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Abstract—X-ray Bragg coherent diffraction imaging (BCDI) is
widely used for materials characterization. However, obtaining
X-ray diffraction data is difficult and computationally intensive.
Here, we introduce a machine learning approach to identify crys-
talline line defects in samples from the raw coherent diffraction
data. To automate this process, we compose a workflow coupling
coherent diffraction data generation with training and inference
of deep neural network defect classifiers. In particular, we adopt
a continual learning approach, where we generate training and
inference data as needed based on the accuracy of the defect
classifier instead of all training data generated a priori. The
results show that our approach improves the accuracy of defect
classifiers while using much fewer samples of data.

Index Terms—HPC workflows, defect identification, continual
learning, catastrophic forgetting

I. INTRODUCTION

The properties and performance of materials are strongly
influenced by the presence of defects. For instance, mechanical
hardness of some metals can be increased through work hard-
ening, a plastic deformation process that increases the number
of dislocation defects arise from the sliding of atoms from
their ideal positions in the crystal structure. The identification
and precise control of defects in materials not only plays
an important role in the fundamental understanding of novel
materials, but also in advanced manufacturing applications
such as fault detection and strain engineering.

Traditionally, defect identification from images of a material
sample is performed using computer vision and statistical
approaches, which involves procedures such as image segmen-
tation and pattern/feature extraction. With the advent of high-
resolution/high-throughput instruments, such as the fourth-
generation synchrotron X-ray sources, machine learning based
methods such as Deep Convolutional Neural Networks (DNN)
are increasingly used to automate and accelerate the analysis of
big data streams. In the context of diffractive imaging, min-
max optimization [1], guided algorithms [2], and DNN [3]
have been used for the identification of dislocation defects in
nanocrystals.

While neural networks can improve the speed and accuracy
of defect identification, they require generating large amounts
of training data, which is a computationally and manually
intensive task. Moreover, the full science pipeline of defect
identification requires the combination of different types of
tasks such as crystal data generation, full simulations, and

artificial intelligence models. Managing all these tasks can
be burdensome for scientists; hence, seamless and automatic
management of these tasks is required.

Motivated by these needs, in this work we introduce an
automated workflow for defect identification that dynamically
generates training data on demand as a neural network is being
trained. Because obtaining data from physical light source
experiments is time-consuming and expensive, our goal is
to minimize the amount of data needed to train the neural
network. In particular, we adopt a continual learning approach,
which can incrementally train the model when the data are
observed sequentially rather than in bulk. We summarize our
contributions as follows:

• We develop an automated workflow using online crystal
generation coupled with training and inference of deep
neural network defect classifiers for automating defect
classification in coherent diffraction imaging.

• We adopt a continual learning approach for improved ac-
curacy of defect classifiers when presented with training
data sequentially.

• We compare our continual learning (CL) approach against
single-shot learning (SSL) and naive incremental learning
(NIL) approaches. In SSL, all of the training data are
generated a priori. NIL updates the model naively with
sequential data, but suffers from catastrophic forgetting.
The CL approach achieves higher accuracy than NIL
while using much less training data than SSL.

The remainder of this paper is organized as follows. Sec-
tion II presents background and related work. Section III
describes our workflow methodology for automating defect
classification in coherent diffraction imaging. Section IV
presents our experiment design, followed by experimental
results in Section V. Section VI concludes the paper with a
summary and a brief look at future work.

II. BACKGROUND AND RELATED WORK

In this section, we provide brief background and related
work on defect identification, workflow management, and
continual learning.

A. Defect Identification in Coherent Diffraction Imaging

Bragg coherent X-ray diffraction imaging (BCDI) is a
technique that can probe the size, shape, strain, and spatial



location of defects in crystalline nanomaterials. In BCDI,
a nanomaterial sample is studied using scattered intensities
generated by a coherent X-ray beam measured at the Bragg
peak. By collecting the scattered intensities along a rocking
curve, a 3D diffraction pattern can be acquired. The diffraction
pattern is the modulus of the complex Fourier transform (FT)
of the sample without direct information about phases of the
scattered waves. Therefore, the amplitude and phase of the
nanomaterial sample can only be reconstructed using a phase-
retrieval algorithm [4]. Since these algorithms are iterative in
nature, neural network models have been applied to overcome
the limitation on speed and accuracy [5]–[10]. Furthermore,
these machine learning approaches have the potential to fully
reconstruct samples with defects that are challenging to solve
using the traditional approaches.

