
Toward Feature-Preserving 2D and 3D Vector Field Compression

Xin Liang 1* Hanqi Guo 2† Sheng Di 2‡ Franck Cappello 2§ Mukund Raj 2¶ Chunhui Liu 3||

Kenji Ono 4** Zizhong Chen 1†† Tom Peterka 2‡‡

1) Department of Computer Science and Engineering, University of California, Riverside, CA, USA
2) Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL, USA

3) Department of Mathematics, Faculty of Science, Kyoto University, Kyoto, Japan
4) Research Institute for Information Technology, Kyushu University, Fukuoka, Japan

(a) original data (b) FPZIP, CR=4.87 (c) SZ, CR=4.91 (d) our method, CR=5.06(a) origin (c) SZ CR (d) our meth(b) FPZIP,

original/preserved false-typesfalse-positives false-negatives

Figure 1: Original LES simulation dataset (a) its compressioned versions (b-d) with different compressors using similar compression ratios (CRs).

ABSTRACT

The objective of this work is to develop error-bounded lossy com-
pression methods to preserve topological features in 2D and 3D
vector fields. Specifically, we explore the preservation of critical
points in piecewise linear vector fields. We define the preservation
of critical points as, without any false positive, false negative, or
false type change in the decompressed data, (1) keeping each criti-
cal point in its original cell and (2) retaining the type of each critical
point (e.g., saddle and attracting node). The key to our method is
to adapt a vertex-wise error bound for each grid point and to com-
press input data together with the error bound field using a modified
lossy compressor. Our compression algorithm can be also embar-
rassingly parallelized for large data handling and in situ processing.
We benchmark our method by comparing it with existing lossy com-
pressors in terms of false positive/negative/type rates, compression
ratio, and various vector field visualizations with several scientific
applications.
Keywords: lossy compression, critical points, vector field visu-
alization.

1 INTRODUCTION

Lossy compression of floating-point data has become a promising
technique for data reduction, as the disparity between data genera-
tion rate and available I/O bandwidth continues to grow in today’s
and future supercomputers. Data generated from large-scale ocean,
atmosphere, and fluid dynamics simulations can be compressed in
situ, and then the decompressed data can be used both in situ and

*e-mail: xlian007@ucr.edu
†e-mail: hguo@anl.gov
‡e-mail: sdi1@anl.gov
§e-mail: cappello@mcs.anl.gov
¶e-mail: mraj@anl.gov
||e-mail: chunhui.liu@math.kyoto-u.ac.jp

**e-mail: keno@cc.kyushu-u.ac.jp
††e-mail: chen@cs.ucr.edu
‡‡e-mail: tpeterka@mcs.anl.gov

post hoc for data analysis and visualization. In order to preserve sci-
entific insights, error-bounded lossy compressors such as SZ [13],
ZFP [14], and FPZIP [15], as opposed to traditional JPEG [23] im-
age compressors, are used to strictly guarantee the desired accuracy
while acceptable compression ratio is achieved.

The motivation of this study is to preserve the accuracy of fea-
tures extracted in error-bounded lossy compressed data. We ex-
amine critical points in 2D and 3D vector fields as an example
of a feature. Critical points—locations where the vector field
vanishes—are important because they are the key constituents of
vector field topology and thus essentially determine the characteris-
tics of flow visualizations based on geometry [17], texture [9], and
topology [5,10]. The extraction of critical points leads to both loca-
tions and types (e.g., sources, sinks, and saddles), and both proper-
ties must be preserved in order to deliver authentic insights into the
decompressed data.

With today’s lossy compressors, failure to preserve critical points
can result in false positives (FPs), false negatives (FNs), and false
types (FTs). A false positive happens if a critical point is localized
in the decompressed data but such a point does not exist in the same
vicinity of the original data. A false negative means that the criti-
cal point is missed in the decompressed data. A false type occurs
when the critical point type does not match in the original and de-
compressed data. For example, an attracting critical point may turn
into a repelling one during compression/decompression.

In this work, we aim at improving error-bounded lossy compres-
sors to preserve critical points in 2D and 3D piecewise linear vector
fields. We define the preservation of critical points as, without any
false positive, false negative, or type change in the decompressed
data, (1) keeping each critical point in its original cell and (2) re-
taining the type of each critical point. The key to our method is to
adapt a vertex-wise error bound for each grid point and to compress
input data together with the vertex-wise error bounds using SZ [13],
which is a prediction-based lossy compressor. We develop both
decoupled and coupled compression pipelines. The decoupled ap-
proach estimates vertex-wise error bounds for all vertices and then
compresses the vector field based on the error bounds. The cou-
pled approach estimates the error bound and compresses the data
on the fly during the lossy compression. The coupled method deliv-
ers higher compression ratios but is more computationally expen-
sive than the decoupled method. We demonstrate that our methods

outperform existing lossy compressors in terms of FP, FN, and FT
rates and compression ratio with several scientific applications.

Existing efforts to compress 2D vector fields based on topol-
ogy [16,21] (1) are nontrivial to generalize to 3D, (2) do not guaran-
tee local error bounds and may lead to large distortions, (3) require
undetermined iterations to converge, or (4) are difficult to paral-
lelize. More discussion on the differences between our method and
previous efforts is in the following section. The contributions of
this paper can be summarized as follows:

• Theoretical framework to preserve critical points in piece-
wise linear 2D/3D vector fields based on the vertex-wise error
bound derivation

• Two feature-preserving compressor designs that enforce
vertex-wise error bounds: a decoupled method optimized for
speed and a coupled method optimized for storage

2 BACKGROUND

We review the related work on error-bounded lossy compression
and vector field compression and then formalize the critical point
extraction problem.

2.1 Error-Bounded Lossy Compression

Data compression can be either lossless or lossy, and lossy com-
pression can be further categorized into non-error-bounded lossy
and error-bounded lossy methods. This study focuses on error-
bounded lossy compressors, which guarantee local error within des-
ignated error bounds. Error-bounded lossy compressors usually de-
liver higher compression ratios than the lossless compressors such
as FPC [3], while are more precise than non-error-bounded lossy
compressors such as JPEG [23]. We refer to the literature [11, 18]
for comprehensive reviews of scientific data compression; hence we
focus mainly on error-bounded lossy compressors.

Error-bounded lossy compression can be prediction- or
transformation-based. Prediction-based error-bounded compres-
sors include FPZIP [15] and SZ [13]. FPZIP uses a Lorenzo pre-
dictor [7] with integer mapping on both the predicted and actual
data for avoiding underflow, followed by an arithmetic encoding
on the prediction residuals. SZ is a multialgorithm compressor
with blockwise selection on the best-fit predictor, including both
Lorenzo and regression-based predictors. Different from the arith-
metic encoding used in FPZIP, SZ performs linear quantization on
the prediction residuals and encodes the quantization integers by
customized Huffman encoding and lossless compressors such as
GZIP [1] and ZSTD [2]. An example of transformation-based error-
bounded compressors is ZFP [14]. ZFP first performs the exponent
alignment and fixed-precision points conversion and applies a fine-
tuned orthogonal/inorthogonal transformation for each block and
then encodes the coefficients for compression.

