the Scalable High Performance Computing Conference,
pages 357–364. IEEE Computer Society Press, 1994.

[4] M. Barnett, D. G. Payne, R. A. van de Geijn, and
J. Watts. Broadcasting on meshes with wormhole
routing. Journal of Parallel Distributed Computing,
35(2):111–122, 1996.

[5] M. Bernaschi and G. Iannello. Collective
communication operations: Experimental results vs.
theory. Concurrency, 10(5):359–386, 1998.

[6] J. Bruck, C.-T. Ho, S. Kipnis, and D. Weathersby.
Efficient algorithms for all-to-all communications in
multi-port message-passing systems. In SPAA ’94:
Proceedings of the sixth annual ACM symposium on
Parallel algorithms and architectures, pages 298–309,
New York, NY, USA, 1994. ACM.

[7] X. Cavin, C. Mion, and A. Fibois. Cots cluster-based
sort-last rendering: Performance evaluation and
pipelined implementation. In Proc. IEEE
Visualization 2005, pages 111–118, 2005.

[8] A. Chan, W. Gropp, and E. Lusk. An efficient format
for nearly constant-time access to arbitrary time
intervals in large trace files. Scientific Programming,
16(2-3):155–165, 2008.

[9] E. Chan, M. Heimlich, A. Purkayastha, and R. van de
Geijn. Collective communication: theory, practice, and
experience: Research articles. Concurr. Comput. :
Pract. Exper., 19(13):1749–1783, 2007.

[10] E. Chan, R. van de Geijn, W. Gropp, and R. Thakur.
Collective communication on architectures that
support simultaneous communication over multiple
links. In PPoPP ’06: Proceedings of the eleventh ACM
SIGPLAN symposium on Principles and practice of
parallel programming, pages 2–11, New York, NY,
USA, 2006. ACM.

[11] W. M. Hsu. Segmented ray casting for data parallel
volume rendering. In Proc. 1993 Parallel Rendering
Symposium, pages 7–14, San Jose, CA, 1993.

[12] G. Humphreys, M. Houston, R. Ng, R. Frank,
S. Ahern, P. D. Kirchner, and J. T. Klosowski.
Chromium: a stream-processing framework for
interactive rendering on clusters. ACM Trans. Graph.,
21(3):693–702, 2002.

[13] S. Kumar, G. Dozsa, G. Almasi, P. Heidelberger,
D. Chen, M. E. Giampapa, M. Blocksome, A. Faraj,

J. Parker, J. Ratterman, B. Smith, and C. J. Archer.
The deep computing messaging framework:
generalized scalable message passing on the blue
gene/p supercomputer. In ICS ’08: Proceedings of the
22nd annual international conference on
Supercomputing, pages 94–103, New York, NY, USA,
2008. ACM.

[14] S. Kumar, G. Dozsa, J. Berg, B. Cernohous, D. Miller,
J. Ratterman, B. Smith, and P. Heidelberger.
Architecture of the component collective messaging
interface. In Euro PVM/MPI ’08: Proceedings of the
15th annual European PVM/MPI users’ group
meeting, pages 23–32, New York, NY, USA, 2008.
Springer.

[15] T.-Y. Lee, C. S. Raghavendra, and J. B. Nicholas.
Image composition schemes for sort-last polygon
rendering on 2d mesh multicomputers. IEEE
Transactions on Visualization and Computer
Graphics, 2(3):202–217, 1996.

[16] K.-L. Ma and V. Interrante. Extracting feature lines
from 3d unstructured grids. In Proc. IEEE
Visualization 1997, pages 285–292, Phoenix, AZ, 1997.

[17] K.-L. Ma, J. S. Painter, C. D. Hansen, and M. F.
Krogh. Parallel volume rendering using binary-swap
compositing. IEEE Computer Graphics and
Applications, 14(4):59–68, 1994.

[18] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A
sorting classification of parallel rendering. IEEE
Computer Graphics and Applications, 14(4):23–32,
1994.

[19] K. Moreland, B. Wylie, and C. Pavlakos. Sort-last
parallel rendering for viewing extremely large data
sets on tile displays. In PVG ’01: Proceedings of the
IEEE 2001 symposium on parallel and large-data
visualization and graphics, pages 85–92, Piscataway,
NJ, USA, 2001. IEEE Press.

[20] U. Neumann. Parallel volume-rendering algorithm
performance on mesh-connected multicomputers. In
Proc. 1993 Parallel Rendering Symposium, pages
97–104, San Jose, CA, 1993.

[21] U. Neumann. Communication costs for parallel
volume-rendering algorithms. IEEE Computer
Graphics and Applications, 14(4):49–58, 1994.

[22] J. Nonaka, K. Ono, and H. Miyachi. Theoretical and
practical performance and scalability analyses of
binary-swap image composition method on ibm blue
gene/l. In Proc. 2008 International Workshop on
Super Visualization (unpublished manuscript), Kos,
Greece, 2008.

[23] T. Porter and T. Duff. Compositing digital images. In
Proc. 11th Annual Conference on Computer Graphics
and Interactive Techniques, pages 253–259, 1984.

[24] D. Pugmire, L. Monroe, A. DuBois, and D. DuBois.
Npu-based image compositing in a distributed
visualization system. IEEE Transactions on
Visualization and Computer Graphics, 13(4):798–809,
2007. Member-Connor Davenport, Carolyn and
Member-Poole, Stephen.

[25] R. Rabenseifner. New Optimized MPI Reduce
Algorithm. 2004.
http://www.hlrs.de/organization/par/services/models/mpi/myreduce.html.

[26] R. Rabenseifner and J. L. Traff. More efficient

reduction algorithms for non-power-of-two number of
processors in message-passing parallel systems. In
Proc. EuroPVM/MPI 2004, pages 36–46, Budapest,
Hungary, 2004.

[27] A. Stompel, K.-L. Ma, E. B. Lum, J. Ahrens, and
J. Patchett. Slic: Scheduled linear image compositing
for parallel volume rendering. In Proc. IEEE
Symposium on Parallel and Large-Data Visualization
and Graphics, pages 33–40, Seattle, WA, 2003.

[28] A. Takeuchi, F. Ino, and K. Hagihara. An improved
binary-swap compositing for sort-last parallel
rendering on distributed memory multiprocessors.
Parallel Comput., 29(11-12):1745–1762, 2003.

[29] R. Thakur, R. Rabenseifner, and W. Gropp.
Optimization of collective communication operations
in mpich. International Journal of High Performance
Computing Applications, 19:49–66, 2005.

[30] J. L. Traff. An improved algorithm for
(non-commutative) reduce-scatter with an application.
In Proc. EuroPVM/MPI 2005, pages 129–137,
Sorrento, Italy, 2005.

[31] J. L. Traff, A. Ripke, C. Siebert, P. Balaji, R. Thakur,
and W. Gropp. A simple, pipelined algorithm for
large, irregular all-gather problems. In Proc.
EuroPVM/MPI 2008, Dublin, Ireland, 2008.

[32] H. Yu, C. Wang, and K.-L. Ma. Massively parallel
volume rendering using 2-3 swap image compositing.
In SC ’08: Proceedings of the 2008 ACM/IEEE
conference on Supercomputing, pages 1–11,
Piscataway, NJ, USA, 2008. IEEE Press.

