
The Challenges of Elastic In Situ Analysis and Visualization
Matthieu Dorier, Orcun Yildiz, Tom Peterka, and Robert Ross

Argonne National Laboratory
9700 Cass Avenue

Lemont, Illinois 60439
{mdorier,oyildiz,tpeterka,rross}@mcs.anl.gov

ABSTRACT
In situ analysis and visualization have been proposed in high-
performance computing (HPC) to enable executing analysis tasks
while a simulation is running, bypassing the parallel file system and
avoiding the need for storing massive amounts of data. One aspect
of in situ analysis that has not been extensively researched to date,
however, is elasticity. Current in situ analysis frameworks use a
fixed amount of resources and can hardly be scaled up or down
dynamically throughout the simulation’s run time as a response to
changes in the requirements.

In this paper, we present the challenges posed by elastic in situ
analysis and visualization. We emphasize that elasticity can take
various forms. We show the difficulties of supporting each form
of elasticity with the state-of-the-art HPC technologies, and we
suggest solutions to overcome these difficulties. The resulting four-
way classification can be seen as a taxonomy for future elastic in
situ analysis and visualization systems.

CCS CONCEPTS
• Computing methodologies→ Parallel algorithms; Self-
organization; Distributed algorithms;

KEYWORDS
HPC, In Situ Analysis and Visualization, Elasticity
ACM Reference format:
Matthieu Dorier, Orcun Yildiz, Tom Peterka, and Robert Ross. 2020. The
Challenges of Elastic In Situ Analysis and Visualization. In Proceedings of
ACM Conference, Washington, DC, USA, July 2017 (Conference’17), 6 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Over the past decade, in situ analysis and visualization have gained
traction in the high performance computing (HPC) community as
a means to speed up simulation campaigns. In situ analysis enables
coupling analysis code with a simulation in order to bypass the
storage system and allow direct insight into the simulation’s data.
This technique allows access to more data than would otherwise

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

be available for postprocessing, and it opens the possibility for live
user feedback. Major visualization and analysis toolkits such as
VisIt [21] and ParaView [2] provide such capabilities.

One aspect of in situ analysis that has been seldom researched so
far is that of elasticity, namely, the capability to dynamically add and
remove resources to an in situ analysis framework to accommodate
changes in requirements. Yet the case for elasticity has existed for
as long as these frameworks have been around. For example, when
we first proposed dedicating cores to in situ visualization tasks with
Damaris back in 2013 [12], one concern scientists had was that
computation resources would be wasted for the majority of the
simulation’s run time, during which it produces nothing interesting
to visualize. The answer to this concern was to blame the simulation
itself for its lack of elasticity: if the static, MPI-based simulation
was not able to trade MPI ranks back and forth, how could an in
situ analysis framework ever be elastic?

Since then, technology changes have made this answer less rele-
vant. In particular, elasticity can take very different forms depending
on which resources we want to add and remove and when, why, and
how such an operation can occur. The increasing use of massively
multicore nodes poses the question of better sharing these cores
between simulations and analysis codes. New programming models,
in particular based on user-level threads [30, 35], make it possible
to share time even on individual cores. And while the MPI standard
still constrains applications to a static set of ranks, workflows are
trying to mitigate this limitation by allowing dynamic connections
between applications.

Recognizing the various forms elasticity can take, in this paper
we present four orthogonal categorizations for in situ analysis
frameworks and discuss the challenges that the community has to
overcome to enable each form of elasticity. The result is a taxonomy
that we hope will highlight which form remains to be implemented
and how close existing frameworks are to some forms of elasticity.

2 TAXONOMY AND CHALLENGES
In this section we present four classification axes of elastic in situ
analysis techniques. These axes lead to a taxonomy for present and
future in situ analysis systems.

2.1 What? Resources
Elastic in situ analysis techniques can be categorized by consider-
ing which physical resources are being added or removed during
a reconfiguration operation. The main resources we consider in
this paper are cores and nodes, although other resources could be
considered, such as accelerators (GPUs, Tensor cores), local storage
resources (SSDs, NVRAM), and network components. To under-
stand the challenges posed by the trading of these resources, we

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Matthieu Dorier, Orcun Yildiz, Tom Peterka, and Robert Ross

look at the software concepts that allow such trades: threads, pro-
cesses, jobs, and services.

