
Assessing Improvements to the Parallel Volume
Rendering Pipeline at Large Scale

Tom Peterka∗, Robert Ross∗, Hongfeng Yu†, Kwan-Liu Ma‡, Wesley Kendall§, and Jian Huang§
∗Argonne National Laboratory
Email: tpeterka@mcs.anl.gov

†Sandia National Laboratories, California
‡University of California, Davis

§University of Tennessee, Knoxville

Abstract—Computational science’s march toward the petascale
demands innovations in analysis and visualization of the resulting
datasets. As scientists generate terabyte and petabyte data, it
is insufficient to measure the performance of visual analysis
algorithms by rendering speed only, because performance is
dominated by data movement. We take a systemwide view in
analyzing the performance of software volume rendering on the
IBM Blue Gene/P at over 10,000 cores by examining the relative
costs of the I/O, rendering, and compositing portions of the
volume rendering algorithm. This examination uncovers room for
improvement in data input, load balancing, memory usage, image
compositing, and image output. We present four improvements
to the basic algorithm to address these bottlenecks. We show
the benefit of an alternative rendering distribution scheme that
improves load balance, and how to scale memory usage so that
large data and image sizes do not overload system memory.
To improve compositing, we experiment with a hybrid MPI -
multithread programming model, and to mitigate the high cost
of I/O, we implement multiple parallel pipelines to partially hide
the I/O cost when rendering many time steps. Measuring the
benefits of these techniques at scale reinforces the conclusion
that BG/P is an effective platform for volume rendering of large
datasets and that our volume rendering algorithm, enhanced by
the techniques presented here, scales to large problem and system
sizes.

Keywords–Parallel volume rendering; distributed scientific visu-
alization; software raycasting; load balancing, scalability, multi-
threading

I. INTRODUCTION

In the face of the petascale era, innovative visualization
technologies will be required to keep pace with dramatically
increasing datasets. Supercomputer software rendering is a
throwback to the past, but the methods presented in this
paper are implemented and tested on one of the world’s most
powerful supercomputers: the IBM Blue Gene/P (BG/P). We
test volume rendering on BG/P at massively parallel scales
– over 10,000 cores – in the context of astrophysics data
from the simulation of supernova core collapse (see Figure
1). This research, under the auspices of the U.S. Department

c©2008 IEEE. Personal use of this material is permitted. However, permis-
sion to reprint/republish this material for advertising or promotional purposes
or for creating new collective works for resale or redistribution to servers or
lists, or to reuse any copyrighted component of this work in other works must
be obtained from the IEEE.

of Energy’s SciDAC Institute for Ultra-Scale Visualization [1]
is conducted on the 550 teraflop BG/P at Argonne National
Laboratory’s Leadership Computing Facility (ALCF) [2].

While parallel volume rendering algorithms are well known,
targeting a new architecture, large problem sizes, and extensive
system scale can lead to a better understanding of the relative
cost of the various stages of the method and uncovers the
need for improvements in some areas. Much visualization
research in recent years harnesses GPU hardware to increase
performance. Our goal is not to compete with this technol-
ogy, because software rendering rates are much lower than
dedicated graphics hardware. Growing dataset size, however,
implies that GPUs, while highly parallel at the hardware
level, will require interchip and internode parallelism and
be subject to many of the same performance bottlenecks as
slower, software renderers. When raw rendering time is not
the bottleneck in end-to-end performance, a modern supercom-
puter such as BG/P becomes a viable alternative to a graphics
cluster. With its tightly coupled interconnection backbone,
parallel file system, and massive number of cores, such an
architecture scales more predictably once the problem size
grows to billions and tens of billions of data elements. Factors

Fig. 1. Software volume rendering of the entropy from time step 1354 of a
core collapse supernova simulation



such as I/O and communication bandwidth – not rendering
speed – dominate the overall performance.

The opportunity for in situ visualization [3] [4] [5], or
overlapping visualization with an executing simulation, is
another advantage associated with visualizing data on the same
architecture as the simulation. Because postprocessing and
transporting data can dominate a scientific workflow as data
sizes increase, moving the analysis and visualization closer
to the data can be less expensive than the other way around.
In situ techniques grow in importance as simulations grow in
size. For example, Yeung et al. already routinely compute flow
simulations at 20483 data elements [6], and their next target
is 40963 using the IBM Blue Gene architecture. This equates
to approximately 270 GB per time step per variable. Similar
dataset sizes are currently being produced by Woodward et al.
[7] in the area of fluid dynamics and by Chen et al. [8] in
earthquake simulation.

In this paper we examine the costs of the various phases of
our volume rendering algorithm; I/O, rendering, and composit-
ing as we scale the problem and system size. Based on our
findings, we examine four improvements to the algorithm and
study how each technique affects performance. The techniques
are: (a) load balancing via round-robin data block distribution,
(b) memory conservation via parallel image output, (c) lever-
aging shared memory architecture via hybrid programming,
and (d) hiding I/O latency through multiple time step pipelines.
While these techniques are not new inventions, we test them
at scales up to 16K cores and analyze the benefit of each to
the whole as well as to individual parts of the parallel volume
rendering algorithm.

II. BACKGROUND

A brief background on parallel volume rendering is followed
by a survey of parallel performance in large scale visualization.
This section concludes with a look at trends in modern parallel
architectures and the changing programming models to support
them.

A. Parallel Volume Rendering

Figure 2 shows that the a parallel volume rendering algo-
rithm consists of three main stages: I/O, rendering, and com-
positing. Each core executes I/O, rendering, and compositing
serially, and this set of three operations is replicated in parallel
over many cores. In the I/O stage, data are simultaneously
read by all cores. The middle section, rendering, occurs in
parallel without any intercore communication. The third stage,
compositing, requires many-to-many communication using the
direct-send method [9]. Finally, a completed image from a
pipeline is either saved to disk or streamed over a network.