While a user-given single error bound is mandatory for all ex-
isting error-bounded lossy compressors, the key difference of our
study is that we derive vertex-wise error bounds. Specifically, we
construct vertex-wise error bounds that adapt the numerical toler-
ance in order to preserve features in the decompressed data. For-
mally, the relative error between the exact value d ∈ R 6=0 and its

approximation d′ ∈ R is defined as

δ (d,d′) def
= |d−d′|/|d|. (1)

The relative error bound ∆(·) is an arbitrary value such that no rel-

ative error exceeds the error bound.1 We generalize the notation
of δ to represent the maximal relative error between the input data

d and its approximation d′ as δ (d,d′) def
= maxi δ (di,d

′
i), where d

and d′ are vectors of arbitrary dimensions in R and i is the linear

1In this work, we limit relative error bounds to [0,1], and in this case, d′

and d always have the same sign.

index of each element in d and d′. We also use the notation ∆(d) to
represent the relative error bound of each element in d, and we use
||∆(d)||max as the maximal element of ∆(d).

2.2 Vector Field Compression

Vector field compression has been studied to preserve 2D topo-
logical features. Lodha et al. [16] used an iterative clustering
method [20] to simplify and compress 2D vector fields. The it-
eration stops when all critical points remain identical to the orig-
inal topology and the designated local error bound is met. Com-
pared with the method, our method is noniterative, has fixed time
complexity, and works for both 2D and 3D vector fields in regular
and unstructured meshes. Theisel et al. [21] iteratively collapsed
edges in the 2D mesh in order to guarantee topology preservation,
but without local error control. Dey et al. [4] proposed a Delau-
nay simplification for the vector field based on error-bounded edge
collapsing, but the simplification did not explicitly preserves topo-
logical features. Koch et al. [8] presented a segmentation-based
compression approach based on region-wise linear approximation;
a simplified mesh grid can be generated by iteratively adding new
segmentations and testing topological equivalence.

To the best of our knowledge, this study is the first attempt to tai-
lor error-bounded lossy compressors to preserve features in 2D and
3D vector field data. The following are the key differences between
our method and the state of the art. First, existing error-bounded
lossy compressors are not aware of important vector field features,
whereas our method preserves critical points. By compressing in-
dividual vector components, existing compressors produce FP, FN,
and FT critical points in the decompressed data. Second, existing
topology-based vector field compression does not bound local er-
ror, whereas our method enforces local error bounds. For example,
the iterative edge collapsing approach [21] does not control local
error, which may lead to large distortions in the decompressed data.
Third, existing vector field compression algorithms are challenging
to generalize to 3D, whereas our technique applies to both 2D and
3D vector fields. Because 3D vector field topology is much more
complicated than 2D, the generalization of clustering- [16], mesh
simplification- [4, 21], and segmentation- [8] based algorithms can
be convoluted and computationally expensive. Fourth, most exist-
ing vector field compressors [4, 8, 16, 21] are iterative, whereas our
method compresses a vector field in a single pass with fixed-time
complexity. In addition, our method can be easily parallelized and
thus can (de)compress data for high-performance data storage, anal-
ysis, and visualization.

2.3 Critical Points in Piecewise Linear Vector Field

Figure 2: Symbols in indi-
vidual 2D simplicial cells.

A critical point is defined as the lo-
cation where the vector field van-
ishes. Formally, let nd be the di-
mensionality of the data and the
vector field be v : Rnd → R

nd ; the
vector value v at a critical point
xc ∈ R

nd must be 0. In this study,
we focus on non-degenerative (or
first-order) critical points, where
the determinant of the vector gradi-
ent tensor (Jacobian) of the vector
field |Jv(xc)| 6= 0. The vector field v is defined on a simplicial (tri-
angular or tetrahedral) mesh; the interpolation scheme for each cell
is linear. Without loss of generality, we use 2D cases for illustration
and derivation; the same techniques apply to 3D unless otherwise
noted. We use the symbols of Fig. 2 in individual cells.

The extraction of critical points involves finding zero points in
each linearly interpolated cell:

V ·µµµ =

[
u0 u1 u2

v0 v1 v2

]


µ0

µ1

µ2


= 0 and µ0 +µ1 +µ2 = 1, (2)

where µµµ is defined as the (normalized) barycentric coordinates of
the critical point and V is a 2× 3 matrix consisting of all vector
values for the vertices. If the condition 0 ≤ µk ≤ 1 holds for all
k ∈ {0,1,2}, the critical point resides inside of the cell; otherwise
the cell contains no critical point.

Critical points can be categorized into various types based on
the signs of eigenvalues of the Jacobian Jv(xc) [6, 22]. In general,
negative and positive eigenvalues indicate attracting and repelling,
respectively; eigenvalues with imaginary parts imply circulation be-
havior. The critical point can be determined analytically based on J,
because the characteristic polynomial |λ I−J|= λ 2− tr(J)λ + |J|
is quadratic and thus has a closed-form solution, where I is the iden-
tity matrix and tr(·) is the trace of a matrix. In 3D, the characteristic
polynomial can be determined in closed form as well.

3 PROBLEM STATEMENT

We formulate the feature-preserving compression problem for the
non-degenerative critical point extraction in piecewise linear vector
fields. In general, original and decompressed 2D/3D vector fields
v and v′ respectively are defined on the same simplicial (triangular
or tetrahedral) mesh; the vector values on the ith vertex are vi and
v′i, respectively; and the relative error bound of vi is ξi. For each
cell in the mesh, assuming the barycentric coordinates of the critical
point in the original and decompressed data are (µ0,µ1,µ2, [µ3])

⊺

and (µ ′0,µ
′
1,µ
′
2, [µ

′
3])

⊺, respectively, and the Jacobian eigenvalues

are (λ0,λ1, [λ2])
⊺ and (λ ′0,λ

′
1, [λ

′
2])

⊺, respectively, the objective of
this study is to guarantee the following three conditions by finding
proper relative error bounds ξi:

• Non-FN: If µk ∈ [0,1] holds for all k, µ ′k ∈ [0,1] holds for all
k as well;

• Non-FP: If there exists k such that µk /∈ [0,1], there exists k′

such that µk′ /∈ [0,1];

• Non-FT: The “non-FN” condition is met, and there exists a
one-to-one mapping between l and l′ such that sgn(Re(λl)) =
sgn(Re(λl′)) and sgn(Im(λl)) = sgn(Im(λ ′l′)).

Here, sgn(·) is the sign function; Re(·) and Im(·) are the real and
imaginary part operators, respectively; and k,k′ ∈ {0,1, . . . ,nd},
l, l′ ∈ {0,1, . . . ,nd −1}.

To derive sufficient error bounds for these conditions, we
introduce the sign-preserving error function (SPEF) of any
given scalar function. Formally, denoting the ball B(d,γ) =
{d′ | δ (d,d′)≤ γ},γ ∈ [0,1), we define the SPEF of any given
scalar function f : Rm×n→ R as

ψ(f ;d)
def
= sup

{
γ | f (d) f (d′)≥ 0,∀d′ ∈ B(d,γ)

}
. (3)

10

20

30

40

As illustrated in the right figure, ψ(f ;d) ∈
[0,1] is defined as the supremum of δ (d,d′)
such that f (d) and f (d′) keep the same sign.
In general, finding the closed form of ψ func-
tions is challenging. Thus we instead attempt
to find a relaxed error bound ∆(d) that is less
than or equal to ψ(f ;d), in order to preserve
the sign of f (d′).