There exist several research efforts on using machine learn-
ing techniques for identifying defects in coherent diffraction
imaging [1]–[3]. Ulvestad et al. have developed a min-max
optimization approach for extracting the position of dislocation
lines in reconstructed BCDI images [1]. They have also
outlined a general prescription for phasing of nanocrystals
with defects, based on studying simulated diffraction images
using guided algorithms [2]. Recently, Bruce et al. trained a
neural network model on synthetic data for the identification
of dislocation defects and validated the model on experimental
data [3]. Unlike these studies that require large datasets, in this
work we aim to perform defect identification by using smaller
datasets.
B. Workflow management

Scientific computing consists of multiple related computa-
tional tasks. Scientific workflow frameworks allow scientists to
define the dependencies and data exchanges among connected
tasks instead of managing those manually, potentially resulting
in increased scientific productivity. Workflows are often char-
acterized in two types—distributed (cloud) workflows or in
situ (HPC) workflows. Representative examples of distributed
workflows, where tasks can run across several independent
systems in a wide area such as grids and clouds, include recent
publications by Deelman et al. [11] and Altintas et al. [12].
On the other hand, in situ workflows run within a single high-
performance computing (HPC) system, and launch all tasks
concurrently. Examples include ParaView Catalyst [13], VisIt
Libsim [14], ADIOS [15], SENSEI [16], and Damaris [17].

In this paper, we use the Decaf [18] in situ workflow
tool for performing defect identification in an automated
fashion. Decaf allows parallel communication of coupled tasks
by creating communication channels over HPC interconnects
through MPI. It provides a Python API to describe the work-
flow task graph. Decaf does not impose any constraints on
this graph topology and can manage graphs with cycles as in
our defect identification workflow, where we generate training
data on demand while a neural network is being trained.

C. Continual learning
Automated identification of defects in diffraction imaging

requires a considerable amount of data. However, generating

data through real experiments is often expensive and imprac-
tical. Nevertheless, even when it is possible to generate such
data, these data are not available altogether and are typi-
cally generated on demand. However, training machine learn-
ing (ML) on sequentially generated data presents a quandary.
When an ML model is presented with sequentially generated
data, it exhibits a phenomenon known as catastrophic forget-
ting [19], [20]—where a model forgets (overwrites) previously
learned information when encountering new information.

Continual learning (CL) is an important paradigm that
attempts to minimize catastrophic forgetting while efficiently
learning on new sequential data (generalization). In other
words, CL seeks a balance between minimizing forgetting and
improving generalization. CL has been extensively studied in
recent years [19]–[22]. While earlier works in [19], [20] focus
on improving either generalization or forgetting, prior work
in [21] introduces a two-player game that seeks to find a
balance between generalization and forgetting with theoretical
guarantees. In this work, we employ the CL approach intro-
duced in [21] in order to identify defects in coherent diffraction
imaging with sequential data generation. In particular, we try
to learn on the newly available defect data while minimizing
the forgetting on already learned information from the previous
defect data.

III. METHODOLOGY

In this section, we present an overview of the defect
classification workflow and describe its main components.

A. Automating the defect classification workflow

In this work, we generate digital twins of simulated crystals
as proxies for physical experiments. As in actual experiments,
we aim to minimize the number of crystals generated to train
the DNN, which is what motivates our defect classification
workflow.