2.1.1 Threads. The increasing number of cores per socket has
made multithreading almost mandatory to maximize performance
on a node. Many threading/tasking frameworks are available to
users, including Pthread [25], OpenMP [7], Intel TBB [35], and
Argobots [30]. Some of these frameworks provide user-level threads
(also known as coroutines), as well as custom schedulers and thread
pools. Thread-level elasticity enables sharing cores, or even time on
a core, between the simulation and the analysis code. It consists of
having the analysis routines efficiently share a threading framework
with the simulation. This level applies when the in situ analysis
framework is tightly coupled with the simulation and lives in the
same processes. Thread-level elastic in situ analysis can be enabled
for example by (1) spawning more analysis threads when needed,
(2) reducing the number of analysis threads when the simulation
requires more threads for itself, and (3) enabling priority-scheduling
of analysis and simulation threads depending onwhich type of work
is more critical at any given time.

When simulation and analysis codes live in separate processes on
the same node, synchronizing their use of individual cores becomes
more difficult. The underlying threading framework is generally
not shared across processes, and some additional communication
mechanisms should be put in place for one process to notify another
of a need to use more cores.

Challenges. While visualization libraries such as VTKm [23]
have multiple threading backends (OpenMP and Intel TBB as of
writing this paper), not all HPC threading frameworks are sup-
ported, hence leaving framework interoperability as a challenge.
If the simulation uses Argobots, for example, VTKm will not be
able to make use of the Argobots thread pools, and conversely
the simulation will not be able to claim resources from VTKm. A
possible solution would come in the form of a threading/tasking
standard at a level lower than that of OpenMP, providing all the
control over user-level threads and thread scheduling currently
offered by Argobots and Intel TBB. Simulation and analysis codes
would use this standard in place of concrete threading libraries,
while threading libraries would serve as a basis for implementing
the standard.

To date, no threading framework enables interaction across the
boundaries of processes to share cores in a manner as efficient as
what can be done within a single process. For example, if both a
simulation and a colocated analysis code use OpenMP, a call to
omp_set_num_threads() in one process will not trigger a change
in the other. Solutions to this challenge would come either from ex-
tensions to threading libraries (with the problem of interoperability
seen above) or from the operating system. Ideally, a process should
be able to register callbacks to be called when other processes
reduce the number of cores they use or request more cores.

2.1.2 Processes. Processes are a convenient software construct
when trading cores or nodes. Many in situ analysis frameworks rely
on MPI for parallelism (often in addition to threading). A process-
level elastic in situ analysis framework should be able to accommo-
date for the addition and removal of MPI ranks. This does not mean
that MPI itself should be elastic. One can imagine a scenario in
which both the simulation and analysis code trade MPI ranks back

and forth depending on dynamically changing requirements. If the
simulation is bound to a static number of MPI ranks, process-level
elasticity requires elasticity from MPI.

Process-level elasticity becomes more interesting if we consider
that in situ analysis frameworks could be developed without MPI.
RPC libraries such as Mercury [31] and even communication li-
braries such as libfabric [16] could be used directly to implement
elastic analysis programs.

Challenges. The main obstacle to process-level elasticity is the
fact that most in situ analysis frameworks today are base on MPI1
and currently no application that we know of has the ability to
change its number of MPI ranks at run time (although such a sce-
nario could emerge from the field of HPC workflows [36]). Since
MPI is not itself elastic, a solution using MPI_Comm_spawn could be
envisioned to spawn the desired number of MPI processes for the
analysis task. However, this MPI functionality is often not imple-
mented and remains limited [13]. If the MPI standard enables some
elasticity in the future, existing in situ analysis frameworks based
on MPI would need to be updated to take advantage of it.

Going away fromMPI by using alternative communication frame-
works, on the other hand, means that a large number of algorithms
will have to be reimplemented. Yet these algorithms already have
benefited from years of testing and performance tuning in the con-
text of MPI. Alternatively, new additions to the MPI standard such
as MPI sessions [18] could provide a way of making a non-MPI
distributed program temporarily become an MPI program for the
duration of an analysis operation. The use of PMIx [6] to build an
ad hoc MPI context is another possible solution, arguably more
complex to implement.

2.1.3 Jobs. Job-level elasticity consists of being able to place in
situ analysis programs in a job that is separated from the one in
which the simulation runs. This approach is particularly appealing
for interactive in situ analysis, where a user connects to a simulation
from time to time to visualize its state. It also opens the possibility
of running in situ analysis jobs in a machine distinct from that
which runs the simulation.

