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Abstract
In January 2019, the U.S. Department of Energy, Office of Science program in Advanced Scientific Computing
Research, convened a workshop to identify priority research directions for in situ data management (ISDM). A
fundamental finding of this workshop is that the methodologies used to manage data among a variety of tasks in situ
can be used to facilitate scientific discovery from many different data sources—simulation, experiment, and sensors,
for example—and that being able to do so at numerous computing scales will benefit real-time decision-making, design
optimization, and data-driven scientific discovery. This article describes six priority research directions identified by
the workshop, that highlight the components and capabilities needed for ISDM to be successful for a wide variety of
applications—making ISDM capabilities more pervasive, controllable, composable, and transparent, with a focus on
greater coordination with the software stack and a diversity of fundamentally new data algorithms.
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Introduction

Scientific computing will increasingly incorporate a number
of different tasks that need to be managed. For example,
SC18 Supercomputing Conference (2018) featured in situ
analytics, big data, workflows, data-intensive science,
machine learning, deep learning, and graph analytics—
applications unheard of in a high-performance computing
(HPC) conference just a few years ago. Perhaps most
surprising, more than half of the 2018 Gordon Bell finalists
featured some form of artificial intelligence, deep learning,
graph analysis, or experimental data analysis in conjunction
with or instead of a single computational model that solves a
system of differential equations.

The U.S Department of Energy (DOE) Office of
Advanced Scientific Computing Research (ASCR) convened
a workshop on in situ data management (ISDM) on January
28–29, 2019 Peterka et al. (2019). This article provides
background information on ISDM and information about
the purpose of workshop and summarizes the outcomes and
findings of the workshop.

In this article as in the workshop, we define ISDM as
the practices, capabilities, and procedures to control the
organization of data and enable the coordination and
communication among heterogeneous tasks, executing
simultaneously in an HPC system, cooperating toward
a common objective. This workshop considered in situ
data management, in addition to its traditional roles of
accelerating simulation I/O and visualizing simulation
results, to more broadly support future scientific computing
needs (Figure 1). The workshop identified priority research
directions (PRDs) for ISDM to support current and future
HPC scientific workloads, which include the convergence of

simulation, data analysis, and artificial intelligence, requiring
machine learning, data manipulation, creation of data
products, assimilation of experimental and observational
data, analysis across ensemble members, and, eventually, the
incorporation of tasks on non-von Neumann architecture.

The I/O bottleneck is one driver of in situ analysis.
Disparity in data movement latency, bandwidth, and energy
consumption compared with the rate of floating-point
operations has led to a renewed interest in ISDM. To put
the imbalance between computing and data management in
perspective, the rate of data that can be computed on the
Summit Oak Ridge Leadership Computing Facility (2019)
supercomputer (assuming 1 byte generated per clock cycle)
is five orders of magnitude greater than the bandwidth of its
parallel file system.

Current approaches to manage this bottleneck focus on
data analysis, visualization, and the production of data
products in situ. The resulting data products are often
orders of magnitude smaller than the full state data,
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Figure 1. Changing role of ISDM over time and the motivations, opportunities, and potential challenges for a renewed research
effort in this area.

thereby eliminating some of the negative impacts of the I/O
bottleneck and saving storage space. In situ analyses can
also lead to better science. While the infrequency of data
outputs limits the fidelity of post hoc analysis, in situ analysis
can have much higher fidelity because analysis tasks have
access to simulation data directly and are not throttled by the
I/O. The in situ paradigm, however, also complicates some
operations. For example, human interaction, exploratory
investigation, and temporal analysis are easier to conduct
post hoc. In situ methods also add complexity to the
workflow because of the larger number of interconnected,
concurrent tasks that need to be managed.

A survey of past and present in situ methods and
tools Bauer et al. (2016) demonstrates how reusable in
situ software evolved separately from the storage and
visualization communities. Storage solutions originally were
used for staging a simulation’s state for checkpointing,
restarting, or saving outputs for later post hoc analysis. Even
though such tools have expanded their applications beyond
I/O staging, their I/O style of interface and data model
remain. Meanwhile, the scientific visualization community
developed in situ equivalents of their post hoc tools. Coming
at the in situ problem from a visualization direction, these
tools feature the VTK data model and scripts for connecting
and executing pipelines of VTK filters.

A motivation for this workshop is that ISDM capabilities
could be expanded and leveraged for a broader range of
current and future HPC applications beyond I/O staging
and scientific visualization. In addition to helping meet
the challenges of extreme-scale simulation data, ISDM
technologies can facilitate applications that merge simulation
and data analysis, simulation and machine learning, or the
processing and analysis of experimental data. This workshop
identified a diversity of future workloads, listed below, for
which ISDM has the potential to enable new capabilities.

• Smart simulations featuring online feedback, compu-
tational steering, multiphysics, and/or surrogate mod-
eling

• Ensemble analysis of stochastic or rare events,
uncertainty studies, or model calibration

• High-fidelity, highly scalable data analysis and
visualization for debugging, diagnostics, and high
temporal and spatial resolution

• Workflows featuring the convergence of big data and
HPC software and tools: for example, graph analytics,
database storage, and streaming

• Use of machine learning and deep learning alongside
simulations or experiments for data-driven analysis
methods

• Real-time experimental and observational data anal-
ysis and assimilation of streaming, potentially noisy,
and time-critical data

As a concrete example, the workflow in Figure 2
illustrates some of the above elements: an ensemble of
numerous instances of molecular dynamics simulations is
launched and analyzed, searching for the signature of the
stochastic process of nucleation as a material cools and
crystallizes Yildiz et al. (2019). Crystal structures are
detected in situ, and only features of interest are saved
to storage. Instead of one large simulation, many smaller
instances are launched dynamically until a rare event is
detected—a pattern that has widespread applicability to other
domains such as protein folding, self-assembled structures,
and genetic algorithms.