To automate the defect classification, we couple coherent
diffraction data generation with training and inference of deep
neural network defect classifiers. Figure 1 displays this end-
to-end workflow, which is orchestrated by the Decaf workflow
system. This workflow consists of four main steps. First,
crystals with three different defect types (edge-type, screw-
type, and defect-free) are generated using AtomSK [23], a
software for creating crystal structures for atomic-scale simu-
lations. Second, generated crystal structures are energetically
relaxed using LAMMPS [24], a parallel molecular dynamics
(MD) simulation package. The atomic configurations with and
without energy minimized are then used to simulate BCDI
diffraction patterns with the PyNX [25] scattering module. Fi-
nally, we feed these diffraction data into our continual learning
model using PyTorch library [26] for training and inference.
This workflow iterates, continually generating training data
and updating the DNN until the trained model converges.

The challenges in orchestrating this workflow arise from the
heterogeneity of the constituent tasks in terms of their resource
requirements, programming, and data models. For instance,
AtomSK is a serial Fortran program, while LAMMPS is a
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Fig. 1. Automated workflow of continual learning for defect classification.

parallel MPI program written in C++. Moreover, diffraction
pattern generation and model training and inference tasks
(shown in blue in Figure 1) require GPU resources, while
remaining tasks of the workflow (shown in yellow in Figure 1)
run on CPUs. Employing tasks with heterogeneous require-
ments is quite common in today’s scientific applications, and
our workflow enables development of such applications and
automates their execution.

Next, we discuss the details of the data generation and
continual learning approach.

B. Data generation

Our data generation process employs the methodology used
by Chan et al. [9]. For the CL and NIL approaches, we
generate data online sequentially, on demand. For SSL, we
generate all the data offline in bulk, in advance. Table I
summarizes the amount of the data for each stage of both
online sequential and offline bulk data generation.

Synthetic data of defective gold nanocrystals are generated
using atomistic simulations. The AtomSK software [27] is
used to create initial crystals of different shapes from a ≈
20 x 20 x 20 nm3 face-centered cubic lattice of gold atoms.
These crystals have varying sizes, number of facets, and crystal
orientations. Different defect types (edge, screw, and defect-
free) are introduced to each crystal and subsequently relaxed
in molecular dynamics simulations using the LAMMPS soft-
ware [28].

Simulated diffraction patterns are created from the atomistic
gold nanocrystals using the PyNX software [29]. The 3-
dimensional Bragg coherent diffraction patterns of size 1283

pixels are simulated around several reflections of the crystals.
Bragg peaks that are insensitive to the presence of one or more
defects, meeting the invisibility condition [30], are excluded.
This protocol keeps the same distribution for classification
across defect types.

2-dimensional slices of size 1282 pixels are extracted from
the 3-dimensional Bragg coherent diffraction patterns. To
obtain all central slices around a given Bragg peak, each BCDI
pattern is rotated in the 24 unique starting orientations of a
cube. At each orientation, slices are taken at every 5◦ of the
[-45◦, +45◦] rotation interval. This slicing procedure ensures
the dataset contains all central slices for any given nanocrystal
orientation, and the slices are simulated deviations from a
perfect (100)(010)(001) crystal orientation.

C. Continual learning

In our workflow, we are given a new set of crystal images at
every iteration k. Our goal is to learn to predict whether these
images present any defects and classify their type. Let Qk

Approach Stage Amount Total number of images after the stage
Crystal Shapes (3D) 20 20
Defect Types (3D) 3 60

Offline Bulk Data Generation Relaxation Types (3D) 2 120
(SSL) Bragg Peaks (3D) 4 480

Pattern Orientation (3D) 24 11,520
Front Angle Central Slice (2D) 15 172,800

Crystal Shapes (3D) 1 1
Defect Types (3D) 1 1

Online Sequential Data Generation Relaxation Types (3D) 2 2
(CL/NIL) Bragg Peaks (3D) 2 4

Pattern Orientation (3D) 24 96
Front Angle Central Slice (2D) 9 864

Iterations 10 8,640

TABLE I
AMOUNT OF THE DATA FOR EACH STAGE OF OFFLINE BULK AND ONLINE

SEQUENTIAL DATA GENERATION.

represent this task at instant k such that Qk = {Dtr, Dte}k
where Dtr is the training data corresponding to task k and
Dte refers to test data.