Sort-last parallel rendering methods [10] such as ours ac-
commodate large data by dividing the dataset among nodes
[11]. This approach can cause load imbalance in the rendering
phase because of variations in scene complexity. Although
it may seem that empty blocks should be fastest, the oppo-
site is true in this algorithm. Early ray termination causes
computation of the volume rendering integral along a ray

Fig. 2. Functional diagram of the parallel volume rendering algorithm

to terminate once a maximum opacity is reached, but empty
regions never reach this maximum opacity and are evaluated
fully. Load imbalances occur only in the rendering phase; the
compositing phase is inherently load balanced by dividing the
resulting image into uniform regions such as scan lines [12].
Approaches to load balancing in the rendering phase can be
either dynamic [13] or static [14], and distribution can occur
in data space, image space, or both [15].

B. Performance

To measure performance, we compile the time required
for each of the three stages in Figure 2, which sum to the
total frame time, or the latency between viewing one time
step to the next. (Frame rate is the reciprocal of frame time.)
The relative costs of the three phases shift as the number of
cores increases, but ultimately the algorithm is I/O bound [16].
Rendering performance scales linearly assuming perfect load
balance, because it requires no interprocess communication.
Cost of the direct-send compositing portion of the algorithm
is dominated by many-to-many communication and becomes
a significant factor beyond 2K cores and eclipses rendering
time beyond 8K cores.

We do not use compression or multiple levels of detail,
which can impose load imbalance and degrade visual quality.
We do not preprocess the data to detect empty blocks, nor do
we hierarchically structure the data as in [17]. Because our
data are time varying, we attempt to simply visualize “on-the-
fly,” without doing any preprocessing between time steps.

In [18], Peterka et al. tested scalability up to 4K cores
and concluded that leadership class supercomputers are viable
volume rendering platforms for large datasets, that I/O cost
dominates performance and must be mitigated, that rendering
inefficiency is caused by load imbalance, and that compositing
strategies such as direct-send cannot scale indefinitely. To
summarize some other large visualization results, we survey a
few notable examples from the literature in Table I.

From this list, one may conclude that it is possible to visual-
ize structured meshes of 1 billion elements at interactive rates
of several frames per second, including I/O for time varying
data. Unstructured meshes can be visualized in tens of seconds,
excluding I/O and preprocessing time. Large structured meshes
of tens of billions of elements fall in between, requiring several
seconds excluding I/O time. Lighting is typically not possible
at these performance levels, and image sizes are usually
limited to 1 megapixel. Our goal is to show scalability rather
than interactive rates, but performance cannot be neglected



TABLE I
PREVIOUSLY PUBLISHED LARGE VOLUME RENDERING RESULTS

Dataset Billion
Ele-
ments

Mesh Type Image
Size

Time
(s)

I/O
incl.

Ref.

Molecular
Dynamics

.14 unstructured 1Kx1K 30 no [19]

Blast Wave 27 unstructured 1Kx1K 35 no [19]
Taylor-
Raleigh

1 structured 1Kx1K 0.2 yes [20]

Fire 14 unstructured 800x800 16 no [21]

either. Our results will demonstrate that the performance of
this method fits within the context of the work in Table I. For
example, we will show that 11 billion elements on a structured
grid can be volume rendered, with lighting, in 16 seconds,
including I/O.

C. Parallel Architectures and Programming Models

In addition to passing messages between nodes, sharing
memory among cores is another way to achieve concurrency.
Multicore architectures are ubiquitous today as chip makers
strive to satisfy Moore’s Law without the ability to increase
clock speed and power indefinitely. Parallel graphics and
visualization is evolving with this changing hardware. For
example, Santos et al. [22] remark that the parallel visual-
ization community began to address these architectures in
2007. [23] is one such paper that specifically targets multicore
architectures to perform quality interactive rendering of large
data sets. This trend continues in 2008 with many more
papers targeting multicore hardware, for example, volume
rendering on the cell broadband engine [24]. The number of
cores in the Blue Gene PowerPC processor has doubled in
the last generation of machines, and this trend is likely to
continue. These hardware changes suggest that programming
models will evolve to best harness the intra- and internode
parallelism that is available. MPI has been the de facto parallel
programming model for many years, but OpenMP [25], Intel
Thread Building Blocks [26], and other libraries are gaining
popularity for writing multithreaded programs.

III. METHOD

In this section we elaborate on details of the implementa-
tion. We begin by describing the nature of the dataset and
BG/P architecture. We then discuss the program parameters
that vary in order to generate results, and discuss how perfor-
mance data are collected and analyzed.

A. Dataset

Our datasets originate from Anthony Mezzacappa of Oak
Ridge National Laboratory and John Blondin of North Car-
olina State University and represent physical quantities during
the early stages of supernova core collapse [27]. Variables
such as density, pressure, and velocity are stored in netCDF
[28] file format, in structured grids of size 8643 and 11203.
The two data sizes contain 0.65 and 1.4 billion elements per
time step, respectively. Additionally, we created two simulated
larger datasets by doubling each of the actual datasets in three

dimensions. These simulated data are eight times larger than
the original, or 5.2 and 11.2 billion data elements, respectively.
In order to visualize the data, each time step is preprocessed
to extract a single variable from the netCDF file and written
in a separate file in 32 bit floating point format. With a
single variable extracted, the file sizes for one time step of
the actual and simulated datasets are 2.6, 5.6, 20.8, and 44.8
GB, respectively.

B. Architecture

Argonne National Laboratory’s Leadership Computing Fa-
cility (ALCF) [2] operates a 557 teraflop (TF) BG/P super-
computer. Four PowerPC450 cores that share 2 GB of RAM
constitute one BG/P node. Peak performance of one core is
3.4 gigaflops (GF), or 13.6 GF per node. One rack contains
1K nodes (4K cores), has 2 TB memory, and is capable of
13.9 TF peak performance. Eight racks equate to 16 TB RAM
and 108 TF. The complete system contains 40 racks (40K
nodes, 160K cores) 80 TB RAM, with peak performance
of 557 TF. These relationships are diagrammed in Figure 3.
IBM provides extensive online documentation of the BG/P
architecture, compilers, and users’ and programmers’ guides
[29].