The workflow of Figure 2 is represented as a directed
graph: nodes are tasks, and edges represent data flow
between two tasks. In the past, in situ usage was often
limited to a single analysis or visualization task coupled to
one simulation. Modern workflows have multiple tasks, can
contain cycles with feedback, and can vary dynamically over
time. Dynamic task graphs, for example for machine learning
and artificial intelligence problems, can contain thousands of
tasks because of the large amount of training needed to learn
complex nonlinear scientific behavior.

Today, new tools are being developed for generic data
producer/consumer tasks with the potential to manage a
general graph of tasks communicating custom data types.
Lacking, however, is a common vision for core capabilities to
be delivered to users, as well as sufficient attention to making
these tools interoperable. To more broadly support scientific
computing needs, the workshop provided a forum to address

Prepared using sagej.cls



Peterka et al. 3

All   data

In situ
part of the
work�ow

Visualization

Simulation

Feature
detection

Generate
con�guration

Subset  of data

All   data

Visualization

Simulation

Feature
detection

Generate
con�guration

Subset  of data

All   data

Visualization

Simulation

Feature
detection

Generate
con�guration

Subset  of data

Start

Stop Success?
Yes No

...

...

...

...

Figure 2. Workflow of dynamic ensemble of simulations and in
situ detection of stochastic events.

generic in situ data management capabilities, for example
for machine learning, automated spawning of ensemble runs,
automated triggering and production of data products, and
tasks run on non-von Neumann architectures. Workshop
participants also had opportunities to discuss provenance and
uncertainty as data are managed across tasks, as well as ways
to facilitate workflows across multiple data and computing
resources through interfaces between distributed and in situ
workflow systems.

The outcomes of the workshop are distilled into six
priority research directions, illustrated in Figure 3. The
PRDs highlight the components and capabilities needed
for ISDM to be successful for the wide variety of
applications discussed: making ISDM capabilities more
pervasive, controllable, composable, and transparent, with a
focus on greater coordination with the software stack and a
diversity of fundamentally new data algorithms.

Background

Scientific Workflows
A scientific workflow is a set of tasks or programs that
cooperate in terms of scheduling and communication as
part of a larger scientific campaign. Workflows are often
characterized in two types—distributed workflows or in situ
workflows—although in practice both types are combined
in hybrid ways within science campaigns. Following the
definition by Deelman et al. Deelman et al. (2017), an
in situ workflow’s tasks are tightly coupled, execute in
one centralized computing system or facility, and exchange
information over the memory hierarchy and network of that
system; whereas a distributed workflow is one whose tasks
are more loosely coupled, exchange data through files or
remote connections, and may execute on geographically
distributed systems.

Workflow management systems (WMSs) for distributed
computing were originally developed for grid environments.
Representative examples of distributed WMSs are described
in several surveys Yu and Buyya (2005); Deelman et al.
(2009) and include FireWorks Jain et al. (2015), Parsl Babuji
et al. (2019), Pegasus Deelman et al. (2015), and the Sandia
Analysis Workbench Friedman-Hill et al. (2015).

In situ workflows, in contrast, launch all tasks concurrently
in one HPC facility, and communication occurs over
shared memory or through the interconnect of the
machine. Examples include Alpine Larsen et al. (2017),
ParaView Ayachit (2015); Ayachit et al. (2015), VisIt Childs
et al. (2012), Adios Lofstead et al. (2008); Liu et al. (2014),
SENSEI Ayachit et al. (2016), Decaf Dreher and Peterka
(2017), and Damaris Dorier et al. (2016).

A dichotomy remains between in situ and distributed
workflows despite efforts to integrate these communi-
ties Deelman et al. (2016). Even though heterogeneous
hierarchical combinations of multiple workflow models are
starting to appear in the research literature Yildiz et al.
(2019), hybrid workflows in practice are limited to single
use-cases. CyberShake, a seismic hazard model from the
Southern California Earthquake Center Graves et al. (2011),
combines high-performance and high-throughput comput-
ing. Synchrotron light sources combine HPC with detector
hardware and in situ processing Khan et al. (2013). KBase, a
systems biology knowledge base, contains in situ modeling
and reconstruction while offloading other processing to cloud
systems Benedict et al. (2014).

The definition of ISDM given in the introduction—
controlling and organizing data to enable heterogeneous
tasks to execute simultaneously in an HPC system—
is closely related to in situ workflows. The distinction
between workflows and data management is subtle, but
important. Data management—the practices, capabilities,
and procedures to control the organization of data—are the
core building blocks that enable workflows. In the context
of this workshop, in situ workflows are applications that use
ISDM, and the aspects of ISDM being investigated are at
a lower level of abstraction than the workflows and WMSs
described above.

Computational Platforms
New hardware advances present exciting challenges and
opportunities for ISDM. One example is the availability of
large-scale nonvolatile random-access memory (NVRAM).
Individual NVRAM abstraction layers (e.g., libhio Hjelm
and Wright (2017), Data Elevator Dong et al. (2016),
BurstMem Wang et al. (2014), DataWarp Henseler et al.
(2016), Mochi Dorier et al. (2018); Jenkins et al. (2017);
Carns et al. (2016)) exist, but community-wide standards
have yet to evolve.