Based on the definition of SPEF, a suffi-
cient condition for non-FN, non-FP, and non-FT in 2D cases is

||∆(V)|| ≤ ψ(m0,m1,m2;V), (4)

||∆(V)|| ≤ max
k∈{k|µk /∈[0,1]}

min

(
ψ(mk),ψ(∑

k′ 6=k

mk′ ;V)

)
, and (5)

||∆(V)|| ≤
{

ψ(|J|;V) |J| ≤ 0

ψ(tr2(J)−4|J|, tr(J);V) |J|> 0
, (6)

Algorithm 1 Error bound computation for critical point preserva-
tion for a triangular cell in either decoupled or coupled compression

Input: values V =
(u0 u1 u2

v0 v1 v2

)
and coordinates X =

(x0 x1 x2
y0 y1 y2

)
of vertices

Output: maximal error bound er ∈ [0,1) for V

function EB {DECOUPLED|COUPLED}(V,X)

A←
(u0 u1 u2

v0 v1 v2
1 1 1

)
,b←

(
0
0
1

)

if |A|= 0 then ⊲ check if the system is singular

return 0; ⊲ use lossless compression for this cell

else

if µµµ = A−1b ∈ [0,1]3 then ⊲ check if critical point exists

return min(eb FN {decoupled|coupled}(V),

eb FT {decoupled|coupled}(V,X)) ⊲ Appendices B,C

else

return eb FP {decoupled|coupled}(V) ⊲ Appendices B,C

end if

end if

end function

respectively, where V is the 2x3 matrix defined in Eq. (2); m0, m1,
and m2 are auxilary barycentrice coordinates defined in Appendix
A; and k ∈ {0,1,2}. Equations (4) and (5) can be directly gener-
alized to 3D cases, and we use ||∆(V)|| = 0 to guarantee the 3D
non-FT condition. Proofs and error bound derivations are detailed
in Appendices A, B, and C. The following sections focus mainly on
compression algorithms.

4 DECOUPLED AND COUPLED FEATURE-PRESERVING

COMPRESSION

This section presents both decoupled and coupled approaches to
compress the vector field while preserving critical points. The de-
coupled method compresses data in a pipelined manner (Fig. 3 and
Section 4.1), while the coupled method compresses data in a single
pass (Fig. 4 and Section 4.2). Comparison between the two meth-
ods is in Section 4.3. We use nv and nc to represent the number of
vertices and cells, respectively, in the descriptions.

4.1 Decoupled Compression

Figure 3 illustrates the pipeline of our decoupled compression
method, which consists of cell-wise error bound computation,
vertex-wise error bound aggregation, and vertex-wise compression.

Cell-wise error bound computation The pseudocode for cell-
wise error bound computation is in Algorithm 1. The algorithm
takes in the values and coordinates of the vertices in the given cell
and returns a sufficient error bound to keep the critical point infor-
mation in the cell. If the underlying linear system is deficient, we
use zero as the error bound for the cell, and the vector values will
be compressed losslessly in the compression stage. Otherwise, we
check whether the critical point exists in the cell. If the critical point
exists, we return a sufficient error bound to avoid FN and FT; oth-
erwise, we return a sufficient error bound to avoid FP. Notice that
the procedure for error bound computation is similar in the coupled
compression method, and the mathematical derivation of sufficient
error bounds is detailed in Appendices B and C.

Vertex-wise error bound computation We calculate vertex-
wise error bounds based on cell-wise error bounds that are com-
puted in the previous step. As shown in Algorithm 2, we iterate
over each cell and compute the cell-wise error bound η with Algo-
rithm 1. For each vertex of the cell, we assign the minimum of the
current error bound and η as the updated error bound for the vertex.

Vertex-wise compression We use the vertex-wise error bound
to guide the error-bounded lossy compression; the pseudocode is
in Algorithm 3. The quant() in the pseudocode takes the derived

error bound ξi as input and returns the quantized value ξ̂i, in order
to reduce the storage of vertex-wise error bounds in the compres-

Input

Vector Field

Decompressed

Vector Field

Lossy

Compressed

Vector Field

Cell-wise

Error Bounds

Vertex-wise

Error Bounds

Quantized
Vertex-wise

Error Bounds

Quantized
Vertex-wise

Error Bounds

Losslessly
Compressed

Quantized
Vertex-wise

Error Bounds

Compression Decompression

Figure 3: Decoupled compression pipeline for critical-point-preserving compression.

Algorithm 2 Vertex-wise error bound computation based on cell-
wise error bounds in decoupled compression.

Input: values {vi} and coordinates {xi} of all vertices

Output: vertex-wise error bounds {ξi}
function DECOUPLED ERROR BOUND MAP DERIVATION({vi}, {xi})
{ξi}← {1} ⊲ initialize each error bounds with 1

for j← 0 to nc−1 do ⊲ iterate cells

{i0, i1, i2} ← cell vertices(j)
η ← eb decoupled

((
vi0 ,vi1 ,vi2

)
,
(
xi0 ,xi1 ,xi2

))
⊲ see Alg. 1

for i ∈ {i0, i1, i2} do

ξi←min(ξi,η) ⊲ vertex-wise error based on cell-wise error

end for

end for

return {ξi}
end function

Algorithm 3 Decoupled feature-preserving compression

Input: values {vi}, coordinates {xi}, and error bounds {ξi} for all vertices

Output: compressed byte stream

buffer={ /0} ⊲ buffer for vector field compression

for i← 0 to nv−1 do

ξ̂i← quant(ξi) ⊲ quantize error bound for vertex i

bytes← lossy compress(vi, ξ̂i) ⊲ compress vi lossily while

guarantee the error bound ξ̂i

buffer.append(bytes)

end for

return compress losslessly(buffer, {ξ̂i})

sion. The details on the quantization are discussed in Section 5.2.
In the algorithm, we first internalize a byte buffer to stage quan-
tized values of the vector field data. We then iterate each vertex by
quantizing the error bound and compressing the data values. The
lossy compress() function lossily compresses the vector data by
guaranteeing the given error bound and returns the compressed data
in bytes. In our implementation, we use the prediction and quanti-
zation scheme in SZ for compression; more details are in Section 5.
In the last step, the byte buffer and the quantized vertex-wise error
bounds are losslessly encoded and compressed.

4.2 Coupled Compression

The coupled compression scheme couples error bound estimation
and compression on the fly in the iteration of each vertex. The key
to the coupled compression is to incorporate decompressed values,
which are available during the process, in order to obtain more re-
laxed error bounds than that of decoupled compression.

As detailed in Algorithm 4, for each vertex i, we first compute

the vertex-wise error bound ξ
(j)
i based on each of its adjacent cells

j. We then aggregate the vertex-wise error bound to ξi, quantize ξi

to ξ̂i, and perform lossy compression on vector field data vi. The
output bytes are appended to a preallocated buffer for further com-

Input & Partially

Compressed

Data

S
te

p
 0

S
te

p
 1

S
te

p
 6

D
o

n
e

Vertex-wise Error

based on

Associated Cells

Vertex-wise

Error

Aggregation

Vertex-wise

Error

Quantization

Current Vertex to Process

Vertices with Input Data

Vertices with Decompressed Data

......

Figure 4: Illustration of coupled compression algorithm.

pression. The quant() and lossy compress() functions are the
same as those in the decoupled compression. Note that the coupled
compression needs to use the decode() function to calculate the
decompressed data v′i on the fly and to overwrite the original vi.

Algorithm 4 can be proved by mathematical induction.
We would like to show that in the ith iteration, if the
dataset {v′0, . . . ,v′i−1,vi, . . . ,vnv−1} preserves all critical points,

{v′0, . . . ,v′i−1,v
′
i, . . . ,vnv−1} preserves all critical points as well. Ac-

tually, we can obtain an error bound such that all adjacent cells of
i preserve critical points; critical points in nonadjacent cells remain
unchanged. The base condition (i = 0) holds as well because no
decompressed data are available. This completes the proof.