C. Program Parameters

We built many controls into the volume rendering applica-
tion. For example, the image mode is variable: not just the
size of the finished image but whether it is saved to a file or
streamed to a remote display. The number of time steps run
in succession, including looping indefinitely over a finite time
series, can be set. Lighting can be enabled or disabled; we
enable lighting in order to demonstrate performance for high
quality rendering. The density of point sampling along each
ray can be controlled with a parameter as well.

A few more controls govern the arrangement of processes
into parallel pipelines, multiple threads, and collective writers.
The number of pipelines is variable up to the limit of the
total number of cores available. For example, 8K cores can be

Fig. 3. Argonne’s BG/P architecture.



TABLE II
SAMPLE PROGRAM PARAMETERS

Parameter Example Notes
DataSize 11203 Grid size (data elements)
ImageSize 16002 Image size (pixels)
NumProcs 16384 Total MPI processes
NumPipes 16 16 pipelines of 1K processes each
NumThreads 1 Threads per MPI process
NumNodes 4096 BG/P nodes (eg, vn mode)
NumWriters 64 Parallel image output processes
BlockingFactor 8 Round-robin data blocks per process

configured in a single pipeline, two pipes of 4K cores each, etc.
The rendering portion of an MPI process can be multithreaded
with up to four POSIX pthreads. Each pipeline can output the
final image in parallel, using a number of writer processes.
Table II lists a sample of the parameters used to control the
volume rendering code. With these parameters, the test setup
is flexible and configurable. The meaning of most of these
parameters will be clear when they are used to generate the
results in Section IV.

D. Emphasis on Quality

It is important for visualizations of scientific data to faith-
fully replicate detail and provide the highest fidelity, most
enlightening view of the data possible. For example, when data
are computed at high spatial resolution, high image resolution
should be used to view the result so that the image area is
comparable to the view area of the data volume. Besides image
size, careful choice of ray sample spacing and the use of
lighting models affect the quality of output images.

Lighting and shading add a high degree of information
content and realism to volume rendering. For example, com-
pare the two images of supernova angular momentum with
and without lighting in Figure 4. The illuminated model,
complete with specular highlights, resembles the appearance
of isosurface rendering. This quality comes at a price, and
although straightforward to compute, interactive volume ren-
derers often omit lighting in order to maintain frame rate.
With the extended potential for scaling that leadership class
machines offer, we compute lighting as a matter of course. By
estimating gradient direction from differences of neighboring
vertex values, a normal direction is calculated on the fly for
each data point, and a standard lighting model, including
ambient, diffuse, and specular components, is computed [30].

Just as image size should be proportional to the length and
width of the data volume, the sample spacing along each ray
should be of the same order as the volume data spacing in the
depth direction. This way, larger, higher resolution data are
reproduced faithfully. Our algorithm generates samples along
rays spaced at an adjustable fraction of the data spacing. We
always set this parameter to one. Thus, the number of samples
along each ray grows or shrinks with the number of data
voxels, ensuring that image acuity matches data detail.

IV. RESULTS

This section quantifies gains from our main improvements
to the volume rendering algorithm: load balancing, parallel

Fig. 4. Unlit (top) rendering vs. lit (bottom) rendering. Image quality that
resembles triangle mesh isosurfacing can be produced with direct volume
rendering.

output, multithreaded rendering, and parallel pipelines. Tests
on large data and high numbers of cores validate the results.

A. Load Balancing

Load balancing is a difficult problem when it is in the
context of large problem sizes, large numbers of cores, and
time varying data. Uniform load balance is crucial to good
scalability and efficiency, and much research has been pub-
lished in this area of parallel computing. However, many of
the published methods do not scale, particularly their commu-
nication costs, to thousands of cores under the performance
constraints of time dependant data. Marchesin et al. [13]
provide a dynamic load balancing method that requires data to
be replicated on all cores; data replication is unacceptable for
our problem scale. Childs et al. [19] describe a two phase
rendering algorithm that balances work load by dividing a
portion of it within object space and the rest in image space,
but the cost of an additional many-to-many communication



Fig. 5. Efficiency of the rendering phase can be improved by distributing
data blocks in a more equitable manner. Round-robin balancing assigns many
blocks to each core, distributed in a round-robin fashion. Compare efficiency
the default distribution of one block per core.

Fig. 6. There is additional I/O cost associated with round robin, since each
process must read many more noncontiguous blocks. However, this cost is
offset by increases in rendering efficiency.

between the two stages may be prohibitive for our purposes.
Ma et al. [31] show good scalability and parallel efficiency
through a round-robin static distribution method.

Choosing a low cost but effective strategy, we implemented
and tested the round-robin approach. Round-robin data par-
titioning is inexpensive because it is still a static balancing
scheme but it has a good probability of achieving a roughly
uniform load balance. The dataset is divided into more blocks
than processors and the blocks are assigned to processors in
a round-robin fashion. The number of blocks per processor is
called the blocking factor: we have found 4, 8, or 16 to be
sufficient for most cases.

The round-robin load distribution is surprisingly effective
for increasing rendering efficiency, especially considering its
low cost. Occasionally we need to hand tune the blocking
factor to increase efficiency further. For example, in our tests
we found 32 blocks per process to be better at 128 and 256
cores, but we can now smooth out previous bumps in efficiency

curves easily through appropriate choice of blocking factor.
Figure 5 compares rendering efficiency with and without
round-robin balancing. The default case represents the uniform
data division into the same number of blocks as processors.
The round-robin case represents the improved load balance
scheme.