Another active area of research is the use of non-von
Neumann and emerging hardware for artificial intelligence
(AI), machine learning (ML) Schuman et al. (2017); James
et al. (2017), and scientific computing Severa et al. (2016).
These and other surveys Agarwal et al. (2016) point to
the potential for significant energy savings, although the
use of neuromorphic hardware for general-purpose scientific
computing is still limited.
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Figure 3. Priority research directions at a glance.

Operating system and run-time research funded by the
Exascale Computing Project (ECP) and ASCR (Argo Per-
arnau et al. (2013), Hobbes Brightwell et al. (2013)) inves-
tigates system support for unconventional HPC program-
ming models, support for multiple concurrent run-times, and
advanced virtualization capabilities that could be leveraged
to support desired ISDM capabilities. However, as Dreher
et al. Dreher et al. (2017) show, HPC platforms still do not
support all the capabilities needed for in situ workflows.
Notably lacking in present-day HPC systems are dynamic
process management, high-performance interjob communi-
cation, and intranode task isolation.

Early work has been done in integrating software stacks,
primarily the Apache big data stack with the HPC stack.
MapReduce models can use the Message Passing Interface
(MPI) in various ways Caino-Lores et al. (2018); Malitsky
et al. (2017); Bicer et al. (2017); Gao et al. (2017); Wang
et al. (2015); Gittens et al. (2018). However, more work
is needed to find a low-overhead integration that does not
require changing the constituent programming models and
allows existing tools to use the integrated software system.

Experimental and Observational Science

Programming models that support streaming of data,
which is often required to connect experimental facilities
with HPC centers, include Psana Damiani et al. (2016),
ADARA Shipman et al. (2014), ICEE Choi et al. (2013),
and the NSLS-II event model NSLS-II Data Acquisition
and Management Group (2019). Software infrastructures
addressing high-volume, high-throughput data streams from
light source instruments include Xi-cam Pandolfi et al.
(2018) and Nanosurveyor Daurer et al. (2017). The Bluesky
library for experiment control and collection of scientific
data and metadata Koerner et al. (2019); Allan et al. (2019)
is being used at more than one light source user facility.
The HEP community has identified the need for software
architecture approaches for large-scale experiments, which
have lifetimes that can span multiple decades Hildreth
et al. (2018). Streaming of data from an instrument to

HPC computing in the ATLAS project at CERN is being
developed by Magini et al. Magini et al. (2018).

The National Energy Research Scientific Computing
Center (NERSC), as part of its effort to support experimental
and observational science, provides web-based APIs for
accessing services National Energy Research Scientific
Computing Center (2019) as well as real-time queues
for time-critical workloads and networking infrastructure
optimized for high-volume scientific data movement Dart
et al. (2014).

Real-time Control
Modern workflows can incorporate many tasks coupled in
a directed graph that can include multiple cycles; hence,
control of ISDM systems is considerably more challenging
and requires a greater degree of automation than in the past.
Automatic identification of time steps of interest for deeper
analysis include Larsen et al. (2018); Bennett et al. (2016);
Salloum et al. (2015); Woodring et al. (2011); Dutta et al.
(2018). Other works identify input parameter values based
on simulation state Weber et al. (2007), enabling autonomous
deployment of algorithms that historically have required a
human in the loop.

The real-time control of a simulation is sometimes called
computational steering. Early work includes coupling a
simulation with data analysis and exploration tools for
user-guided problem setup and monitoring Bethel et al.
(1994). Another early example of computational steering
is the SciRun Parker and Johnson (1995) system. In
2018, the Uintah code was coupled with VisIt through
a dashboard Sanderson et al. (2018) offering steering
capability.

Analysis Algorithms
In situ analysis algorithms may transform data into
reduced representations or surrogate models in order to
mitigate large data size, high dimensionality, or long
computation times. Low-rank approximation Austin et al.
(2016); statistical summarization Hazarika et al. (2018);
Thompson et al. (2011); Biswas et al. (2018); Dutta et al.
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(2017); Lawrence et al. (2017); Lohrmann et al. (2017);
topological segmentation Morozov and Weber (2013, 2014);
Gyulassy et al. (2012, 2019); Landge et al. (2014); wavelet
transformation Li et al. (2017); Salloum et al. (2018); lossy
compression Di and Cappello (2016); Lindstrom (2014);
Brislawn et al. (2012); geometric modeling Peterka et al.
(2018); Nashed et al. (2019); and feature detection Guo et al.
(2017) may be used to generate reduced or surrogate models.

Information-theoretic methods Biswas et al. (2013); Wang
and Shen (2011) can quantify the overall information content
of a temporal or spatial interval, and changes in information
entropy can indicate potential areas of further investigation.
Machine learning methods Wozniak et al. (2018); Kurth
et al. (2018); Joubert et al. (2018) can elucidate features that
cannot be described by other methods.

User intent and constraints in an in situ system can be
expressed through a file I/O interface such as the BP format
in ADIOS Liu et al. (2014) as well as NetCDF Davis
et al. (2017) and HDF5 Folk et al. (1999) formats; through
generic data containers that are created through an API
inside the user’s tasks Dreher and Peterka (2016); or in
data contracts Mommessin et al. (2017); Dorier et al.
(2017); or through service-level agreements (SLAs) such
as in CORBA OMG (2000). Self-describing and extensible
interfaces, for example, Scientific XML Widener et al.
(2002) and External Data Representation Srinivasan (1995),
have been used for similar purposes.

Software Design
The increasing diversity of ISDM applications—
observations, experiments, ensembles, edge computing,
multifacility federated workflows, to name a few—require
ISDM software that is available, stable, reusable, and
maintainable. Today, however, ISDM lacks widespread tool
and data model interoperability. There is consistency at
the level of specific domain science communities, such as
the ROOT programming and data model in HEP Antcheva
et al. (2009) or the NetCDF file format in the climate
community Davis et al. (2017).