At an instant k, we seek to assimilate information about
defects represented by Qk into the model g (a DNN model
with weights θk) such that the model can detect defects in
the crystal images. However, as discussed earlier, we seek to
reduce forgetting on tasks [0, k−1]. To facilitate this learning,
we leverage the framework proposed in [21], where the CL
optimization problem is written as a two player sequential
game such that

min
θk∈Ωθ

max
∆x

(i)
k ∼p(Q)

[
H(∆xk,θ

(i)
k )

]
. (1)

To perform this learning, our algorithm follows a two step
paradigm, where we first use gradient ascent to approximate
the cost function

[
H(∆xk,θ

(i)
k )

]
. To perform this cost value

approximation, we define a experience replay array E . At every
new task instant k, we store samples from the training data into
E , a database of all tasks the model has observed. Eventually,
with repeated gradient ascent steps, we may solve the inner
optimization problem as J = max

∆x
(i)
k ∼p(Q)

[
H(∆xk,θ

(i)
k )

]
,

obtaining
min
θk∈Ωθ

EE [J ] . (2)

In the second step, with full knowledge of J , we update the
weights of the model g through gradient descent steps such
that the objectives of defect detection on the crystal images
can be satisfied. The work in [21] guarantees that this two-step
strategy will converge to a minimum that balances the memory
of detecting defects on the previously observed images while
continuously learning to identify new defects.

IV. EXPERIMENTS

Our experiments were conducted on the Swing computing
cluster of Argonne National Laboratory. We employed com-
pute nodes belonging to the gpu partition, which are outfitted
with 8 NVIDIA A100 GPUs and 320 GB GPU memory per
node. All nodes are connected to each other by an Infiniband
HDR interconnection network.

A. Model architecture

For all our experiments, we utilize a model with two
convolutional and two feedforward layers. Each convolutional



layer is comprised of max pool operator, and we utilize relu
activation function.

B. Model training

We develop three different realizations of training our
model:

1) Single shot learning (SSL): Here, we rely on data that has
been generated offline as described in Section III with
no sequential data generation. Our capacity to identify
defects is limited to defects available in the training data
as we perform the model training after all the training
data are generated.

2) Naive incremental learning (NIL): Here, we naively up-
date the model with every new defect observed in the
sequential data generation. This strategy is expected to
incur forgetting and quick generalization when encoun-
tering new defects that are not present in the training
data.

3) Continual learning (CL): In this approach, we adapt our
model with the CL framework proposed in this paper,
where we aim to achieve a balance between forgetting
and generalization.

C. Metrics

We utilize two metrics for evaluating the accuracy of the
approaches in identifying defects. The first metric is the
task accuracy—the accuracy of detecting defects on a single
task (sequential iteration)—and the second one is memory
accuracy—the accuracy of detecting defects on all tasks that
have been observed until now. Task and memory accuracies
are identical for SSL, since the training is performed after all
the data are generated.

We measure task and memory accuracies on the test data
set, where we hold out 15% of the total data set as test data
for all approaches.

We also compare the strategies we consider in this work in
terms of number of crystal images and training time required.

V. RESULTS

First, we compare our CL approach against SSL. For the
training data, Table I summarizes the data generation steps
for both approaches. In CL, we generate new crystal data
at every 10 epochs of training, and we repeat this for 10
iterations. With SSL, we train the model for 100 epochs
after generating all the training data. Figure 2 displays the
obtained test accuracy results during the training of both
approaches. Here, high accuracy levels for both task and
memory accuracy demonstrate that our CL approach finds a
good balance between generalization and forgetting. On the
other hand, we can see that SSL incurs a large generalization
error.

Note that we do not fine-tune the neural network hyperpa-
rameters; rather we use the model out-of-the-box for all our
experiments. One could argue that SSL can achieve similar
accuracy values as the CL approach after fine-tuning the
model. However, we can achieve high accuracy values with our
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Fig. 2. Accuracy comparison between single-shot learning and continual
learning approaches.

CL approach out-of-the-box, and as we will see, with much
fewer training samples.