Figure 5 shows that the round robin distribution is not
perfect. For example, there are instances such as 512 and
4K cores where the default distribution is coincidentally very
good, reaching over 90%. On average, however, the round-
robin distribution is more predictable and in most cases
better than the default, ranging between 70 and 90% over
several thousand cores. The raw rendering time shows this
improvement as well, completing faster than before in most
cases. There is an I/O cost, however, in reading a number of
nonadjacent blocks sequentially within each process, instead
of just one or sometimes two. See Figure 6, which measures
the I/O portion of time only. In all but two cases, however,
the increase in I/O time was offset by a reduction in rendering
time.

In those cases where the increased I/O cost remains, we
will show later that I/O can be hidden effectively through
multiple pipeline parallelism. Another potential optimization
is to write a more intelligent I/O read function that batches
the sequential reads that a process makes into a higher level
collective read that can occur simultaneously. MPI-IO dictates
that any collective file I/O operations occur in monotonically
nondecreasing byte order at the file level. Hence, blocks in
the subvolume would need to be decomposed into strings
of contiguous bytes, and these strings sorted with respect to
file byte order. Then a processes can read all of its blocks
collectively, followed by reassembly into subvolume blocks
once in memory. We are considering implementing this in the
future.

To further test the overall performance of the algorithm
with load balancing, we present overall timing results for four
data sizes, 8643, 11203, 17283, and 22403. The first two sizes
are the actual data from Blondin et al.’s computational runs.

Fig. 7. The total frame rate with lighting is plotted for the 11203 dataset.



Fig. 8. At large data sizes and many cores, the relative contributions of the
three stages of the algorithm are dominated by I/O. Compositing cost also
grows.

We generated the latter two sizes by doubling the size of the
original datasets in each direction, producing a file size eight
times as large as the original.

The 11203 time step contains 1.4 billion data values. Figure
7 shows total frame rate (including I/O) for this data size, as
a function of the number of cores. The total frame time at 8K
cores is 7.9 s. Blocking factors for the round robin distribution
range from 16 at lower numbers of cores to 4 at the upper end.
The slope of the curve gradually decreases as compositing cost
grows with increased numbers of cores.

For the same test conditions in Figure 7, Figure 8 shows the
distribution of time spent in I/O, rendering, and compositing.
I/O dominates over the vast majority of the plot, and at
8K cores compositing is nearly as expensive as rendering.
Extrapolating these these trends further out, rendering will be
the least expensive of the three stages beyond approximately
10K cores. At the far right side of the time distribution, the
relative percentage of I/O decreases. This is caused by the
increasing cost of compositing, not because the I/O rate itself
improved.

The total, end-to-end times for all four data sizes are listed
in Table III. For comparison to other published results, we also
include the visualization-only time in the right-hand column;
this is the rendering time plus the compositing time, excluding
I/O time. The image size is a constant 10242 pixels for these
tests. At the scale of 16K cores, rendering has become the
fastest of the three stages and compositing has grown to nearly
30% of the total frame time. Data movement, whether network
communication or storage access, dominates the process at

TABLE III
SIMULATED LARGE DATA SIZES

Grid
Size

Elements
(billion)

File Size
(GB)

Cores End-End
Time (s)

Vis-
Only
Time (s)

8643 .64 2.4 2K 3.6 0.8
11203 1.4 5.2 8K 7.9 2.4
17283 5.2 19.2 16K 15.6 5.2
22403 11.2 41.9 16K 16.4 5.2

large scale.

B. Memory Conservation Through Parallel Writers

Memory is a scarce resource on BG/P. As we saw in Section
III.B, 2GB are divided among 4 cores, or 512 MB per core in
virtual node mode. Even though the compute node kernel only
requires a few megabytes, it is still easy for an application to
exceed the remaining 510 megabytes or so. Applications must
conserve memory.

The size of the data and the size of the image both determine
how much memory is required by the volume rendering appli-
cation. Memory requirements grow with problem size; that is
unavoidable. We must ensure, nonetheless, that the amount of
required memory decreases linearly with the number of cores,
so that large problems can fit into memory by allocating more
cores. Otherwise, the program will run out of memory at some
data or image size, regardless of the number of cores.

That was exactly our situation. Even after optimizing
memory usage to dynamically grow memory buffers only
as needed, an underlying problem remained: the entire im-
age needed to eventually reside on one core at the end of
the process. The data structure that accompanies each ray
requires significant memory per pixel, much more than just
the R,G,B,A color values. The compositing process concludes
with an MPI Gatherv() operation that funnels all of the
completed subimages to one core. This core tessellates the
pieces into one image and saves it to disk. This serialization is
a choke point in the algorithm. Performance suffers, memory
usage does not scale, and image sizes beyond 16002 pixels
crash the program.

The solution is to write images out in parallel with MPI-
IO at the end of the algorithm, similar to the way that
data are read in parallel at the start of the algorithm. For
performance reasons, we want to control how many writing
cores (“writers”) we use. Too few writers result in the situation
described previously. Too many writers hinder performance,

Fig. 9. The tail end of the algorithm consists of three substages: compositing,
gathering down to a possibly smaller number of writers, and collectively
writing the image to disk. Parallel image output is more scalable in terms
of memory usage. No core needs to allocate space for the entire image, along
with its associated data structures.



because each writer writes very little. In this discussion and
in Figure 9, terms such as writers, renderers, and compositors
refer to the roles certain processes play at a given time. The
same process takes on different roles during various stages of
the algorithm. All processes act as renderers and compositors;
later, a subset of processes become writers during the last
stage.

We implemented a flexible scheme diagrammed in Figure
9. By creating several MPI communicators, compositing is
followed by a partial gather down to the desired number of
writers, and concludes with a collective image write to disk.
Because the number of writers is a parameter, it can be any
value from one to the total number of cores. Figure 10 shows
that the optimal number of writers is 64 for this example. This
test included 2 K cores, the 11203 dataset, and an image size
of 20482 pixels.