Recent efforts in the DOE have begun to address software
development and deployment standards for scientific
computing. The IDEAS McInnes (2019); Balay et al.
(2016) project was an early attempt to make math libraries
interoperable by enforcing consistent guidelines for their
development and delivery. These efforts have been extended
through the ECP xSDK xSDK Project (2019); Bartlett et al.
(2017). Delivery of ECP software is being done through
the Spack Gamblin et al. (2015) package manager as well
as through containers such as Shifter Kincade (2015) and
Singularity Argonne Leadership Computing Facility (2019).

Provenance
Numerous standards and tools for provenance exist in
communities other than the HPC and DOE. For instance,
the W3C-Prov World Wide Web Consortium Working
Group (2013) specifies standards for exchanging provenance
information in heterogeneous environments. Standards for
smart sensors such as the Open Geo Consortium Sensor Web
Enablement Pouchard et al. (2009) encode the provenance
of a sensor signal. Tools for replicability and reproducibility

collect provenance, such as ReproZip Chirigati et al. (2013),
and initiatives facilitate reproduction of studies based on
provenance, such as the Open Science Framework Center for
Open Science (2011).

Provenance software can alert developers of anomalous
system behavior, but such tools require post hoc analysis,
for instance, in the security domain Pasquier et al. (2018),
and for Spark dataflows Interlandi et al. (2015). Provenance
capture is I/O-intensive, although research Singh et al. (2016)
has shown that supervised ML algorithms trained post hoc
can alleviate the in situ I/O burden of provenance collection
by performing intelligent triage.

Performance profiling tools for HPC exist, such as
HPC Toolkit Tallent et al. (2008) and SONAR Lammel
et al. (2016). TAU Shende and Malony (2006) and
ScoreP Knpfer et al. (2012) extract performance profiles
from applications, but these tools are not optimized for
large-scale workflows, nor do they collect comprehensive
provenance information required for detailed introspection
and analysis. WOWMON Zhang et al. (2016) presented a
solution for online monitoring and analytics of scientific
workflows, but imposed several limitations and lacked
generality in interfacing with workflow components.
SOSflow Wood et al. (2016) adopts a general-purpose
data model, runtime adaptivity, workflow configurability,
and supports integration of analytics or visualization,
although more research in configuration and deployment at
scale remains. Chimbuko Pouchard et al. (2018) supports
workflow-level performance analysis, but provenance is not
analyzed in situ.

Provenance information also exists at the computing
system or facility level. Monalytics Kutare et al. (2010)
combines monitoring and analytics to rapidly detect and
respond to complex events in large data centers. Tools such
as Darshan Snyder et al. (2016) and TOKIO Lockwood
et al. (2018) measure the performance of the I/O system
and applications’ interaction with it. Graphs have been
explored Ames et al. (2013); Dai et al. (2014) for storage
of such provenance metadata. HPC facilities use tools such
as an automatic library-tracking database Fahey et al. (2010)
and XALT Agrawal et al. (2014) to track which libraries are
linked with which applications, information that can assist
individual users as well as system administrators.

Workshop Report
This article is a summary of the detailed report of the
ISDM workshop by Peterka et al. Peterka et al. (2019).
The body of the report is divided into two main chapters:
priority research directions (Chapter 2) and workshop topics
(Chapter 3). Chapter 2 contains the six main outcomes—
the priority research directions (PRDs)—of the workshop,
which are also summarized in the following section of this
article. Chapter 3 of the report contains the raw data that
went into the findings of Chapter 2: a detailed account of
the breakout discussions that transpired during the course
of the workshop. The report is organized in highlights-to-
details order: headlines appear early with supporting details
following. A high-level overview can be gleaned from the
executive summary; more context and detail follows in the
introduction in Chapter 1; a comprehensive explanation of
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the PRDs follows in Chapter 2, with information from the
discussion topics in Chapter 3.

There is not a one-to-one correspondence between
the breakout discussion topics and background sections
presented above to the PRDs. Rather, all of the PRDs
cross-cut and combine multiple discussion topic areas. This
is by design. The background and discussion topics were
predetermined before the workshop: they were the inputs to
the process. The outputs of the workshop are the synthesis
of the discussions into a succinct set of research directions.
The actual mapping of inputs to outputs, discussion topics to
PRDs, is contained in the report and in Figure 4.

The wording of the PRDs is aspirational, describing
desired capabilities that the community wants to acquire,
the research needed to attain those capabilities, and the
anticipated benefits of doing so.

Priority Research Directions for ISDM
The priority research directions described here highlight
the components and capabilities needed for ISDM to be
successful for a wide variety of applications.

Pervasive ISDM
Apply ISDM methodologies and in situ workflows on a

variety of platforms and scales.

Key questions How can ISDM methodologies help meet
the needs for real-time, high-velocity data applications at the
edge and other non-HPC platforms? How can ISDM enable
science at experimental and observational facilities? How do
ISDM methodologies for traditional computational modeling
compare with ISDM methodologies for experimental and
observational facilities, including edge devices such as
sensors and detectors? Can recognizing commonalities
among such disparate use cases increase the adoption of
ISDM among scientists across the DOE mission and bridge
scientific communities?