Challenges. This approach implies that multiple jobs should
be able to communicate with one another. On a single platform
it requires that the job manager be informed that some jobs are
running simulations while other jobs are running in situ analysis
tasks for these simulations. The latter should have priority over the
former (we want to enable in situ access to a running simulation
rather than running multiple simulations without any possibility
for in situ accesses) and ideally be scheduled as close as possible to
the simulation on the network topology.

More complex challenges arise when multiple platforms are in-
volved in the in situ analysis process, either at the same facility
or across geographically distributed centers. In this context, these
platforms are separated by different types of networks, involv-
ing different protocols. For example, the simulation may run on a
supercomputer using a Cray Aries fabric, communicate through
InfiniBand to gateways connecting it to a second supercomputer
1VTK actually provides abstract classes such as vtkCommunicator to implement paral-
lelism. As of today only an MPI-based implementation is provided, but this abstraction
is a good start for an implementation under another communication backend. The same
applies to Damaris, which hides MPI-based communications under some Reactor and
Channel abstract classes.

The Challenges of Elastic In Situ Analysis and Visualization Conference’17, July 2017, Washington, DC, USA

that relies on an Intel OmniPath fabric. Packets should therefore
be routed and converted correctly across these different networks
and their respective protocols.

With the convergence of HPC and cloud computing, the platform
on which the in situ operations run may be a commercial cloud
platform. Elasticity is a requirement in this scenario since the job
scheduler on a given platformwould hardly introduce dependencies
on the availability of another platform that potentially belongs to
another institution.

2.1.4 Services. Data services is an emerging approach that con-
sists of replacing the file system with a service exposing the right
interface and features for a specific family of applications [11, 38].
In the context of data services, in situ analysis consists of running
analysis tasks inside the data service or as a service.

Challenges. HPC data services are often non-MPI programs.
Hence, running legacy MPI-based analysis codes inside of them
requires either creating a temporary MPI context using features
proposed for future MPI standards, like MPI sessions, or rewriting
analysis algorithms without using MPI. Given that these services
are already tailored to specific applications, the latter is more likely,
since the set of algorithms that need to be supported would be
relatively small. The second challenge of service-level elastic in
situ analysis is that of resource sharing with the service. Service-
level in situ analysis can benefit from thread-level and process-level
elasticity within the service, with all the challenges that these levels
bring.

2.2 When? Time granularity
Elastic in situ analysis techniques can also be categorized by consid-
ering when a rescaling operation is allowed to happen. This leads to
a notion of time granularity, for which we identify four categories.
We named these categories by the smallest entity that stays up and
running during the rescaling.

2.2.1 Platform. When the simulation and analysis codes run
in distinct jobs, the analysis job may need to be terminated, and
another job with a different size should be submitted in order to
change the amount of resources that an analysis code uses.

Challenges.This granularity does not bringmuch of a challenge.
The in situ analysis framework should guarantee that it can be safely
shut down without impacting the simulation and can reconnect
later, from another job. On the simulation side, the deployment of
an in situ analysis job with a different size maymean that the output
data are split in a different way from earlier instances of analysis
jobs. Libraries such as Decaf [15], Bredela [14], and DIY [28] can
help with such data redistribution problems.

2.2.2 Job. Making the distinction between a job (i.e., the set of
resources allocated for a specific amount of time) and the applica-
tion that runs inside a job, we can envision platforms that allow
adding or removing nodes to/from a job. These jobs are sometimes
called “malleable jobs” [17]. If the application inside a malleable job
is not elastic itself, it should be terminated and restarted by using a
different amount of resources.

Challenges. In this scenario, the challenge of connecting sepa-
rate jobs is alleviated, but the challenges of ensuring safe reconnec-
tion and redistribution of data after restarting the in situ application

remain. Additionally for batch jobs, one could envision amechanism
by which users indicate how an application should be terminated
and restarted when the job changes size.

2.2.3 Application. The analysis application itself may be able
to accommodate for a change in its resources; however, on-going
analysis algorithms should first terminate (or abort) before making
use of new resources or before the framework is able to release
resources.

Challenges. If resources can be added to and remove from an
application without shutting it down, this granularity mainly poses
the challenge of data redistribution and synchronization with the
simulation in the context of process-level elasticity. If the analysis
application needs to change its number of threads or its use of
cores by a threading framework, we can expect such a threading
framework to make rescaling transparent to the simulation.