Figure 4 illustrates the coupled compression on a tiny example
(nv = 7 and nc = 6). At step 0, the error bound of vertex 0 is ob-
tained per adjacent cell (C0 and C1). Then the error bound ξ0 can be
calculated by aggregation. The decompressed vector value is then
calculated on the fly as v′0, which will be used in the error bound
computation of v1, v5, and v6 in the next few iterations. Notice
that we must use v′0 instead of v0 for the error bound derivation;
otherwise, the use of the original value v0 violates the proof above.

Algorithm 4 Coupled feature-preserving lossy compression

Input: values {vi} and coordinates {xi} of all vertices

Output: compressed byte stream

buffer={ /0} ⊲ integer buffer for compression

for i← 0 to nv−1 do ⊲ iterate vertices

for j ∈ vertex cells(i) do ⊲ iterate cells connected to vertex i

{i0, i1, i2} ← cell vertices(j) ⊲ vertices of cell j

ξ
(j)
i ←eb coupled

((
vi0 ,vi1 ,vi2

)
,
(
xi0 ,xi1 ,xi2

))
⊲ see Alg. 1

end for

ξi←min j ξ
(j)
i ⊲ aggregate error bound for vertex i

ξ̂i← quant(ξi) ⊲ quantize error bound of vertex i

bytes← lossy compress(vi, ξ̂i) ⊲ quantize vector values with SZ

v′i← decode(bytes, ξ̂i) ⊲ calculate decompressed value v′i on-the-fly

vi← v′i ⊲ replace the input value with the decompressed value

buffer.append(d)

end for

return compress losslessly(buffer, {ξ̂i})

4.3 Comparison between Decoupled and Coupled Com-
pression

We compare our decoupled and coupled compression with regard
to both complexity and compression ratio.

Space and time complexities The space complexities of both
methods are identical (O(nv)); the time complexity of the decou-
pled and coupled algorithm is O(nc) and O(∑i card(adj cells(i))),
respectively, where card(·) is the number of elements in a set. The
O(nc) complexity of the decoupled compression algorithm is based
on the cell-wise iteration in Algorithm 2. The complexity of the
coupled compression algorithm is O(nv ·(∑i card(adj cells(i))/nv)),
where the fraction is the average number of adjacent cells for each
vertex. This expression can be reduced to O(∑i card(adj cells(i))).

Error bounds and compression ratio Decoupled compres-
sion has a lower compression ratio than coupled compression does,
because the coupled method delivers more relaxed error bounds
than the decoupled method does. The reason is that the decoupled
method attempts to control errors on three vertices simultaneously,
while the coupled method achieves the same goal by controlling
the error on one single vertex. We refer to Appendices B and C for
more detail on error bound derivations.

5 LOSSY COMPRESSOR CUSTOMIZATION

We tailor the SZ lossy compressor to guarantee vertex-wise error
bounds, and we quantify the vertex-wise bounds for efficient stor-
age.

5.1 Baseline Compressor Selection

In general, any prediction-based compressor such as FPZIP and SZ
can be customized for feature-preserving compression; we use SZ
as an example in this study. Transform-based compressors may be
used if the error can be bounded for individual vertices.

We review two important SZ features that are used in this study.
First, SZ strictly guarantees the error bound. SZ uses linear quanti-
zation [19] on the difference between the original data and predicted
value from a Lorenzo predictor for a strict absolute error bound
guarantee. For relative error bound, SZ transforms it to absolute er-
ror bound by multiplying it with the original value and applies the
linear quantization. Second, SZ uses a logarithmic transformation
in its recent design [12] to transform a relative error compression
problem in the original domain to an absolute error compression
problem in the logarithmic domain. Specifically, SZ records the
signs of the original data and transforms the original data to the
logarithm of their absolute value. The transformed data there are
compressed with the absolute error bound log(1+ er) where er is
the relative error bound. During the decompression, the data are

transformed back to the original data by the exponential function
and the corresponding signs.

5.2 Efficient Vertex-wise Error Bounds Storage

We incorporate the following three optimizations to SZ and use
these optimized functions in Algorithms 3 and 4.

Logarithm-based error bound transform We extend the log-
arithmic transformation for relative error bound compression in SZ
to the vector field compression, in order to store one transformed
error bound instead of nd absolute error bounds for different com-
ponents. Note that we have to store the original data when the error
bound is 0 or the logarithmic data need to be losslessly recorded,
because the round-off error in the logarithmic and exponential func-
tion may lead to unexpected perturbations in the decompressed
data.

Exponential-scale error bound quantization We use quanti-
zation to further compress the transformed relative vertex-wise er-
ror bounds. Instead of linear quantization, we use an exponential
quantization for more aggressive size reduction. Specifically, we
quantize the each error bound er larger than ε0 (er less than ε0 is
quantized to 0) to an integer q = ⌊logb

er

ε0
⌋, where b and ε0 are two

tuning parameters, and we apply Huffman encoding to the quan-
tized integers. Unlike linear quantization, which quantizes er to
⌊ er

ε0
⌋, exponential quantization has fewer values for the quantized

integers, leading to higher compression ratios on the vertex-wise er-
ror bounds. In our experiments, we set ε0 to machine precision and
b to 2, which leads to satisfactory performance.

Global error bound restriction We also use a global error
bound as a strict restriction, such that any derived error bound
greater than the threshold will be set to the threshold. The reason
is that the precision of the Lorenzo predictor relies heavily on the
precision of decompressed data, especially when the error bound of
the current data is small compared with its neighbors. Limiting the
error bound mitigates such problems and also decreases the range
of the quantization index, reducing the size of the vertex-wise er-
ror bounds. However, this could reduce compression ratio, and the
threshold needs to be tuned to achieve the best trade-off. In our im-
plementation, we empirically set the global error bound to 0.1 for
1D and 2D data and to 0.05 for 3D data.

6 EVALUATION

In this section, we evaluate our work using the three scientific
datasets listed in Table 1, and we compare the results with three
state-of-the-art error-bounded lossy compressors—FPZIP [15],
SZ [13], and ZFP [14]—using different error bound configurations.
We show both quantitative results, involving the exact number of
FPs, FNs, and FTs reported by the critical point detection algorithm,
and qualitative results, displaying the consequent visual difference
in the local area of the changed critical points. All compressors we
benchmarked are the latest releases as of September 12, 2019.

We use three datasets from ocean simulation, Nek5000 fluid sim-
ulation, and large eddy simulation (LES). Ocean and Nek5000 data
are available in 2D and 3D regular grids, respectively, and we tes-
sellate each 2D/3D cube into two triangles or six tetrahedra to con-
struct piecewise linear vector fields. The LES dataset includes 71M
tetrahedral cells and 110M wedges with 67.8M nodes. We consider
only the tetrahedral cells for our test. All the experiments are con-
ducted on an Intel Broadwell node with two Intel Xeon E5-2695 v4
processors and 128 GB of memory.

Table 1: Datasets for benchmarking

Dataset Size nd nv nc

Ocean 98.88 MB 2 3600×2400 3599×2399×2

Nek5000 1.536 GB 3 5123 5113×6
LES 145.8 MB 3 12.74 M 71.19 M

Table 2: Benchmark of (lossy) compressors on 2D ocean data: ea, er are the global absolute and relative error bound used by compressors,
respectively; CRu, CRv, and CRall are the compression ratio (input size over output size) of u, v, and all components, respectively; Sc and Sd are
the speed for compression and decompression, respectively; #TP is the number of true-positive (preserved) critical points; #FP, #FN, and #FT
are the number of false critical points.