Research opportunities A changing landscape of use
cases is driving new applications of ISDM, which
increasingly require ISDM near instruments or sensors for
data analysis in near-real time. To what extent can similar
ISDM approaches be applied both to HPC computing
and to edge computing in experimental or observational
facilities? The next generation of ISDM research will
often require combining and coordinating workflows across
multiple such computational platforms in order to answer
fundamental science questions. Clearly needed, then, is the
ability to execute the same ISDM tasks and workflows
across a spectrum of computational platforms, spanning
high-performance supercomputers to experimental detectors
and even embedded devices. The workshop called this
desired capability “pervasive ISDM.” Pervasive ISDM
requires streaming data over heterogeneous computing and
networking scales and satisfying real-time demands of
experimental instruments. Also essential are new algorithms
and reduced data representations that are designed for
low-power embedded processors with limited memory or
bandwidth. Experimental data can be noisy, containing errors
or missing data points; and assimilating real and simulated
data requires managing disparate levels of data quality,

in addition to disparities in scale, resolution, and data
organization among the various data sources of the overall
science workflow.

New Research Directions In order for the efficiencies
and capabilities of ISDM to pervade across computational
scales and platforms, a number of new research directions
need to be pursued, which also motivate further exploration
in the other five PRDs.

The increasing deployment of computing near experimen-
tal detectors, whether in traditional or specialized processors,
complicates in situ workflows and necessitates the develop-
ment of new ISDM tools to handle a mixture of computing
resources and data signals. New research includes co-design
among ISDM, system software, programming models, and
hardware vendors.

Pervasive ISDM will require advances in data flow
between real-time streams as opposed to bulk-synchronous
checkpoints, as in traditional HPC. How to fuse multiple
data channels such as instruments, human users, and
other computing systems in ISDM applications, are open
questions. Streaming APIs are needed to help connect data
throughout the stages of the workflow, from instrument to
computing cluster to HPC, and potentially back again. Data
models developed for streaming data will need to incorporate
both edge and HPC systems and the relevant metadata from
multiple systems.

New algorithms also need to be developed for in
situ analysis on edge devices, particularly for emerging
hardware such as FPGAs or neuromorphic devices. Single-
pass algorithms will generate reduced representations in a
streaming regime, and research in automatic triggers and
other decision-making capabilities will be important for
control of experiments based on in situ analyses.

Provenance processing at the edge can detect real-
time anomalies as data are generated. Unique provenance
identification is needed to track data over a lifespan of
movement across a variety of locations.

Composable programming and execution models that
support streamed data for in situ processing will need to
access both edge and HPC data, be scheduled across multiple
platforms, and have standardized interfaces for both edge and
HPC applications, as opposed to one-off solutions.

Potential benefits Considering the combined system of
instruments and computing, scientists want to be able
to place data analysis where it is required, based on
timeliness and other constraints. Being able to deploy
ISDM on a variety of platforms would enable this
flexibility. Data reduction and analysis are key to dealing
with high volume and velocity data, and performing
some of these operations as early as possible will
increase the efficiency of later processing stages. Pervasive
ISDM would reduce human effort by reusing software
tools, algorithms, and frameworks and would improve
understanding of performance and science by applying
consistent computing methods. The ability to deploy in situ
approaches pervasively, across platforms and scales, would
advance experimental, observational, and computational
science.
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Figure 4. Mapping of workshop breakout session research areas to resulting priority research directions.

Co-designed ISDM
Coordinate the development of ISDM with the underlying

system software so that it is part of the software stack.

Key questions What abstractions, assumptions, and
dependencies on system services are needed by ISDM? What
information must be exchanged between the ISDM tools
and the rest of the computing software stack to maximize
performance and efficiency? How can we ensure seamless
communication between the ISDM software layer and other
parts of the system software stack?

Research opportunities Understanding the interlayer
dependencies so that ISDM becomes part of the software
stack can facilitate connections between software layers,
communicate semantic meaning, and realize efficient
performance in HPC and other software stacks. Defining
the dependencies between ISDM and the rest of the
software stack can enable autonomous data management,
efficient algorithmic performance, and verifiable science.
Dependencies do not only extend down the software
stack toward system software layers; just as important
are upward connections toward application and workflow
layers in higher levels of the software stack. There are
also opportunities for connections across multiple software
stacks, for example, HPC and big data.

New Research Directions Co-design among ISDM,
system software, programming models, and computing
vendors is needed to ensure being able to adapt and
evolve with the various communities—and perhaps influence
design to jointly meet needs of both computing architecture
and ISDM research. Coordinated explorations should take
place with vendors of emerging post-Moore and non–von

Neumann hardware so that such hardware can benefit ISDM.
Systems and hardware should be mapped to the needs of
ISDM, exploiting the opportunity to align hardware to the
needs of ISDM, and leading to improved utilization of
computing platforms.

The storage/memory hierarchy is vital to ISDM. In
the same way that the HPC community has been
evolving performance-portability abstractions for CPUs and
GPUs, there remains research potential for storage and
memory abstractions in support of ISDM, particularly
NVRAM. Abstractions for heterogeneous computing units
are also needed for ISDM. Beyond performance-portability
abstractions for CPU and GPU threads, programming models
will also be needed for FPGAs, tensor processing units,
neuromorphic chips, and eventually quantum cores.

New system software abstractions and APIs need to link
ISDM with applications, workflow management systems,
and HPC system software. For example, dynamic resource
allocation and dynamic task management are needed in
HPC systems. Scheduling support must be developed to
provide real-time queues, reservations for experiments, and
remote connections to other facilities. Security features need
to allow an HPC system to accept remote connections
(incoming and outgoing) to/from other facilities, and varying
levels of security need to be available for individual users
as well as members of science teams. High-speed network
connectivity among multiple tasks in an ISDM workflow
needs to be implemented and supported.