The key advantage of our approach is that it reaches high
accuracy in defect identification while using much fewer
samples of data, as shown in Table II. With our CL approach,
we use 95% fewer training data by generating data on demand
while training the model. This savings can help scientists,
who usually do not have access to large training data sets,
to perform defect identification. Moreover, if data were being
generated by physical light source experiments, then our CL
approach would make much more efficient use of this valuable
scientific instrument.

One drawback of our approach is the higher training time
required compared with SSL. This is due to the fact that the
CL algorithm requires more computation resources than SSL
to reduce forgetting, the CL cost function presents additional
terms not present in the original SSL paradigm. These ad-
ditional terms require more computations to evaluate, thereby
increasing both memory and computation requirements of CL.
Our approach trades a 16% increase in computing time for a
95% decrease in data generation. When data generation is the
largest bottleneck in the overall science pipeline, this can be
a favorable trade-off.

To further explore the catastrophic forgetting paradigm, we
compare our CL approach against the NIL approach, which



Approach Completion time Total data size
Single-shot learning 2,391 seconds 172,800 images

Continual learning 2,792 seconds 8,640 images

TABLE II
COMPLETION TIME AND OVERALL DATA SIZE FOR CONTINUAL LEARNING
AND SINGLE-SHOT LEARNING APPROACHES FOR DEFECT CLASSIFICATION

IN COHERENT DIFFRACTION IMAGING.
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Fig. 3. Task and memory accuracy results of naive incremental learning.

performs updates to the DNN model naively when presented
with sequential data. As in the previous experiment, we fed
new crystal data into NIL after every 10 epochs of training, and
we repeat this 10 times. Figure 3 shows the memory and task
accuracy results for the NIL approach. We see that memory
accuracy decreases during the run, which indicates that NIL
performs poorly when it is given new crystal data. This is
due to the fact that NIL generalizes quickly based on the
new data as demonstrated by the high task accuracy levels in
each iteration. However, NIL does not preserve the previous
information and leads to catastrophic forgetting. In contrast,
the results in Figure 2(b) show that we can achieve good
accuracy with our CL approach, which minimizes catastrophic
forgetting by virtue of explicitly modeling the impact of new
task and information on the model.

We also investigated the impact of number of epochs on the
efficiency of our CL approach. Figure 4 displays the obtained
test accuracies during different iterations of CL training for
a total of 100 epochs, varying the number of epochs per
iteration. In Figure 4(a), we generate a new crystal after
training the model for 5 epochs, while we generate new data
after every 10 epochs of training in Figure 4(b), and every
20 epochs in Figure 4(c). The results show that the memory
accuracy dips slightly when a new task is introduced. The more
frequently new data are introduced, the more the accuracy goes
down. This behavior is expected, as each iteration generates
data with random properties (e.g., defect type, random slicing).
However, we can see that the accuracy values increase again
after some number epochs of training. Based on these results,
we found 10 epochs to be the optimal frequency for perform-
ing updates to the model in order to achieve good accuracy
while minimizing the total number of data samples.
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Fig. 4. Test accuracies during different iterations of CL training with different
number of epochs per iteration.

VI. CONCLUSION

Defect identification is key to understanding materials’
performance and properties. However, the data generation
required for this process is computationally and manually
intensive. In this work, we have presented an automated
workflow that allows scientists to perform defect identification
by using smaller data sets. To this end, we coupled data gener-
ation with training and inference of deep neural network defect
classifiers. In particular, we employed a continual learning
approach, where we generated training data on demand while
a neural network is being trained. We evaluated our approach
against single-shot learning and naive incremental learning
approaches. Our results reveal that the continual learning
approach learns to identify nondefective and defective crystals



to a high degree of accuracy while using much fewer samples
of data.

In future work, we plan to expand our automated defect
identification workflow to crystal structures with multiple
defects. Another direction that we will explore involves smart
data generation, where we will focus on generating crystals
that are likely to improve the efficiency of automating defect
identification in coherent diffraction imaging. To this end, we
will explore 3D shape similarity [31].
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