2.2.4 Algorithm. The finest granularity is that of an analysis
algorithm. Namely, such an algorithm may be able to accommodate
for changes in the amount of resources available without requiring
a restart or cancellation. For example if the analysis algorithm
processes a number of local blocks of data using a pool of threads
bound to cores, the addition of a new thread can immediately be
used to processes those blocks faster.

Challenges.We can expect multithreaded analysis algorithms
to already be able to transparently accommodate a change in the
number of threads or cores available. Challenges arise when con-
sidering processes and nodes. For example, with a sort-first parallel
rendering algorithm, an attempt at reducing the number of pro-
cesses would prompt leaving processes to send their partial results
to remaining processes for them to carry on the rendering, rather
than canceling the rendering task altogether to restart it on fewer
processes. This type of granularity for process-level elasticity would
make sense particularly for long-running analysis algorithms such
as stream processing. We also note that some algorithms, for exam-
ple based on the map-reduce paradigm, can enable this granularity
without much change in the algorithm itself.

2.3 Why? Triggers
The third classification axis of elastic in situ frameworks focuses
on why reconfiguration is triggered.

2.3.1 Manual triggers. Manual triggers consist of having a user
request a reconfiguration. This is the most basic form of trigger and
the easiest to implement. It suits particularlywell scenarios where in
situ analysis is done interactively and the need for reconfiguration
comes from the need to run more or less expensive analysis tasks.

2.3.2 Simulation triggers. The simulation itself may request the
analysis framework to scale up and down. This type of trigger does
not present much of a challenge because it simply leaves to the
simulation the task of choosing when and why reconfiguration is
needed.

Challenges. Manual and simulation triggers do not pose much
of a challenge, beyond providing the right API to enable such trig-
gers.

2.3.3 Performance triggers. The system may try to reconfigure
itself to maximize performance. For instance, the user may not

Conference’17, July 2017, Washington, DC, USA Matthieu Dorier, Orcun Yildiz, Tom Peterka, and Robert Ross

know how many threads are needed to perform a given analysis
task in a minimum amount of time. An in situ framework accepting
performance triggers is capable of monitoring its own performance
and reconfiguring itself in consequence.

Challenges. The main challenge of performance triggers is the
implementation of algorithms that can accurately model perfor-
mance as a function of the resources allocated. These performance
models can be developed offline or while the application is running.

2.3.4 Data triggers. The data being processed can itself be a
trigger for reconfiguration. If the analysis framework is capable
of determining the relative value of some data, it may automati-
cally request more computation resources in order to run different
analysis tasks. Data triggers may involve machine learning or deep
learning to determine the value of data. They may also be combined
with performance triggers so that the amount of allocated resources
is determined to achieve the best performance given the data value.

Challenges. Machine learning algorithms will have to be de-
veloped to autonomously take decisions based on the value of the
data.

2.3.5 External triggers. External triggers are requests from non-
human entities external to the simulation/analysis compound. For
example, an external trigger may come from the job scheduler, re-
questing the analysis framework to free up some resources in order
to make space for another job. External triggers may be combined
with performance triggers as well: the in situ analysis framework
could interrogate the job management system to determine whether
other jobs are competing for resources such as the network and to
scale analysis tasks accordingly.

Challenges. External triggers pose the challenge of interfacing
with external systems such as the job scheduler, either to collect
information about other running jobs or to receive rescaling orders
from these external systems.

2.4 How? Reconfiguration types
An additional axis can be added indicating the type of reconfigura-
tion that is supported.

2.4.1 Upscaling and downscaling. Upscaling and downscaling
respectively consist of adding and removing resources to an in situ
analysis framework. One can imagine a system that can immedi-
ately use additional cores in the middle of an analysis operation
but needs to wait until the end of an analysis operation for cores to
be released.

Challenges. The challenges of upscaling and downscaling are
related mainly to data redistribution. Solving this problem is easy
when threads are the resources being added or removed. It becomes
more complex when processes are involved. This challenge has
already been described in preceding sections.

2.4.2 Topological reconfiguration. In the context of workflows
more complex than a simple simulation/analysis pairing, topologi-
cal reconfiguration consists of adding or removing analysis tasks,
redistributing the resources between simulation and analysis, and
changing the topology of the workflow and/or dataflow graph dy-
namically.