Specifications need to be developed detailing what
information is exchanged between the system software
and ISDM framework or tasks running within it. The
specifications include not only scientific data format but

Prepared using sagej.cls



8 Journal Title XX(X)

also metadata conveying user intent. For example, the ISDM
software ought to be able to tell the operating system
and run-time (OS/R) about the desired quality of service
or constraints imposed on resources, so that the OS/R
can intelligently manage resources and data Conversely,
the OS/R should relate profiling information to the ISDM
software regarding system health and resource usage levels,
so that the ISDM framework can adjust intent or quality
levels.

Research should also be directed at support for multiple,
concurrent software stacks. Rather than user-level add-ons
and adaptors between different programming environments,
full-system installation of multiple stacks in the same
system is needed, as well as system-level integration or
communication among the stacks. For example, the same
underlying I/O system should support parallel file systems,
key-value stores, and databases.

Potential benefits The co-design of new services, new
platforms, and application workflows has the potential to
revolutionize ISDM. Thinking of ISDM as an integral part
of the computational platform has numerous advantages over
developing ISDM software independently from the comput-
ing hardware, system software, and applications or work-
flows. Competition for computational and data resources
among in situ tasks can be avoided. Significant power savings
are realizable by using next-generation hardware such as
neuromorphic chips or nonvolatile memory. Better commu-
nication across system software layers can save developer
time, provide consistent interfaces to users, and improve
the use of computing and data resources. Integration of
other software stacks and frameworks (e.g., from industry
or big data) can exploit economies of scale, because those
tools often have many more developers contributing to them
compared with HPC software. More complex workflows can
be supported by co-design of new hardware and software
systems informed by ISDM use cases.

In Situ Algorithms
Redesign data analysis algorithms for the in situ paradigm.

Key questions How should in situ algorithms be designed
to make most of the available resources? What new classes
of data transformations can profit from in situ data access
in the presence of constraints imposed by other tasks?
What algorithms are needed for multiscale, multimodal, and
multiphysics in situ coupling of tasks and data?

Research opportunities The capability to access every
datum of a computation or an experiment poses unique
opportunities and challenges for algorithm design, for
traditional visualization, analysis, and for ML and AI. The
in situ environment for data processing and analysis differs
substantially from the post hoc environment, requiring
fundamentally new algorithms and approaches. Analysis and
processing tasks execute on streaming data in a dynamic,
resource-constrained environment; and algorithms that are
scalable and intelligent are needed to exploit the high
spatial resolution and temporal fidelity of in situ data.
However, limitations imposed by the coexistence of multiple
in situ tasks, sequential data access, and the removal of
human interaction from in situ workflows also complicate

algorithm design. Portable algorithms that deliver peak
performance are needed for both in situ and post hoc
execution over multiple computational platforms in order to
realize efficient utilization of each computational platform,
maximize programmer productivity, and facilitate software
maintenance.

New Research Directions In situ resource constraints
motivate algorithms that use approximate and reduced rep-
resentations, low-rank methods, functional approximations,
and the combination of low- and high-fidelity surrogate mod-
els. Moreover, the accuracy and quality requirements and
guarantees of approximate approaches need to be quantified
and validated in the context of the workflow.

Research is required to modify existing post hoc
algorithms and develop new in situ algorithms to satisfy
the needs of modern use cases on emerging system
architectures that can feature massive scale, many cores,
deep memory hierarchies, or embedded lightweight edge
devices. Examples of such algorithms include reduced
representations and low-rank approximations Austin et al.
(2016), statistical Hazarika et al. (2018); Thompson
et al. (2011); Biswas et al. (2018); Dutta et al. (2017),
topological Morozov and Weber (2013, 2014); Gyulassy
et al. (2012, 2019); Landge et al. (2014), wavelets Li et al.
(2017); Salloum et al. (2018), compression Di and Cappello
(2016); Lindstrom (2014); Brislawn et al. (2012), and feature
detection Guo et al. (2017) methods. Surrogate models and
multifidelity models can be geometric Peterka et al. (2018);
Nashed et al. (2019), statistical Lawrence et al. (2017);
Lohrmann et al. (2017), or neural network He et al. (2019).
Required are performance-portable algorithms that can be
productively deployed by scientists for analyzing real-time,
noisy, streaming data from physical experiments or sensors,
in conjunction with traditional simulation models.

Algorithms for in situ analysis of multimodal and stream-
ing data are needed. In addition to traditional simulations,
data may originate from experiments, observations, multi-
physics simulations, and/or ensemble workflows. Outputs
will be increasingly high dimensional and multifidelity, will
have uncertainties that must be accounted, and may be
available only in a streaming fashion. Specific research direc-
tions include rewriting algorithms for streaming data (single-
pass, multipass, and sliding window), dynamic scheduling
of multiple data sources, and integrating heterogeneous data
representations.

New classes of AI algorithms are needed to augment
traditional visualization, topological, and statistical analyses.
Examples include graph analytics (e.g., clustering, commu-
nity detection) and semi- or unsupervised methods featuring
reinforcement learning or transfer learning. Although these
methods exist in other contexts, redesigning AI algorithms
for scientific in situ analysis is crucial because existing
algorithms that rely on massive amounts of training data and
require long training times cannot be run, in their current
state, in situ. Further research is needed to assess whether
data analysis models base on AI can be trusted to automate
ISDM decision-making.

Potential benefits In situ algorithms reduce time to
solution compared with post hoc, mainly by avoiding
I/O roundtrips to/from disk storage. In situ analysis also
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provides unprecedented access to every value computed by
a simulation or generated by an experiment, provided that
algorithms are scalable and intelligent and can utilize this
capability to the fullest extent possible. Intermediate data
products computed in memory can also elicit new types of
analyses on those data and enhance the power of scientific
analysis. The ability to assimilate multimodal and multiscale
data in situ could provide a comprehensive view of scientific
phenomena.