Compressor Setting ea er CRu CRv CRall Sc (MB/s) Sd (MB/s) #TP #FP #FN #FT

Our method decoupled - - - - 7.54× 32.28 77.15 20,929 0 0 0
Our method coupled - - - - 11.73× 27.43 60.81 20,929 0 0 0

FPZIP -P 13 - 0.0625 11.48× 11.00× 11.23× 122.23 102.86 20,416 310 244 269
SZ -A 0.05 0.05 - 11.19× 11.50× 11.35× 131.07 214.97 18,350 43,880 1,913 666
SZ -P 0.07 - 0.07 11.34× 11.06× 11.20× 90.53 149.33 19,680 630 601 648

ZFP -A 0.5 0.5 - 10.06× 10.73× 10.39× 223.51 366.85 17,816 46,364 2,455 658
ZFP -P 10 - 0.125 11.11× 11.18× 11.14× 228.04 359.04 18,685 49,207 1,593 651

6.1 Results with 2D Ocean Data

We first compare the number of FPs, FNs, and FTs by tuning all
the lossy compressors to a similar compression ratio (∼ 11.5×), as
shown in Table 2. From this table, we can see that both of our ap-
proaches can be free of FPs, FNs, and FTs at high compression ratio,
successfully preserving all the features, whereas existing general-
purpose error-bounded lossy compressors have more or less altered
critical points in their decompressed data. We also study the perfor-
mance of both compression and decompression for all the compres-
sors. Our methods are slower than existing compressors in terms of
compression performance because of the higher time complexity—
nc≈ 2nv for the decoupled approach and ∑i card(adj cells(i))≈ 6nv

for the coupled approach.

Table 3: Compression ratio for lossy compressors to avoid FP/FN/FT
in 2D ocean data.

Compressor Settings ea er CRu CRv CRall

GZIP -1 0 0 1.58× 1.58× 1.58×
FPZIP -P 25 - 2−17 2.86× 2.82× 2.84×

SZ -A 10−10 10−10 - 1.60× 1.59× 1.59×
SZ -P 10−5 - 10−5 2.73× 2.63× 2.68×

ZFP lossless 0 0 1.90× 1.88× 1.89×
Our method decoupled - - - - 7.54×
Our method coupled - - - - 11.73×

We also compare the compression ratios of different compressors
by tuning compressors to be free of FPs, FNs, and FTs. To do so,
we manually tune the error bound settings and detect critical points
until no FPs, FNs, and FTs are present. The results are displayed
in Table 3. Under such circumstances, existing compressors have
to perform near lossless compression with compression ratios less
than 3. In contrast, our decoupled and coupled approaches can lead
to compression ratios of 7.54× and 11.73×, respectively, while au-
tomatically preserving critical points without manual intervention.

30

40

50

60

70

80

90

100

P
S

N
R

 (
d

B
)

Bit Rate

0 1 2 3 4 5 6 7

SZ
FPZIP
Our Method

We then compare the global com-
pression fidelity of SZ, FPZIP, and our
method with the rate-distortion plot in
the right figure. The plot is generated
by first compressing data with differ-
ent global error bounds, and then com-
puting and plotting the peak signal-to-
noise ratio (PSNR) and bit rate (aver-
age bits per compressed data sample).
We can see that our method has compa-
rable rate-distortion trends to those of SZ and FPZIP when the bit
rate is high, because our derived error bounds are usually smaller
than the global error bound. However, the bit rate of our method
stops decreasing after it reaches 2.7, because the compression ratio
is dominated by our derived error bounds instead of the global one.

We present the qualitative results by visualizing both the global
view of critical point distribution and local topology. The global
critical point distribution (including preserved, FPs, FNs, and FTs)
of the different compressors is illustrated in Fig. 5. From this figure,
we can see that all of the existing compressors have FPs, FNs, and
FTs across the global region, whereas our methods preserve all the

critical points. We also show the derived error bound and the final
relative error of the two approaches in Figs. 5(c), (d), (g), and (h),
with the range of [0,0.1]. These figures indicate that the coupled
approach indeed allows for higher error bound, leading to higher
higher compression ratio than the decoupled approach can.

In Fig. 6, we further zoom into local regions to visualize the im-
pact of critical point changes on local topology. We compare only
with FPZIP for demonstration purpose, because it has the smallest
number of FPs, FNs, and FTs. Specifically, we show the difference
in the line integral convolution (LIC) of the local region near the
critical points for FPs and FNs in case I and case II, where the gray
spheres indicate the original/preserved critical points and the yel-
low spheres represent FPs. For example, the LIC patterns of the
saddle and the focus in both the original data and decompressed
data using our coupled approach can be observed in case I, while
the patterns of the decompressed data of FPZIP shows no critical
point. We also trace a streamline to show the impact of type change
in case III, where an attracting focus in the original data is turned
into a repelling focus in the decompressed data of FPZIP.

6.2 Results with Nek5000 Data

The quantitative results of the different lossy compressors are dis-
played in Table 4. We skip the absolute error bound mode be-
cause of its inefficiency in preserving critical point in previous
experiments. Again, the other lossy compressors have critical
point changes to achieve a similar compression ratio (∼ 7.5×) to
our coupled approach, which preserves all the critical points. Al-
though GZIP can also preserve all the critical points, the compres-
sion ratio is only around 1.1×. Similarly, the compression per-
formance of our methods is hindered mainly by the nc ≈ 6nv and

∑i card(adj cells(i))≈ 24nv complexity in the 3D regular grid.

We present the qualitative results by visualizing the critical point
distribution and local topology in the Nek5000 data. The global
views are displayed in Fig. 7, with traced streamlines from the
same source. We also show the derived error bound and the re-
sulting real errors in the coupled approach. We see in the figure that
the streamlines generated from original data and decompressed data
of different lossy compressors are almost the same. However, the
changed critcal points in the decompressed data of FPZIP result in
streamline changes in local regions, as shown in Fig. 8. For exam-
ple, the changed critical point type in case III leads to an attracting
effect instead of the repelling effect in the original data.

6.3 Results with LES Data

The unstructured LES data yield similar results, where our coupled
approach preserves all the critical points while the other compres-
sors introduce FPs, FNs, and FTs at the same compression ratio. In
this case, the compression performance of our method is affected
by both the 22.4× complexity (∑i card(adj cells(i)) ≈ 22.4nv) and
the construction of unstructure grid.

Figure 1 visualizes the global critical point distribution with
traced streamlines as context. Again, we see little change in all
the global streamlines, but the other lossy compressors lead to FPs,
FNs, and FTs in different locations.

(a) input data (b) our method (decoupled), CR=7.54 (c) relative error bounds for (b) (d) relative error in (b)

(e) FPZIP, CR=11.23 (f) our method, CR=11.73 (g) relative error bounds for (f) (h) relative error in (f)

(i) SZ -A, CR=11.35 (j) SZ -P, CR=11.2 (k) ZFP -A, CR=10.4 (l) ZFP -P, CR=11.2

original/preserved false-typesfalse-positives false-negatives

0% 10%

0% 10%

0% 10%

0% 10%

Figure 5: Visualizations of 2D ocean benchmark. More details are in Table 2

Table 4: Benchmark of (lossy) compressors on Nek5000 data.