In fact, now that memory is more scalable, we have success-
fully generated images as large as 40963, or 16 megapixels.
After these improvements, the final memory usage model for
this algorithm is:

m = 70M + 2.5Kp/c + 4v/c

Where:

1) m is the total memory usage in bytes
2) p size is the total number of pixels in the image
3) v is the total number of data elements in the volume
4) c is the total number of cores being used
5) M, K are one megabyte and one kilobyte, respectively

In this model, the memory requirements for data size and
image size are divided by the number of cores. 70 MB are
allocated by the MPI library, but we can control the rest of
the memory usage by applying more or fewer cores to the
volume rendering task.

Fig. 10. Different numbers of writers affect overall output performance.
We divide this stage into three substages: composite, gather, and write. The
stacked graph shows the relative time that each of these substages takes when
the number of writers is varied. 2 K compositors are used, and the image size
is 20482 pixels.

Many data structures depend on the image size, including
ray casting, compositing schedule, and the partial image itself.
That is why the coefficient of p is so much larger than that
of v. However, v itself is generally three orders of magnitude
larger than p, so both image and data size end up contributing
to the memory usage. We tested the accuracy of this model
between 256 and 1024 cores, image sizes from 2562 to 20482,
and volume sizes up to 11203.

C. Hybrid MPI - Multithreaded Rendering

Multicore computer architectures are ubiquitous today.
BG/P is no exception: each node contains four cores that can
be operated individually (virtual node mode), in pairs (dual
mode), or as one unit (SMP mode). In SMP mode, 2 GB
of memory constitute a common address space that is shared
among the four cores. Thus far, we have not attempted to
exploit this mode of operation, limiting ourselves to virtual
node mode where each core acts as a separate processor with
its own process space of 512 MB. With current architectures
tending toward multi and many cores, however, it is necessary
to develop new programming models that can exploit changing
technology. We were curious what advantages could be gained
by combining message passing and shared memory parallelism
in our volume renderer. As usual, we wanted to test this at
large system scale, so we modified a portion of the volume
rendering code to include a hybrid multithreaded / MPI
component, with the goal of measuring how the I/O, rendering,
and compositing time compared to the original.

We changed the rendering portion of the volume renderer
only, dictating whether an MPI process runs the rendering
stage with one thread or with 4 threads within that process.
In the first case, one process per core executes in virtual node
mode, while in the second case, one process per node executes
in SMP mode. BG/P’s microkernel statically maps each of
the four threads to one of the four cores within the node.
Several programming APIs are available for thread manage-
ment, including OpenMP and POSIX pthreads. We chose the
latter for simplicity: thread creation was straightforward with
pthreads and there was no scheduling advantage that OpenMP
could provide within the context of BG/P’s static allocation of
threads to cores. In the following performance graphs, the first
case is labeled “4 procs” (processes) while the second case is
labeled “4 threads.” “4 procs” implies the conventional MPI-
only method and “4 threads” is the hybrid MPI - multithread
method.

In the 4 threads method, the distribution of data space and
image space is hybrid as well as the programming model.
Among nodes and MPI processes, the data space is still divided
into blocks, but among threads within a node, the image space
is divided into 4 image regions. Ray casting is a natural
algorithm to parallelize in image space, because each ray is
independent of the others. The threads do not communicate
with one another and the results of the cast rays are written
to different addresses in the same data structure without need
for synchronization or mutual exclusion. The only restriction



Fig. 11. Top: I/O and composite time vs. number of nodes when rendering is
performed with 4 processes per node and 4 threads per node. Bottom: Similar
test of rendering time. Rendering can be adversely affected by load imbalance,
as the “4 threads (unbalanced)” curve shows.

is that all four threads complete the rendering stage before the
program can proceed to the next stage, compositing.

When plotting results, we align values along the horizontal
axis based on the same physical number of BG/P nodes,
to enable a fair comparison. This way, the physical amount
of hardware is the same. Some of the results matched our
expectations, while others were a surprise. We predicted that
even though the rendering step is where the code was changed,
the rendering time should remain roughly constant in both
scenarios. The total number of rays to be cast is the same,
and since rendering requires no communication between either
processes or threads, there should be little difference between
the two approaches. On the contrary, we predicted that the
I/O and compositing steps would be affected by the way that
the program is executed. In virtual node mode, there are four
times as many processes performing collective reading and
four times as many participants exchanging messages.

Figure 11 shows our results for a test of one time step
of the 11203 dataset, rendered to a 10242 pixel image. Both
graphs compare aspects of the two programming models as the
number of nodes increases. The top graph illustrates I/O and
compositing time while the bottom graph depicts rendering
time. The I/O time did not improve much with multithreading.

At higher numbers of nodes, one might expect to see some
I/O improvement because the dataset is divided into fewer,
larger blocks. However, storage traffic passes through the same
number of I/O nodes in BG/P, irrespective of the number of
processes per compute node. Furthermore, MPI-IO executes
collective I/O calls with the help of “aggregators.” These can
be thought of as a smaller number of actors that actually carry
out I/O requests on behalf of MPI processes. The number
of aggregators is also based on the number of I/O nodes,
usually eight per I/O node, and this is a way for MPI-IO to
avoid small, individual reads by grouping them into larger sets.
These factors appear to have more significant impact on I/O
rates than the changes that we made to the code.

The real win is in compositing. With fewer numbers of
processes that need to exchange messages, compositing perfor-
mance begins to improve at 128 nodes. With multithreading,
the hybrid division of labor into both data space and image
space takes advantage of the natural parallelism in ray casting.
Rays within the same node exchange no information, and
multithreading allows four subsets of rays to be computed in
roughly the same time. This is the ideal parallel scenario. The
compositing curves in the upper graph of Figure 11 show this
improvement.