Challenges. Topological reconfiguration is arguably the most
complex type of reconfiguration since it encompasses most of the
challenges listed above: data redistribution, dynamic connection
between distinct applications, and automatic response to triggers.

3 THE COMMUNITY SITUATION TODAY
In recent years, several in situ analysis solutions have been devel-
oped. However, support for elasticity remains largely unexplored
in these systems. ADIOS [5], SENSEI [3], Decaf [15], ParaView Cat-
alyst [2], LibSim VisIt [21], and Damaris [10] are all constrained by
their dependency on MPI and their lack of dynamic multithreading
support. Although some do use threads, they are not able to trade
them with the simulation. TINS [9] makes one step forward in
this respect. It is a task-based in situ framework that dynamically
dedicates cores on each node for running the analysis processes. It
relies on Intel TBB; and although it proved more efficient than static
helper-core approaches such as Damaris, it requires the application
to be written by using Intel TBB as well.

Some research efforts consider bringing elasticity to in situ frame-
works. Flexpath is a publish/subscribe system for coupling work-
flow tasks and can accommodate analysis task arrivals/departures.
However, the experiments by Dayal et al. [8] demonstrate only
arrival/departure of serial analysis tasks with an MPI size of 1 to
the static 2- or 3-task linear workflow. Melissa [33] is a parallel
client/server architecture for the analysis of ensembles where inde-
pendent simulation groups can connect dynamically to the parallel
server when they start. Elasticity is one of the design goals of
Melissa, although it is understood as the capability to run more or
fewer simulation instances, rather than scaling up and down the
in situ framework itself. Henson [24] is a cooperative multitasking
system for in situ processing that uses position-independent exe-
cutables and coroutines as its main abstractions. In a recent work,
Lohrmann et al. [22] extended Henson with support for iterative
workflows by allowing users to launch multiple jobs depending
on the decisions made by one of the workflow tasks. This feature
enables some elasticity at the job level.

When we look at the more general landscape of workflows, we
find more studies on elasticity resulting from their inherently dy-
namic nature. FireWorks [20] is a workflow management system
(WMS) for running high-throughput materials science calculations
at distributed environments. It allows modification of the workflow
graph during run time based on execution results. YAWL [34] sup-
ports dynamic workflows through worklets. Swift [36] is an implicit
task-parallel language for scientific computing that supports elastic-
ity through the evaluation of functions. Similarly, PyCOMPSs [32]
is a Python-based distributed workflow system that enables users
to program task-based parallel workflows and therefore supports
elasticity. Embedding a simulation and an analysis program in one
of the WMSs presented above can enable some form of elasticity:
individual applications need to be restarted within the workflow,
but the workflow itself keeps running.

One way of bringing elasticity to statically scheduled workflows
would be to combine them with the distributed-area workflows
that support elasticity. Pegasus has been combined with cloud in-
frastructures such as ExoGENI [4] and ORCA [29] to build elastic

The Challenges of Elastic In Situ Analysis and Visualization Conference’17, July 2017, Washington, DC, USA

distributed-area workflows. Yildiz et al. [37] employed Decaf work-
flows as single tasks of a PyCOMPSs workflow, which extended
Decaf in situ workflows with elasticity.

Since MPI is widely used in the in situ workflows, bringing elas-
ticity toMPI would play a key role in enabling elastic in situ analysis
and visualization. Although the MPI standard provides dynamic
process management via MPI_Comm_spawn, this feature is often not
implemented: as of writing this paper, IBM and Cray’s implemen-
tations of MPI do not support MPI_Comm_spawn. Additionally, this
feature is not supported by current production batch schedulers. As
an alternative to this feature, we proposed MPI_Comm_launch [13],
which enables an MPI application to run inside another MPI appli-
cation. This function may enable elasticity by dynamically starting
subapplications. In a similar quest, Hori et al. [19] proposed process-
in-process (PiP) which maps multiple processes into a single virtual
address space (VAS). PiP defines a root process that owns the VAS,
and it can spawn multiple arbitrary tasks executing in the same
VAS.

Although some important studies of elastic in situ analysis and
visualization have been made, elasticity still remains a long-term
goal that will require community input from various groups. We
refer the reader to a community effort defining related priority
research directions [1, 26, 27].