Compressor Setting er CRu CRv CRw CRall Sc (MB/s) Sd (MB/s) #TP #FP #FN #FT

GZIP -1 0 1.09× 1.09× 1.09× 1.09× 23.32 119.71 10,587 0 0 0
Our method decoupled - - - - 3.27× 8.97 41.46 10,587 0 0 0
Our method coupled - - - - 7.48× 6.38 62.14 10,587 0 0 0

FPZIP -P 16 2−7 6.87× 6.73× 7.59× 7.04× 94.90 82.76 10,499 98 72 16
SZ -P 0.015 0.015 7.14× 6.74× 7.75× 7.19× 97.27 148.06 10,199 358 326 62

ZFP -P 13 0.0625 6.59× 6.47× 6.95× 6.66× 129.29 306.60 9,927 695 566 94

Table 5: Benchmark of (lossy) compressors on unstructured LES Data.

Compressor Setting er CRu CRv CRw CRall Sc (MB/s) Sd (MB/s) #TP #FP #FN #FT

GZIP -1 0 1.16× 1.07× 1.07× 1.10× 24.8 108.7 1,024 0 0 0
Our method coupled - - - - 5.06× 1.82 60.55 1,024 0 0 0

FPZIP -P 13 0.0625 6.78× 4.27× 4.27× 4.87× 81.95 73.88 992 31 25 7
SZ -P 0.02 0.02 6.44× 4.39× 4.38× 4.91× 121.06 238.82 984 13 29 11

ZFP -P 6 2 5.13× 4.75× 4.77× 4.88× 136.32 193.6 241 1870 708 75

6.4 Limitations

Separatrix preservation Our method does not theoretically guar-
antee the preservation of separatrices, but empirical studies show
that our method outperforms general-purpose lossy compressors in
preserving separatrices. As shown in Fig. 9(b), separatrices are
changed in the FPZIP results because a saddle-source pair is miss-
ing. In Fig. 9(c), the separatrices are preserved in our decompressed
data. We discussed the limitation with ocean climate researchers,
and the preservation of critical point locations and types are impor-
tant because they may imply features such as eddies. The preser-
vation of separatrices may be achieved by iteratively reducing the
global error bound until all separatrices are kept; we leave the sepa-
ratrix preservation for future work.

Eigenvector direction preservation Our method introduces
distortion to the eigenvalues and eigenvectors of critical points,
which may in turn change the topology of separatrices. However,

experiments show that the impact to eigenvector directions is usu-
ally minimal, as demonstrated in Fig. 9. Eigenvector directions can
be strictly preserved by applying zero error bounds for correspond-
ing cells, which may affect the compression ratio.

Generalization to multilinear vector fields Our compressor
currently does not consider multilinear (bilinear and trilinear) vec-
tor fields. The error bound to avoid FN, FP, and FT may be derived
with the technique presented in this paper but with much higher
degrees of polynomials involved. Thus, closed-form error bounds
may not be available, and numerical approximations are necessary.
We will study feature preserving compression in multilinear and
higher-order interpolated vector fields in future work.

7 CONCLUSIONS AND FUTURE WORK

This paper introduces a theoretical framework to strictly preserve
critical points by adapting vertex-wise error bounds in lossy com-

Input Data
C

a
se

 I:
 F

N
C

a
se

 II
: F

P
C

a
se

 II
I:

F
T

FPZIP (CR=11.23) Our Method (CR=11.73)

Figure 6: Visualizations of FN (case I), FP (case II), and FT (case III)
in FPZIP decompressed data, compared with the original data and
decompressed data of our method. In case III, the critical point type
changed from attracting focus to repelling focus with FPZIP; each
plot has one single streamline seeded from a fixed location near the
critical point, and color encodes the integration time of streamlines.

pression. We also present two approaches to achieve feature-
preserving compression: decoupled and coupled methods; the de-
coupled method is optimized for performance, while the coupled
method has higher compression ratio. Experiments demonstrate
that the proposed methods can preserve the critical points and lo-
cal topologies are preserved in the visualization results.

We would like to further investigate preserving more topologi-
cal features—topological skeletons, vortex core lines, and bound-
ary surfaces—with error-bounded lossy compression. We would
also like to generalize our method to multilinear, higher-order fi-
nite elements, and spectrum mesh elements in addition to simpli-
cial cells. In addition to Lorenzo predictors, we will also investi-
gate regression- and statistics-based predictors to further improve
the compression quality.

APPENDIX

We prove sufficient conditions to preserve critical points in Ap-
pendix A. Appendices B and C derive the error bounds for decou-
pled and coupled feature-preserving compression, respectively.

A Sufficient Conditions to Preserve Critical Points

We prove Eqs. (4), (5), and (6) in this section. The derivations use
the following properties of SPEFs:

ψ(f g;d)≥min(ψ(f ;d),ψ(g;d)), (7)

ψ(f +g;d)≥min(ψ(f ;d),ψ(g;d)), if sgn(f (d)) = sgn(g(d)),
(8)

where f and g are two given scalar function R
m×n → R that take

the same arguments. We further generalize the notation of ψ for
multiple functions f0, f1, . . . , fn−1 to represent the maximal error
bound to keep the sign of each function, and we have

ψ(f0, f1, . . . , fn−1;d)
def
= min

i
ψ(fi;d). (9)

We introduce auxiliary barycentric coordinates (m0,m1,m2)
⊺ to

represent the 2D critical point solution in Eq. (2), such that in non-

degeneracy cases, we have

µk = mk/(m0 +m1 +m2) = mk/M,k ∈ {0,1,2}, (10)

where M = ∑k mk 6= 0, m0 = |u1 u2
v1 v2
|, m1 = |u0 u2

v0 v2
|, and m2 = |u0 u1

v0 v1
|;

We use similar notations to represent 3D critical point solutions
with auxiliary barycentric coordinates. Notice that m0, m1, and m2

are functions of V, and we have the following.

Proclaim 1. A sufficient condition to avoid FN in a triangular cell
is ||∆(V)||max ≤ ψ(m0,m1,m2;V).

Proof. The “non-FN” condition is equivalent to finding a proper
maximal error bound ||∆(V)||max such that

||∆(V)||max ≤ ψ(µ0,µ1,µ2,1−µ0,1−µ1,1−µ2;V)
def
= φFN(V).

(11)
Based on Eqs. (10) and (7), we have

φFN(V)
(10)
= ψ

(
m0

M
,

m1

M
,

m2

M
,

m1 +m2

M
,

m0 +m2

M
,

m0 +m1

M
;V

)

(7)
=ψ(m0,m1,m2,m1 +m2,m0 +m2,m0 +m1,M;V)

(8)

≥ψ(m0,m1,m2;V). (12)

The last inequality holds because sgn(m0) = sgn(m1) = sgn(m2),
which is deduced from µk = mk/M ≥ 0 for all k.

Proclaim 2. A sufficient condition to avoid FP in a triangular cell
is ||∆(V)||max ≤maxk∈{k|µk /∈[0,1]}min

(
ψ(mk),ψ(∑k′ 6=k mk′ ;V)

)
.

Proof. In the “non-FP” condition, there exists at least one k such
that µk /∈ [0,1]. Thus, a sufficient condition to avoid FP is to adapt
||∆(V)||max satisfying µ ′k /∈ [0,1] in the decompressed data for any
k ∈ {k | µk /∈ [0,1]} such that

||∆(V)||max ≤maxk∈{k|µk /∈[0,1]}ψ(µk(1−µk);V). (13)

For ψ(µk(1−µk);V), we have

ψ(µk(1−µk);V) = ψ

(
mk

M
· M−mk

M
;V

)
= ψ

(
mk(∑k′ 6=k mk′)

M2
;V

)

(7)

≥ min
(
ψ(mk),ψ(∑k′ 6=k mk′);V

)
, (14)

and thus the proclaim is proved.