The lower graph confirms our hypothesis that rendering time
does not improve with programming model, but it reveals a
surprising fact. While multithreading did not speed up render-
ing, it can degrade rendering performance if not done carefully.
We see that the “4 procs” and “4 threads” performance is
virtually identical, except for minor deviations at 32 and 64
nodes. However, we also include a “4 procs unbalanced”
result that is substantially slower. The cause of this slowdown,
as the name suggests, is load imbalance between the four
threads. Since all four threads must join before proceeding
to compositing, the slowest thread dictates performance for
the node. There is little to be gained from concurrency if the
threads are imbalanced. As the lower graph shows, this can
actually be slower than the MPI-only case, which has no such
barrier per node.

Fortunately, we already solved this problem in another
context. We can achieve interthread load balance using as
similar technique as in Subsection A: round-robin distribution.
This time, the distribution is in image space, but the idea is
the same. Each thread operates on more than one region of
the image, and those regions are interleaved in round-robin
fashion. We call these regions stripes, and found that a striping
factor of eight stripes per thread was sufficient to balance
rendering load. The curve labeled “4 threads” in the bottom
graph of Figure 11 is generated with eight stripes per thread.
The interleaving of threads and stripes within a subimage
follows the pattern below:

• Thread 0, Stripe 0
• Thread 1, Stripe 0
• Thread 2, Stripe 0
• Thread 3, Stripe 0
• Thread 0, Stripe 1
• ...



• Thread 3, Stripe 8

D. Multiple Parallel Pipelines

The previous sections demonstrate good scalability, but they
also point out two problems. One is the diminishing return
from higher numbers of cores in Figure 7, and the other is the
widening gap between visualization-only time and end-to-end
time in Table 2. Rendering time is not the bottleneck at scale:
I/O dominates the frame time and further progress depends
on hiding this I/O cost. In a time varying dataset, we cannot
choose to simply ignore I/O time when measuring the frame
rate because each time step or image frame requires a new
file to be read. The I/O cost, however, can be mitigated and
even completely hidden if sufficient I/O bandwidth, rendering
resources, and communication bandwidth exist to process
multiple time steps simultaneously.

The solution is two levels of parallelism: inter- time step and
intra- time step parallelism using multiple parallel pipelines.
In fact, even some of the rendering costs can be absorbed if
the pipelines have sufficient overlap. As long as final frames
are sent out in order, the client display software can buffer
frames to smooth out any discrepancies in interframe latency
and present final frames at a consistent frame rate.

Collections of cores are grouped into parallel pipelines [31].
Within any pipeline, many cores operate in parallel. Figure
12 shows a simplified diagram of a multipipe architecture
for this application with four pipelines. Each pipeline is
actually a collection of many cores operating in parallel on
the same time step. The boxes are labeled I/O for file reading,
R for rendering, and C/S for compositing and sending. All
four pipelines begin at the same time because there is no
need to synchronize them until the final stage. The only
synchronization requirement is that images are output in order.

We can also impose further serialization within the pipeline
interior, so that only one pipeline has control of the storage
or communication network at any time. We call this a staged
pipeline. It imposes a higher degree of serialization in ex-
change for less contention. An unstaged pipeline allows the
maximum parallelism without concern for contention, ordering
only the final sending of the resulting images. In our tests,
staging of I/O or compositing did not significantly affect the
frame time, but we have retained the staging feature in the
code and will retest whether this has an effect at still larger
scales.

Some idle time may occur within each pipe between the
completion of rendering (R) and the start of either compositing
or sending (C/S). This depends on the exact sum of the
component times with respect to the number of pipelines. In
the limit, however, multiple pipelines can reduce the frame
time from the sum of I/O + R + C/S to just the C/S time, a
significant savings.

Figure 13 shows the results of our experiments with 1, 2,
4, 8, and 16 pipelines arranged as follows:

• 1 pipe of 8 K cores
• 1 and 2 pipes of 4 K cores
• 1, 2, and 4 pipes of 2 K cores

• 1, 2, 4, and 8 pipes of 1 K cores
• 1, 2, 4, 8, and 16 pipes of 512 cores
The frame rate in Figure 13 is measured at the receiving dis-

play device; images are streamed to it as they are completed.
An average frame rate is computed over all of the time steps
received, so this is an end-to-end value that includes the entire
system including I/O, rendering, compositing, and streaming.
No compression is used for streaming or elsewhere in these
tests. The graph shows five curves of various size pipelines,
512 to 8192 cores per pipeline. The horizontal axis shows the
total number of cores used in the test. The number of pipelines
for a given data point is the total number of cores divided by
the number of cores per pipeline.

Performance improves along each curve with each doubling
of the number of pipes. In fact, with 512 cores per pipe, the
frame time (reciprocal of the frame rate) improved from nearly
eighteen seconds for a single pipe to just over one second for
sixteen pipes. At this point all of the I/O time is hidden along
with a portion of the original single-pipe visualization time.

Figure 13 also demonstrates that performance improves for
the same total number of cores, depending on how many
pipelines they are arranged into. For example, 8K total cores
arranged as 16 pipes of 512 cores produces a frame rate that
is six times faster than 8K cores in a single pipe. Intersecting
the curves of 13 with any vertical grid line produces a similar
result: for a constant total number of cores, faster times
are attained by arranging the cores into a greater number
of smaller size pipelines. We conclude that the overlap of
operations in Figure 12 contributes more than simple scaling
of the number of cores because the total end-to-end time is
I/O bound and does not scale linearly. In other words, hiding
the I/O time via multiple pipelines is an effective tool to
counterbalance I/O cost.

V. DISCUSSION

By improving load balancing, conserving memory through
parallel output, combining MPI with multithreaded program-

Fig. 13. Multiple pipelines can provide several times faster performance,
even if the same total number of cores is distributed into several pipes instead
of a single pipe.