4 CONCLUSION
Being able to reconfigure an in situ analysis framework at run time
will be of outmost importance to enable better resource utilization
at exascale. This elasticity has been requested by the community
from the day in situ frameworks were proposed. In this paper we
have shown that such elasticity can take different forms depending
on the answers to four questions: which resource is being added
or removed, when such a rescaling is allowed to happen, why it
happens, and how. These various forms of elasticity present distinct
technical challenges that the community will have to face in order to
enable elasticity in existing and future in situ analysis frameworks.

ACKNOWLEDGMENTS
This material is based upon work supported by the U.S. Department
of Energy, Office of Science, under contract DE-AC02-06CH11357.

REFERENCES
[1] 2019. ASCR Workshop on In Situ Data Management. https://science.osti.gov/-/

media/ascr/pdf/programdocuments/docs/2019/ISDM_brochure.PDF. (2019).
[2] Utkarsh Ayachit, Andrew Bauer, Berk Geveci, Patrick O’Leary, KennethMoreland,

Nathan Fabian, and Jeffrey Mauldin. 2015. ParaView Catalyst: Enabling in situ
data analysis and visualization. In Proceedings of the First Workshop on In Situ
Infrastructures for Enabling Extreme-Scale Analysis and Visualization. ACM, 25–
29.

[3] Utkarsh Ayachit, Brad Whitlock, Matthew Wolf, Burlen Loring, Berk Geveci,
David Lonie, and E Bethel. 2016. The SENSEI generic in situ interface. In Pro-
ceedings of the 2nd Workshop on In Situ Infrastructures for Enabling Extreme-scale
Analysis and Visualization. IEEE Press, 40–44.

[4] Ilya Baldin, Jeff Chase, Yufeng Xin, Anirban Mandal, Paul Ruth, Claris Castillo,
Victor Orlikowski, Chris Heermann, and Jonathan Mills. 2016. ExoGENI: A
multi-domain infrastructure-as-a-service testbed. In The GENI Book. Springer,
279–315.

[5] David A Boyuka, Sriram Lakshminarasimham, Xiaocheng Zou, Zhenhuan Gong,
John Jenkins, Eric R Schendel, Norbert Podhorszki, Qing Liu, Scott Klasky, and Na-
giza F Samatova. 2014. Transparent in situ data transformations in adios. In 2014
14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing.
IEEE, 256–266.

[6] Ralph H Castain, Joshua Hursey, Aurelien Bouteiller, and David Solt. 2018. PMIX:
Process management for exascale environments. Parallel Comput. 79 (2018),
9–29.

[7] Leonardo Dagum and Ramesh Menon. 1998. OpenMP: An industry-standard API
for shared-memory programming. Computing in Science & Engineering 1 (1998),
46–55.

[8] Jai Dayal, Drew Bratcher, Greg Eisenhauer, Karsten Schwan, Matthew Wolf,
Xuechen Zhang, Hasan Abbasi, Scott Klasky, and Norbert Podhorszki. 2014.
Flexpath: Type-based publish/subscribe system for large-scale science analyt-
ics. In 2014 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing. IEEE, 246–255.

[9] Estelle Dirand, Laurent Colombet, and Bruno Raffin. 2018. TINS: A task-based
dynamic helper core strategy for in situ analytics. In Asian Conference on Super-
computing Frontiers. Springer, 159–178.

[10] Matthieu Dorier, Gabriel Antoniu, Franck Cappello, Marc Snir, Robert Sisneros,
Orcun Yildiz, Shadi Ibrahim, Tom Peterka, and Leigh Orf. 2016. Damaris: Address-
ing performance variability in data management for post-petascale simulations.
ACM Transactions on Parallel Computing (TOPC) 3, 3 (2016), 15.

[11] Matthieu Dorier, Philip Carns, Kevin Harms, Robert Latham, Robert Ross, Shane
Snyder, Justin Wozniak, Samuel Gutierrez, Bob Robey, Brad Settlemyer, Galen
Shipman, Jerome Soumagne, James Kowalkowski, Marc Paterno, and Saba Sehrish.
2018. Methodology for the rapid development of scalable HPC data services. In
Proceedings of the PDSW-DISC 2018 workshop (SC18). https://sc18.supercomputing.
org/proceedings/workshops/workshop_pages/ws_pdsw106.html

[12] Matthieu Dorier, Roberto R. Sisneros, Tom Peterka, Gabriel Antoniu, and Dave B.
Semeraro. 2013. Damaris/Viz: a nonintrusive, adaptable and user-friendly in situ
visualization framework. In IEEE Symposium on Large-Scale Data Analysis and
Visualization (LDAV). Atlanta, United States. https://hal.inria.fr/hal-00859603

[13] Matthieu Dorier, Justin MWozniak, and Robert Ross. 2017. Supporting task-level
fault-tolerance in HPC workflows by launching MPI jobs inside MPI jobs. In
Proceedings of the 12th Workshop on Workflows in Support of Large-Scale Science.
ACM, 5.