Proclaim 3. A sufficient condition to avoid FT of noncenter critical
points in a triangular cell is2

||∆(V)||max ≤
{

ψ(|J|;V) |J| ≤ 0

ψ(tr2(J)−4|J|, tr(J);V) |J|> 0
. (15)

Proof. Let B =− tr(J) and C = |J| for simplicity. The root of λ 2 +

Bλ +C are λ0,λ1 = (−B±
√

B2−4C)/2. Consider the case of
C < 0. The discriminant will be larger than 0; thus the roots are
both real. Furthermore, the roots have to be one positive and one

negative for |B| <
√

B2−4C. Therefore, we need only to preserve
the negativity of λ0λ1:

ψ(λ0λ1;V) = ψ
(

B2− (B2−4C);V
)
= ψ(C;V). (16)

However, when C > 0, the sign of discriminant B2− 4C has to be
preserved because it determines the number of real roots. When
the discriminant is greater than 0, we also need to preserve B only

because sgn(−B+
√

B2−4C) = sgn(−B−
√

B2−4C) = sgn(−B).
The proclaim is thus proved.

2The preservation of a center (Re(λ0) = Re(λ1) = 0 and

Im(λ0), Im(λ1) 6= 0) requires tr(J) = 0, which leads to the error bound

of 0. However, centers are seldom found because the floating-point

representation of tr(J) is normally nonzero.

(a) (b) (c) (d) (e) (f)
5%0

(c(b)
5%0

original/preserved false-typesfalse-positives false-negatives

Figure 7: Visualization of Nek5000 simulation data: (a) original data with all critical points, (b) FPZIP decompressed data with false critical points,
(c) SZ decompressed data with false critical points, (d) decompressed data from our method with all critical points, and (e) vertex-wise error
bound derived and (f) vertex-wise error by our method. Streamlines are visualized as context

false positive

critical points

critical

points

critical

points

repelling

node

false attracting

node

preserved

repelling node

C
a

se
 I:

 F
P

Input Data FPZIP (CR=7.04) Our Method (CR=7.48)

C
a

se
 II

: F
N

C
a

se
 II

I:
F

T

Figure 8: Visualizations of local streamline changes in FPZIP decom-
pressed data, compared with the original data and decompressed
data of our method. In case III, the streamline in each figure is
seeded closely to the critical point in the original data, and colors
encode the integration time of streamlines.

(a) (b) (c)

saddle-source

pair missed

saddle-source

pair

saddle-source

pair

(0.909, -0.417)

(0.436, 0.900) (0.437, 0.899) (0.431, 0.902)

(0.911, -0.412) (0.912, -0.411)

λ=0.031±0.621i λ=0.035±0.611i λ=0.064±0.590i

Figure 9: Zoomed visualization of separatrices in (a) original ocean
data, (b) decompressed data with FPZIP (CR=7.04), and (c) decom-
pressed data with our method (CR=7.48).

B Error Bound Derivation in Decoupled Compression

This section derives eb FN decoupled, eb FP decoupled, and
eb FT decoupled used in Algorithm 1 for decoupled compression.
We use the following lemma for the error bound derivation in de-

coupled compression. The positive ramp R+(·) and negative ramp
R−(·) used in the lemmas are defined as

(
R+(d)

)
i
= max{0,di} and

(
R−(d)

)
i
= min{0,di}, (17)

respectively, for vector d of arbitrary dimensions, where i is the
linear index of the elements.

Lemma 1. For d = {di j} ∈ R
m×n, if ∑i ∏ j di j 6= 0, we have

ψ
(
∑i ∏ j di j;d

)
≥

∣∣∣∣∣∣

n

√
∑i R+

(
∏ j di j

)
− n

√
−∑i R−

(
∏ j di j

)

n

√
∑i R+

(
∏ j di j

)
+ n

√
−∑i R−

(
∏ j di j

)

∣∣∣∣∣∣
. (18)

Proof. Consider the case of ∑i ∏ j di j ≥ 0. Assuming the adopted
cell-wise error bound is er, we have

∑i ∏ j d′i j = ∑i R+
(

∏ j d′i j

)
+∑i R−

(
∏ j d′i j

)

≥(1− er)
n ∑i R+

(
∏ j di j

)
+(1+ er)

n ∑i R−
(
∏ j di j

)
. (19)

Let the second line of Eq. (19) be greater than or equal to 0. The
problem turns out to be solving

(1− er)
n ∑i R+

(
∏ j di j

)
+(1+ er)

n ∑i R−
(
∏ j di j

)
≥ 0. (20)

By elementary calculation, we obtain er in the form of Eq. (18) in
this case. The case of ∑i ∏ j di j ≤ 0 can be proved similarly.

We then derive the sufficient error bounds for all the SPEFs in Pro-
claims 1, 2, and 3, because all the functions in the SPEFs can be
written in the form of d = {di j} ∈ R

m×n. Notice that Proclaim 3
cannot be generalized to 3D; we use ||∆(V)||max = 0 as the suffi-
cient condition to guarantee “non-FT” due to the high complexity.

C Error Bound Derivation in Coupled Compression

We introduce the derivation for eb FN coupled, eb FP coupled,
and eb FT coupled used in Algorithm 1 for coupled compression
in this appendix.

Lemma 2. Let a∈Rn, b∈Rn, and c∈R, if R+(a)⊺b−R−(a)⊺b 6=
0. Then we have

ψ(a⊺b+ c;b)≥ |a⊺b+ c|
R+(a)⊺b−R−(a)⊺b

. (21)

Proof. First, we consider the case of a⊺b + c > 0. The decom-
pressed data a⊺b′ + c can be scaled as follows by assuming the
adopted cell-wise error bound is er. Then we have

a⊺b′+ c = (R+(a)+R−(a))⊺b′+ c

≥ R+(a)⊺b(1− er)+R−(a)⊺b(1+ er)+ c. (22)

Let the second line of Eq. (22) be larger than or equal to 0. Then
we have

er ≤
R+(a)⊺b+R−(a)⊺b+ c

R+(a)⊺b−R−(a)⊺b
=

a⊺b+ c

R+(a)⊺b−R−(a)⊺b
. (23)

Second, the case for a⊺b+ c < 0 can be proved similarly. This
completes the proof.

The sufficient error bound to avoid FNs and FPs in coupled com-
presion (i.e., eb FN coupled and eb FP coupled) can be derived
based on Proclaims 1 and 2, as well as Lemma 2.

Next, we explain how to derive the sufficient error bounds to
avoid FTs for 2D piecewise linear vector field. The 2D piecewise
constant Jacobian can be formulated as

J = X̂−1V̂ =

[
x0− x2 x1− x2

y0− y2 y1− y2

]−1[
u0−u2 u1−u2

v0− v2 v1− v2

]
. (24)

Without loss of generality, we assume v0 = (u0,v0) is the “current”
value that is being processed in Algorithm 4 and u1,v1,u2,v2 are
constants. By elementary calculation, |J| can be written as an affine
function of v0 = (u0,v0):

|J|(u0,v0) = α0u0 +α1v0 +α2, (25)

where α0, α1, and α2 are constants that can be derived from

u1,v1,u2,v2, and X̂. Likewise, the trace of J can be written as an-
other affine function of v0 = (u0,v0) with derived constants β0, β1,
and β2:

tr(J)(u0,v0) = β0u0 +β1v0 +β2. (26)

Therefore, the sufficient error bounds for ψ(tr(J);v0) and ψ(|J|;v0)
can be directly derived by using Lemma 2.