Controllable ISDM
Understand the design space of autonomous

decision-making and control of in situ workflows.

Key questions What metrics best describe the ISDM
design space? How can that space be defined, codified, and
evaluated to support design decision-making and control?
How can we dynamically adjust the organization, placement,
and utilization of data to improve performance and satisfy
user requirements?

Research opportunities Decisions concerning schedul-
ing and placement of computations, choosing data structures
and algorithms, planning for reliability, and satisfying user
requirements create a complex design space for ISDM.
Understanding that space is crucial to making intelligent
design decisions, both by humans and autonomously, and
the capability to optimize a constrained ISDM design space
will enable predictable performance and scientific validity.
Codifying the design space and developing metrics and
benchmarks to evaluate it will also promote sharing of
metrics and parameters across communities.

New Research Directions Research is needed to develop
rigorous, explainable, reliable, and trustworthy decision-
making in ISDM software. The complexity, nonlinearity,
and dynamism of in situ workflows mandate augmenting
or replacing human control with autonomous control.
Autonomous control would enable real-time feedback and
fine tuning of the ISDM components, potentially at a much
higher frequency and accuracy than possible by a human.

Optimization, whether static or dynamic, of ISDM
parameters requires codifying the metrics that best describe
the design space. Researchers need to agree on a common
taxonomy and language for describing ISDM. A set of
community-wide benchmarks and test suites (i.e., miniapps
for canonical workflow problems) is needed. Only then can
the results of various optimization and control strategies be
meaningfully compared.

Methods are needed for incorporating user intent
(constraints or hints) in the ISDM design space. There
are four aspects of incorporating constraints: specification,
recording, execution, and provenance. Constraints may be
specified by using service-level agreements (SLAs) or
quality-of-service (QoS) contracts via the programming
model. A record of the constraints needs to be stored in the
system somewhere, for example, as part of the data model.
The ISDM framework then needs to execute the constraints
in its communication and execution models, and the extent to
which the constraints could be honored needs to be recorded
in the provenance of the execution and linked to the scientific
results.

Both challenges and opportunities exist in understanding
and incorporating the tradeoffs between quality of service
and quality of results into the control of ISDM. Measuring
or theoretically deriving the effect of algorithmic and
operational parameters on performance (e.g., time to
solution) and data quality (e.g., amount of error introduced)
is a necessary step. Mapping data quality to scientific quality
(e.g., confidence interval) is also required, but this is an open
problem. Research is needed to understand this relationship.

Potential benefits Automating workflows can save
human and machine resources because scientists can focus
on domain-specific challenges, and computing platforms can
be used more efficiently than with human control based on
trial and error. Capturing the right information automatically
about the workflow can lead to improved understanding of
the workflow performance and of the science results. The
development of performance models and other standardized
metrics to evaluate the control operations will promote the
sharing and reuse of information and the training of computer
and domain scientists.

Composable ISDM
Develop interoperable ISDM components and capabilities

for an agile and sustainable programming paradigm.

Key questions Can the composition of ISDM software
components maximize programmer productivity and usabil-
ity? What design decisions of ISDM software components
promote their interoperability in order to ensure the long-
term utility of ISDM software for the science community?
How can we eliminate the burden on users wanting to
transition current analysis and processing methods from post
hoc to in situ?

Research opportunities There is an opportunity to design
modular ISDM software using best engineering practices,
combined with a clear focus on science mission needs.
Realizing this opportunity requires long-lived sustainable
ISDM frameworks that are adopted and used by the
science community because they are able to compose in
situ workflows from modular interoperable building blocks.
The flexible composition of interoperable ISDM software
components will enable developers and end-users to choose
from an array of widely available tools, thereby increasing
productivity, portability, and usability, resulting in agile and
reusable software.

New Research Directions The first step is to develop
community guidelines for broadly accepted specifications for
ISDM software. Representative use cases for ISDM should
be enumerated to drive software requirements and needs.
The goal of such an activity is to define a minimal set
of community guidelines for interfaces and data models
to promote interoperability. Such guidelines must strike
the right balance between commonality, generality, and
extensibility.

Continued research is needed to design middleware
to shield users from implementation differences and to
provide platform portability. This middleware should be
designed based on the lightweight independent functional
decomposition of software pieces, at multiple granularities,
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from very coarse (entire applications) to very fine (single-
purpose libraries). The decomposition should allow the
ISDM community to exploit third-party software tools from
other software ecosystems.

ISDM software must employ strict quality assurance
and testing. Component-level testing, testing at scale,
performance analysis and characterization, and multistage
testing of entire workflows over a distributed area are
all needed. Lacking are ISDM workflow test benchmark
suites and sufficient performance models (analytical and/or
empirical) to predict expected behavior. Also needed
are deployment strategies for packaging and delivering
software over combinations of operating system and run-
time versions, compilers, and software dependencies.

Research should target working with science facilities
(computational and experimental) and industry partners
to develop, deploy, and support ISDM software over an
extended lifetime of up to 20 years. Deeper engagement
with science facilities is necessary in order to deploy
software, define use-policies (such as on-demand job queues
or network connections with remote facilities), and provide
outreach and training for users. Long-term sustainability also
requires industry partnerships to deploy ISDM in production
software stacks, to provide software testing and maintenance,
and to support new hardware over a longer period of time
beyond the initial R&D activities.