[14] Matthieu Dreher and Tom Peterka. 2016. Bredala: Semantic data redistribution for
in situ applications. In 2016 IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, 279–288.

[15] Matthieu Dreher and Tom Peterka. 2017. Decaf: Decoupled dataflows for in situ
high-performance workflows. Technical Report. Argonne National Laboratory,
Argonne, IL (United States).

[16] OpenFabrics Working Group et al. Libfabric. https://www.openfabrics.org/.
(????).

[17] Abhishek Gupta, Bilge Acun, Osman Sarood, and Laxmikant V Kalé. 2014. To-
wards realizing the potential of malleable jobs. In 2014 21st International Confer-
ence on High Performance Computing (HiPC). IEEE, 1–10.

[18] Daniel Holmes, KathrynMohror, Ryan E. Grant, Anthony Skjellum,Martin Schulz,
Wesley Bland, and Jeffrey M. Squyres. 2016. MPI sessions: leveraging runtime
infrastructure to increase scalability of applications at exascale. In Proceedings
of the 23rd European MPI Users’ Group Meeting (EuroMPI 2016). ACM, New York,
NY, USA, 121–129. https://doi.org/10.1145/2966884.2966915

[19] Atsushi Hori, Min Si, Balazs Gerofi,Masamichi Takagi, Jai Dayal, Pavan Balaji, and
Yutaka Ishikawa. 2018. Process-in-process: techniques for practical address-space
sharing. In Proceedings of the 27th International Symposium on High-Performance
Parallel and Distributed Computing. ACM, 131–143.

[20] Anubhav Jain, Shyue Ping Ong, Wei Chen, Bharat Medasani, Xiaohui Qu, Michael
Kocher, Miriam Brafman, Guido Petretto, Gian-Marco Rignanese, Geoffroy Hau-
tier, et al. 2015. FireWorks: A dynamic workflow system designed for high-
throughput applications. Concurrency and Computation: Practice and Experience
27, 17 (2015), 5037–5059.

[21] T Kuhlen, R Pajarola, and K Zhou. 2011. Parallel in situ coupling of simulation
with a fully featured visualization system. In Proceedings of the 11th Eurographics
Conference on Parallel Graphics and Visualization (EGPGV).

[22] Erich Lohrmann, Zarija Lukić, Dmitriy Morozov, and Juliane Müller. 2017. Pro-
grammable in situ system for iterative workflows. InWorkshop on Job Scheduling
Strategies for Parallel Processing. Springer, 122–131.

[23] K. Moreland, C. Sewell, W. Usher, L. Lo, J. Meredith, D. Pugmire, J. Kress, H.
Schroots, K. Ma, H. Childs, M. Larsen, C. Chen, R. Maynard, and B. Geveci.
2016. VTK-m: Accelerating the visualization toolkit for massively threaded
architectures. IEEE Computer Graphics and Applications 36, 3 (May 2016), 48–58.
https://doi.org/10.1109/MCG.2016.48

[24] Dmitriy Morozov and Zarija Lukic. 2016. Master of puppets: Cooperative mul-
titasking for in situ processing. In Proceedings of the 25th ACM International
Symposium on High-Performance Parallel and Distributed Computing. ACM, 285–
288.

[25] Bradford Nichols, Dick Buttlar, Jacqueline Farrell, and Jackie Farrell. 1996.
Pthreads programming: A POSIX standard for better multiprocessing. " O’Reilly
Media, Inc.".