We then derive the sufficient error bound for the discriminant
tr2(J)− 4|J|. Assuming the adopted error bound is er, we denote
the resulting relative errors in u0 and v0 are εu ∈ (−er,er) and
εv ∈ (−er,er), respectively. We also have u′0 = u0(1 + εu) and

v′0(1 + εv) for the decompressed value u′0 and v′0. Thus, the de-

compressed tr2(J′)−4|J′| can be written as a quadratic function of
(εu,εv), which can be represented by the following quadratic form:

tr2(J′)−4|J′|= (εu,εv,1)Q(εu,εv,1)
⊺, (27)

where Q ∈ R
3×3 are derived from u0,v0,u1,v1,u2,v2, and X̂. Be-

cause (εu,εv) ∈ (−er,er)× (−er,er), it has an analytical infimum

and supremum with respect to er. Therefore, let sup(tr2(J′)−
4|J′|) < 0 when tr2(J)− 4|J| < 0, and obtain a sufficient error

bound. Likewise, we obtain a sufficient error bound when tr2(J)−
4|J|> 0 by letting the inf(tr2(J′)−4|J′|)> 0.

Given the sufficient error bound for ψ(tr(J);v0), ψ(|J|;v0), and

ψ(tr2(J)− 4|J|;v0), we obtain the eb FT coupled value required
in Algorithm 4 based on Proclaim 3.

ACKNOWLEDGMENT

We thank Dr. Jeffery Larson, Dr. Todd Munson, and Dr. Chongke
Bi for useful discussions. Work by Chunhui Liu was supported
by JSPS KAKENHI Grant Number JP17F17730 and JSPS grant
(S) 16H06335. This material is based upon work supported by
Laboratory Directed Research and Development (LDRD) funding
from Argonne National Laboratory, provided by the Director, Of-
fice of Science, of the U.S. Department of Energy under Contract
No. DE-AC02-06CH11357. This work is also supported by the
U.S. Department of Energy, Office of Advanced Scientific Comput-
ing Research, Scientific Discovery through Advanced Computing
(SciDAC) program.

REFERENCES

[1] GZIP. https://www.gzip.org.

[2] ZSTD. http://www.zstd.net.

[3] M. Burtscher and P. Ratanaworabhan. FPC: A high-speed compressor

for double-precision floating-point data. IEEE Transactions on Com-

puters, 58(1):18–31, 2008.

[4] T. K. Dey, J. A. Levine, and R. Wenger. A Delaunay simplification

algorithm for vector fields. In Proc. Pacific Conference on Computer

Graphics and Applications, pp. 281–290, 2007.

[5] C. Heine, H. Leitte, M. Hlawitschka, F. Iuricich, L. De Floriani,

G. Scheuermann, H. Hagen, and C. Garth. A survey of topology-

based methods in visualization. Comput. Graph. Forum, 35(3):643–

667, 2016.

[6] J. Helman and L. Hesselink. Representation and display of vector field

topology in fluid flow data sets. IEEE Computer, 22(8):27–36, 1989.

[7] L. Ibarria, P. Lindstrom, J. Rossignac, and A. Szymczak. Out-of-core

compression and decompression of large n-dimensional scalar fields.

Computer Graphics Forum, 22(3):343–348, 2003.

[8] S. Koch, J. Kasten, A. Wiebel, G. Scheuermann, and M. Hlawitschka.

2D vector field approximation using linear neighborhoods. The Visual

Computer, 32(12):1563–1578, 2016.

[9] R. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F. Post, and

D. Weiskopf. The state of the art in flow visualization: Dense and

texture-based techniques. Comput. Graph. Forum, 23(2):203–222,

2004.

[10] R. S. Laramee, H. Hauser, L. Zhao, and F. H. Post. Topology-based

flow visualization, the state of the art. In Proc. Topology-Based Meth-

ods in Visualization, pp. 1–19, 2007.

[11] S. Li, N. Marsaglia, C. Garth, J. Woodring, J. P. Clyne, and H. Childs.

Data reduction techniques for simulation, visualization and data anal-

ysis. Comput. Graph. Forum, 37(6):422–447, 2018.

[12] X. Liang, S. Di, D. Tao, Z. Chen, and F. Cappello. An efficient trans-

formation scheme for lossy data compression with point-wise relative

error bound. In CLUSTER’18: Proc. IEEE International Conference

on Cluster Computing, pp. 179–189. IEEE, 2018.

[13] X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and F. Cappello.

Error-controlled lossy compression optimized for high compression

ratios of scientific datasets. In Proc. IEEE International Conference

on Big Data, pp. 438–447. IEEE, 2018.

[14] P. Lindstrom. Fixed-rate compressed floating-point arrays. IEEE

Trans. Vis. Comput. Graph., 20(12):2674–2683, 2014.

[15] P. Lindstrom and M. Isenburg. Fast and efficient compression of

floating-point data. IEEE Trans. Vis. Comput. Graph., 12(5):1245–

1250, 2006.

[16] S. K. Lodha, J. C. Renteria, and K. M. Roskin. Topology preserving

compression of 2D vector fields. In Proc. IEEE Visualization 2000,

pp. 343–350, 2000.

[17] T. McLoughlin, R. S. Laramee, R. Peikert, F. Post, and M. Chen. Over

two decades of integration-based, geometric flow visualization. Com-

put. Graph. Forum, 29(6):1807–1829, 2010.

[18] M. Rodrı́guez, E. Gobbetti, J. Guitián, M. Makhinya, F. Marton, R. Pa-

jarola, and S. Suter. State-of-the-art in compressed GPU-based direct

volume rendering. Comput. Graph. Forum, 33(6):77–100, 2014.

[19] D. Tao, S. Di, Z. Chen, and F. Cappello. Significantly improving

lossy compression for scientific data sets based on multidimensional

prediction and error-controlled quantization. In Proc. IEEE Inter-

national Parallel and Distributed Processing Symposium, pp. 1129–

1139, 2017.

[20] A. Telea and J. J. van Wijk. Simplified representation of vector fields.

In Proc. IEEE Visualization 1999, pp. 35–42, 1999.

[21] H. Theisel, C. Rössl, and H.-P. Seidel. Compression of 2D vector

fields under guaranteed topology preservation. Comput. Graph. Fo-

rum, 22(3):333–342, 2003.

[22] H. Theisel, C. Rössl, and T. Weinkauf. Topological representations of

vector fields. In L. D. Floriani and M. Spagnuolo, eds., Shape Analysis

and Structuring, pp. 215–240. Springer, 2008.

[23] G. K. Wallace. The JPEG still picture compression standard. IEEE

Transactions on Consumer Electronics, 38(1):xviii–xxxiv, 1992.

https://www.gzip.org
http://www.zstd.net

	Introduction
	Background
	Error-Bounded Lossy Compression
	Vector Field Compression
	Critical Points in Piecewise Linear Vector Field

	Problem Statement
	Decoupled and Coupled Feature-Preserving Compression
	Decoupled Compression
	Coupled Compression
	Comparison between Decoupled and Coupled Compression

	Lossy Compressor Customization
	Baseline Compressor Selection
	Efficient Vertex-wise Error Bounds Storage

	Evaluation
	Results with 2D Ocean Data
	Results with Nek5000 Data
	Results with LES Data
	Limitations

	Conclusions and Future Work