Potential benefits Increasing the number and breadth
of analysis tools to bring to bear on science problems
would be a direct result of interoperable and composable
ISDM software. Encouraging users to rely on reusable
ISDM software frameworks developed and maintained for
general use would provide measurable cost savings because
individual application teams would not have to reinvent
software infrastructure that is needed across the board. Such
a model requires, however, that ISDM infrastructure be easy
to use, robust, and sustainable. Given appropriate research
in the design of interoperable software components coupled
with support through computing facilities and industry
partnerships, ISDM software would avail application
scientists of all the advantages that the in situ computing
model offers.

Transparent ISDM
Increase confidence in reproducible science, deliver

repeatable performance, and discover new data features
through the provenance of ISDM.

Key questions How can provenance and metadata sup-
port data interpretability, discovery, reuse, and reproducibil-
ity of results? How can these artifacts be captured automati-
cally and analyzed in situ, at scale?

Research opportunities The ability to capture and query
provenance and metadata in situ will support reproducibility
and replicability, post hoc analysis, data discovery, and per-
formance diagnostics. A recent report National Academies
of Sciences, Engineering (2019) defines reproducibility as
obtaining consistent computational results using the same
input data, computational steps, methods, code, and condi-
tions of analysis. Replicability, a broader concept, implies
obtaining consistent results across studies performed by

different teams answering the same scientific question, each
using its own data.

Provenance and metadata are needed for both repro-
ducibility and replicability. In situ provenance is crucial to
understanding scientific results, assessing correctness, and
connecting underlying models and algorithms with workflow
execution. The capability to capture and analyze provenance
data within the time and space requirements of the domain
science can both improve ISDM performance and ensure
scientific validity. Also needed is understanding and quanti-
fying the data uncertainties in the underlying computational
models and algorithms, in particular understanding how
uncertainties are compounded and propagated by multiple in
situ tasks.

New Research Directions Scalable and portable prove-
nance capture is needed for ISDM applications. Scalable
compression of provenance data can augment judicious
selection; hence, developing compression methods tailored
for provenance is another potential research avenue.

New algorithms are needed to analyze provenance in situ
and enable real-time control. In situ provenance processing
is necessary in order to provide decision support for ISDM
frameworks and the tasks running in them: for example, to
tune the execution parameters or handle anomalies in real
time.

Provenance will need to be integrated from multiple
sources. Multimodal science use cases will generate
multisource provenance, and these provenance data will
need to be assimilated in a similar fashion as scientific
data from multiple sources. The successful development and
deployment of such tools will depend on the existence of
standardized formats and libraries to capture provenance
across numerous domain sciences.

New research is needed to understand what, if any, biases
are introduced by in situ algorithms, both for processing
scientific data and for provenance data. Traditional
approaches to scientific validation and reproduction will
have to be re-evaluated in light of the dynamic decisions
made by in situ tasks that perform function approximation,
analysis, or experiment design. Specialized provenance
techniques that capture relevant information about the
analysis method and that quantify uncertainty are needed.

Provenance systems should be co-designed with computa-
tional platforms and integrated with system-level provenance
systems, as well as with standards and components devel-
oped in other communities. ISDM provenance systems will
need to interact with these platform subsystems. Integrating
application-level data with system data can potentially yield
new functionality and utility.

Progress in ISDM provenance research would also
benefit from recognizing work related to digital data
preservation, data access, and provenance performed in other
communities, such as libraries and digital archives.

Potential benefits Understanding the provenance of
ISDM can lead to predictable and repeatable execution of
workflows, ultimately reducing data size and shortening
time to solution. Efficient capture and in situ analysis of
provenance information would also increase confidence in
scientific conclusions. Workflows that are validated through
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the provenance of data would be more trustworthy, reusable,
and explainable than those whose data lineage is unknown.

Conclusions
Scientific computing will increasingly incorporate a number
of different tasks that need to be managed along with
computational models or experiments—ensemble analysis,
data-driven science, artificial intelligence, machine learning,
surrogate modeling, and graph analytics—all nontraditional
applications unheard of in HPC a few years ago. Many
of these tasks will need to execute concurrently, that is,
in situ, with simulations and experiments sharing the same
computing resources.

There are two primary, interdependent motivations for
processing and managing data in situ. The first motivation
is that the in situ methodology enables scientific discovery
from a broad range of data sources—HPC simulations,
experiments, scientific instruments, and sensor networks—
over a wide scale of computing platforms including
leadership-class HPC, clusters, clouds, workstations, and
embedded devices at the edge. The second motivation
is the need to decrease data volumes. ISDM can make
critical contributions to managing large data volumes from
computations and experiments, with the aim of minimizing
data movement, saving storage space, and boosting resource
efficiency—often while simultaneously increasing scientific
precision.

Six PRDs highlight the components and capabilities
needed for ISDM to be successful for a wide variety of
applications: making ISDM capabilities more pervasive,
controllable, composable, and transparent, with a focus on
greater coordination with the software stack, and a diversity
of fundamentally new data algorithms.

• Pervasive ISDM: Apply ISDM methodologies and in
situ workflows on a variety of platforms and scales.

• Co-designed ISDM: Coordinate the development of
ISDM with the underlying system software so that it is
part of the software stack.

• In Situ Algorithms: Redesign data analysis algo-
rithms for the in situ paradigm.

• Controllable ISDM: Understand the design space of
autonomous decision-making and control of in situ
workflows.

• Composable ISDM: Develop interoperable ISDM
components and capabilities for an agile and
sustainable programming paradigm.

• Transparent ISDM: Increase confidence in repro-
ducible science, deliver repeatable performance, and
discover new data features through the provenance of
ISDM.
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