[26] M Parashar, PT Bremer, K Heitmann, M Larsen, J Patchett, T Peterka, M Srini-
vasan, N Röber, S Frey, and B Raffin. 2019. 4.2 Workflow Specification. In Situ

https://science.osti.gov/-/media/ascr/pdf/programdocuments/docs/2019/ISDM_brochure.PDF
https://science.osti.gov/-/media/ascr/pdf/programdocuments/docs/2019/ISDM_brochure.PDF
https://sc18.supercomputing.org/proceedings/workshops/workshop_pages/ws_pdsw106.html
https://sc18.supercomputing.org/proceedings/workshops/workshop_pages/ws_pdsw106.html
https://hal.inria.fr/hal-00859603
https://www.openfabrics.org/
https://doi.org/10.1145/2966884.2966915
https://doi.org/10.1109/MCG.2016.48

Conference’17, July 2017, Washington, DC, USA Matthieu Dorier, Orcun Yildiz, Tom Peterka, and Robert Ross

Visualization for Computational Science (2019), 13.
[27] J Patchett, H Childs, A Bauer, PT Bremer, T Carrard, M Dorier, K Heitmann Garth,

K Moreland, T Peterka, D Pleiter, et al. 2019. 4.3 Workflow Execution. In Situ
Visualization for Computational Science (2019), 16.

[28] Tom Peterka, Robert Ross, Attila Gyulassy, Valerio Pascucci, Wesley Kendall, Han-
Wei Shen, Teng-Yok Lee, and Abon Chaudhuri. 2011. Scalable parallel building
blocks for custom data analysis. In 2011 IEEE Symposium on Large Data Analysis
and Visualization. IEEE, 105–112.

[29] Paul Ruth, Anirban Mandal, Yufeng Xin, Ilia Baldine, Chris Heerman, and Jeff
Chase. 2012. Dynamic network provisioning for data intensive applications in
the cloud. In 2012 IEEE 8th International Conference on E-Science. IEEE, 1–2.

[30] Sangmin Seo, Abdelhalim Amer, Pavan Balaji, Cyril Bordage, George Bosilca,
Alex Brooks, Philip Carns, Adrián Castelló, Damien Genet, Thomas Herault, et al.
2017. Argobots: A lightweight low-level threading and tasking framework. IEEE
Transactions on Parallel and Distributed Systems 29, 3 (2017), 512–526.

[31] Jerome Soumagne, Dries Kimpe, Judicael Zounmevo, Mohamad Chaarawi,
Quincey Koziol, Ahmad Afsahi, and Robert Ross. 2013. Mercury: Enabling re-
mote procedure call for high-performance computing. In 2013 IEEE International
Conference on Cluster Computing (CLUSTER). IEEE, 1–8.

[32] Enric Tejedor, Yolanda Becerra, Guillem Alomar, Anna Queralt, Rosa M Badia,
Jordi Torres, Toni Cortes, and Jesús Labarta. 2017. PyCOMPSs: Parallel compu-
tational workflows in Python. The International Journal of High Performance
Computing Applications 31, 1 (2017), 66–82.

[33] Théophile Terraz, Alejandro Ribes, Yvan Fournier, Bertrand Iooss, and Bruno
Raffin. 2017. Melissa: Large scale in transit sensitivity analysis avoiding inter-
mediate files. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM, 61.

[34] Wil MP Van Der Aalst and Arthur HM Ter Hofstede. 2005. YAWL: Yet another
workflow language. Information systems 30, 4 (2005), 245–275.

[35] Thomas Willhalm and Nicolae Popovici. 2008. Putting intel® threading building
blocks to work. In Proceedings of the 1st international workshop on Multicore
software engineering. ACM, 3–4.

[36] Justin M Wozniak, Timothy G Armstrong, Michael Wilde, Daniel S Katz, Ewing
Lusk, and Ian T Foster. 2013. Swift/t: Large-scale application composition via
distributed-memory dataflow processing. In 2013 13th IEEE/ACM International
Symposium on Cluster, Cloud, and Grid Computing. IEEE, 95–102.

[37] Orcun Yildiz, Jorge Ejarque, Henry Chan, Subramanian Sankaranarayanan,
Rosa M Badia, and Tom Peterka. 2019. Heterogeneous hierarchical workflow
composition. Computing in Science & Engineering (2019).

[38] Qing Zheng, Charles D Cranor, Danhao Guo, Gregory R Ganger, George
Amvrosiadis, Garth A Gibson, Bradley W Settlemyer, Gary Grider, and Fan
Guo. 2018. Scaling embedded in-situ indexing with deltaFS. In SC18: International
Conference for High Performance Computing, Networking, Storage and Analysis.
IEEE, 30–44.

	Abstract
	1 Introduction
	2 Taxonomy and challenges
	2.1 What? Resources
	2.2 When? Time granularity
	2.3 Why? Triggers
	2.4 How? Reconfiguration types

	3 The community situation today
	4 Conclusion
	References