Fig. 12. Example of how four parallel pipelines can reduce frame time and hide I/O cost. I/O = file read, R = render, C/S = composite and send.

ming, and employing multiple pipelines, we have extended the
scale of high quality time varying volume rendering to over 10
billion data elements per time step. By scaling to over 10,000
cores, we can generate results at frame times on the order of
several seconds, including I/O and lighting.

A simple round-robin load distribution scheme achieves two
times better balance than naive single-block allocation. With
extreme numbers of cores, this may be the best that can
be achieved without the cost of load balancing outweighing
its benefit. More complex redistribution of data at these
scales, within performance constraints, has yet to be achieved.
Even round-robin distribution carries increased I/O costs, but
these can be offset through improved rendering efficiency and
multipipe parallelism.

Changes in memory allocation can extend the scalability
of our volume renderer. By outputting the image in parallel,
memory use scales inversely with the number of rendering
cores. Now, arbitrarily large volumes and images can be
accommodated by allocating enough cores to the problem. We
implemented this feature using several MPI communicators
and gathering the number of compositors down to a smaller
number of writers. By making the number of writers a program
parameter, we can test variable numbers of writers, from one
to the total number of cores.

Computer architectures are becoming increasingly multi-
core. Another way to improve the performance of parallel
machines is to exploit the intranode parallelism that exists on
chip. By allocating one MPI process per node and one thread
per core for the rendering portion of the algorithm, we have
found that a hybrid programming model can increase the I/O
and compositing performance at large system scale. Render-
ing cost remains approximately constant whether threads or
processes are used, but the overall program performance can
improve due to the improvements in the other parts of the
algorithm.

The multiple pipeline organization effectively hides I/O
costs in time varying datasets by processing multiple time
steps simultaneously. It is often more efficient to arrange a
fixed number of cores into more pipelines of fewer cores each,
than to group all of the cores into a single pipeline.

With these improvements, it is technically feasible to apply
leadership-class machines at large scales to visualization and
analysis problems such as volume rendering. The remaining
question is, “Is this use of resources justified?” While such

nontechnical questions are outside of the scope of this re-
search, the remainder of this section presents a few arguments
why we believe that this use of valuable resources is desirable,
justifiable, and surprisingly economical. Foremost, we are
creating the foundation for in situ visualization. Not only
does this offer significant savings in terms of time and data
movement, but having access all of the simulation data in
situ affords new capabilities, such as simultaneous analysis
of multiple variables. Interacting with the simulation, not
just the visualization, is another advantage. Numerous other
possibilities exist in this exciting new research area.

In order to faithfully resolve detail in large datasets, large
display devices such as tiled walls and accompanying large
image sizes (tens and hundreds of megapixels) are required.
Otherwise, the display size and image resolution effectively
down-sample the dataset to a much coarser level of detail.
Data are discarded just as if the dataset had originally been
much smaller, except that information is discarded at the end
of a potentially long and expensive visualization workflow.
Larger display and image sizes require orders of magnitude
larger visualization systems than are currently available in
the graphics cluster class of architectures. Leadership-class
machines are currently the only choice when considering not
only large data size, but also high image resolution.

In terms of scheduling and machine utilization, in our
experience, visualization jobs interleave easily within other
computational runs. Our visualization runs are short, usually
only a few minutes. Over the course of a week, these short runs
accrue no more than a few hours of total CPU time. Even if
16K cores are required for a total of 10 hours per week (more
than we have used to date), this is still only a fraction of one
percent of the utilization of a 500 TF machine. A job scheduler
can back-fill the unused cycles between scheduled computa-
tional runs with analysis and visualization tasks. These cycles
would be wasted otherwise, so the visualization is essentially
free.

VI. FUTURE WORK

We continue to scale up to larger data and more cores. In so
doing, new bottlenecks appear. The next hurdle to overcome
requires rewriting the compositing part of the algorithm to
employ binary swap [32]. More efficient compositing is one
of the priorities for successful operation at tens of thousands
of cores.



Improving I/O performance is another. The ALCF re-
searchers continue to improve aggregate I/O bandwidth and
I/O scalability; these improvements are welcome because they
directly affect the performance of this application. We are
investigating different I/O file formats and ways to increase
the aggregate I/O bandwidth of our application as well.

ACKNOWLEDGMENT

We thank John Blondin and Anthony Mezzacappa for
making their dataset available for this research. This work
was supported by the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Department of Energy, under
Contract DE-AC02-06CH11357. Work is also supported in
part by NSF through grants CNS-0551727, CCF-0325934, and
by DOE with agreement No. DE-FC02-06ER25777.

REFERENCES

[1] (2008) Scidac institute for ultra-scale visualization. [Online]. Available:
http://ultravis.ucdavis.edu/

[2] (2008) Argonne leadership computing facility. [Online]. Available:
http://www.alcf.anl.gov/

[3] K.-L. Ma, C. Wang, H. Yu, and A. Tikhonova, “In-situ processing and
visualization for ultrascale simulations,” Journal of Physics, vol. 78,
2007.

[4] T. Tu, H. Yu, L. Ramirez-Guzman, J. Bielak, O. Ghattas, K.-L. Ma, and
D. R. O’Hallaron, “From mesh generation to scientific visualization: An
end-to-end approach to parallel supercomputing,” in Proc. Supercomput-
ing 2006, Tampa, FL, 2006.

[5] H. Yu, K.-L. Ma, and J. Welling, “A parallel visualization pipeline for
terascale earthquake simulations,” in Proc. Supercomputing 2004, 2004,
p. 49.

[6] P. K. Yeung, D. A. Donzis, and K. R. Sreenivasan, “High-reynolds-
number simulation of turbulent mixing,” Physics of Fluids, vol. 17, no.
081703, 2005.

[7] P. Woodward. (2008) Laboratory for computational science and
engineering. [Online]. Available: http://www.lcse.umn.edu/index.php?
c=home

[8] L. Chen, I. Fujishiro, and K. Nakajima, “Optimizing parallel per-
formance of unstructured volume rendering for the earth simulator,”
Parallel Computing, vol. 29, no. 3, pp. 355–371, 2003.

[9] U. Neumann, “Communication costs for parallel volume-rendering al-
gorithms,” IEEE Computer Graphics and Applications, vol. 14, no. 4,
pp. 49–58, 1994.

[10] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs, “A sorting classification
of parallel rendering,” IEEE Computer Graphics and Applications,
vol. 14, no. 4, pp. 23–32, 1994.

[11] B. Wylie, C. Pavlakos, V. Lewis, and K. Moreland, “Scalable rendering
on pc clusters,” IEEE Computer Graphics and Applications, vol. 21,
no. 4, pp. 62–69, 2001.

[12] A. Stompel, K.-L. Ma, E. B. Lum, J. Ahrens, and J. Patchett, “Slic:
Scheduled linear image compositing for parallel volume rendering,” in
Proc. IEEE Symposium on Parallel and Large-Data Visualization and
Graphics, Seattle, WA, 2003, pp. 33–40.

[13] S. Marchesin, C. Mongenet, and J.-M. Dischler, “Dynamic load balanc-
ing for parallel volume rendering,” in Proc. Eurographics Symposium of
Parallel Graphics and Visualization 2006, Braga, Portugal, 2006.

[14] K.-L. Ma and T. W. Crockett, “A scalable parallel cell-projection volume
rendering algorithm for three-dimensional unstructured data,” in Proc.
Parallel Rendering Symposium 1997, 1997, p. 95.

[15] A. Garcia and H.-W. Shen, “An interleaved parallel volume renderer with
pc-clusters,” in Proc. Eurographics Workshop on Parallel Graphics and
Visualization 2002, Blaubeuren, Germany, 2002, pp. 51–59.

[16] H. Yu and K.-L. Ma, “A study of i/o methods for parallel visualization
of large-scale data,” Parallel Computing, vol. 31, no. 2, pp. 167–183,
2005.

[17] J. Gao, C. Wang, L. Li, and H.-W. Shen, “A parallel multiresolution
volume rendering algorithm for large data visualization,” Parallel Com-
puting, vol. 31, no. 2, pp. 185–204, 2005.

[18] T. Peterka, H. Yu, R. Ross, and K.-L. Ma, “Parallel volume rendering
on the ibm blue gene/p,” in Proc. Eurographics Parallel Graphics and
Visualization Symposium 2008, Crete, Greece, 2008.

[19] H. Childs, M. Duchaineau, and K.-L. Ma, “A scalable, hybrid scheme for
volume rendering massive data sets,” in Proc. Eurographics Symposium
on Parallel Graphics and Visualization 2006, Braga, Portugal, 2006, pp.
153–162.

[20] J. Kniss, P. McCormick, A. McPherson, J. Ahrens, J. S. Painter, A. Kea-
hey, and C. D. Hansen, “Interactive texture-based volume rendering for
large data sets,” IEEE Computer Graphics and Applications, vol. 21,
no. 4, pp. 52–61, 2001.

[21] K. Moreland, L. Avila, and L. A. Fisk, “Parallel unstructured volume
rendering in paraview,” in Proc. IS&T SPIE Visualization and Data
Analysis 2007, San Jose, CA, 2007.

[22] L. P. Santos, D. Reiners, and J. Favre, “Parallel graphics and visualiza-
tion,” Computers and Graphics, vol. 32, no. 1, pp. 1–2, 2008.

[23] C. P. Gribble, C. Brownlee, and S. G. Parker, “Practical global illumi-
nation for interactive particle visualization,” Computers and Graphics,
vol. 32, no. 1, pp. 14–24, 2008.

[24] J. Kim and J. Jaja, “Streaming model based volume ray casting imple-
mentation for cell broadband engine,” in Proc. Eurographics Parallel
Graphics and Visualization Symposium, Crete, Greece, 2008.

[25] (2008) Openmp. [Online]. Available: http://openmp.org/wp/
[26] (2008) Intel thread building blocks. [Online]. Available: http:

//www.threadingbuildingblocks.org/
[27] J. M. Blondin, A. Mezzacappa, and C. DeMarino, “Stability of standing

accretion shocks, with an eye toward core collapse supernovae,” The
Astrophysics Journal, vol. 584, no. 2, p. 971, 2003.

[28] (2008) Netcdf. [Online]. Available: http://www.unidata.ucar.edu/
software/netcdf/

[29] (2008) Ibm redbooks. [Online]. Available: http://www.redbooks.ibm.
com/redpieces/abstracts/sg247287.html?Open

[30] N. L. Max, “Optical models for direct volume rendering,” IEEE Transac-
tions on Visualization and Computer Graphics, vol. 1, no. 2, pp. 99–108,
1995.

[31] K.-L. Ma and D. M. Camp, “High performance visualization of time-
varying volume data over a wide-area network,” in Proc. Supercomput-
ing 2000, Dallas, TX, 2000, p. 29.

[32] K.-L. Ma, J. S. Painter, C. D. Hansen, and M. F. Krogh, “Parallel volume
rendering using binary-swap compositing,” IEEE Computer Graphics
and Applications, vol. 14, no. 4, pp. 59–68, 1994.



The submitted manuscript has been created by UChicago
Argonne, LLC, Operator of Argonne National Laboratory
(“Argonne”). Argonne, a U.S. Department of Energy Office
of Science laboratory, is operated under Contract No. DE-
AC02-06CH11357. The U.S. Government retains for itself,
and others acting on its behalf, a paid-up nonexclusive,
irrevocable worldwide license in said article to reproduce,
prepare derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf of the
Government.


