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ABSTRACT

We present a novel partial reduction algorithm to aggregate sparsely
distributed intermediate results that are generated by data-parallel
analysis and visualization algorithms. Applications of partial re-
duction include flow trajectory analysis, big data online analytical
processing, and volume rendering. Unlike traditional full parallel
reduction that exchanges dense data across all processes, the pur-
pose of partial reduction is to exchange only intermediate results
that correspond to the same query, such as line segments of the same
flow trajectory. To this end, we design a three-stage algorithm that
minimizes the communication cost: (1) partitioning the result space
into groups; (2) constructing and optimizing the reduction partners
for each group; and (3) initiating collective reduction operations
for all groups concurrently. Both theoretical and empirical analyses
show that our algorithm outperforms the traditional methods when
the intermediate results are sparsely distributed. We also demon-
strate the effectiveness of our algorithm for flow visualization, big
log data analysis, and volume rendering.

Index Terms: I.3.1 [COMPUTER GRAPHICS]: Hardware
Architecture—Parallel processing; I.3.2 [COMPUTER GRAPH-
ICS]: Graphics Systems—Distributed/network graphics

1 INTRODUCTION

Data parallelism is the default pattern in today’s scalable data anal-
ysis and visualization applications. In data parallelism, large in-
put data are partitioned and distributed to parallel processes, and
then each process generates a set of intermediate results. The final
output is combined from the intermediate analysis results that are
distributed in different processes through parallel reduction. For
example, in the online analytical processing (OLAP) of multidi-
mensional data, one can distribute the data into parallel processes,
compute intermediate results such as histograms in each process
independently, and then combine the intermediate results. In the
Lagrangian-based flow trajectory analyses for aerodynamics, cli-
mate, and weather simulation data, one can partition the data do-
main into blocks for parallel trajectory tracing. As a result, each tra-
jectory is generated and distributed in different processes for further
aggregation and analysis. In the application of parallel volume ren-
dering, the data is first partitioned into blocks and distributed into
parallel processes. The distributed data blocks are then rendered in
parallel, and the intermediate rendering results are combined into
one final image for visualization.

The focus of this paper is to scale the parallel reduction stage
in data-parallel analysis and visualization algorithms. Although the
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parallel reduction is a well-studied problem for general computa-
tional science applications, we must redesign the parallel reduction
for data analysis and visualization. The traditional and general par-
allel reduction algorithm, which is regarded as full reduction in this
paper, is designed to aggregate data that are distributed in all paral-
lel processes. Each process is involved in the parallel communica-
tion to compute the correct outputs in full reduction.

In this study, we propose partial reduction, as opposed to full
reduction, to reduce communication cost for data analysis and visu-
alization. The rationale of partial reduction is based on the obser-
vation that the intermediate partial analysis results are sometimes
sparsely distributed in parallel processes. We can thus optimize the
parallel reduction by taking the sparsity into consideration.

One of the driver problems is Lagrangian flow trajectory analysis.
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Figure 1: Computing
the lengths of stream-
lines through parallel
reduction. The stream-
line segments are dis-
tributed in 9 processes
(i.e., P0 to P8). The
length of the stream-
line colored in blue
within each process is
denoted as L.

For example, in Figure 1 we need
a parallel reduction algorithm to ac-
cumulate the intermediate analysis
results—lengths of streamlines in this
case—across the parallel processes.
These streamline segments are gener-
ated by the data-parallel particle trac-
ing and thus distributed in parallel pro-
cesses. The length of each stream-
line can be derived by summing up
the length of the streamline segments
in every process. As illustrated by
the blue line in Figure 1, however
many of the processes do not have seg-
ments for this streamline. We have
to assign a zero length for these pro-
cesses, in order to use the traditional
full reduction algorithm. Even worse,
these “placeholder” zero values are ex-
changed over processes during the re-
duction, causing extra data movement
and communication overhead. In the
following sections, we will discuss how Lagrangian flow trajectory
analysis could benefit from the partial reduction.

Another driver problem is the OLAP data cube that assists inter-
active visualization of multidimensional data arrays such as finan-
cial data and big log data. The output of data cubes is usually a
group of large but sparse histograms, and users can slice and dice
the data with respect to attributes, space, and time to understand the
data distribution in different dimensions. Although existing data
cube implementations, such as Nanocubes [19], imMens [20], and
Kylin [1], are designed for either single-node or big-data clusters,
we found the data cube hard to scale in large HPC environments.
The main bottleneck is the parallel reduction of large but sparse
data cube outputs. We will demonstrate how partial reduction could
accelerate OLAP data cubes for real-time exploration of tens of mil-
lions of system logs generated by a supercomputer.

Other driver problems include volume rendering [22] and data-
parallel density estimation [30], which sparsely distribute interme-
diate rendered images and density fields, respectively. For these
large-scale data analysis and visualization applications, we advo-
cate and explore using partial reduction, instead of full reduction,
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to combine sparse intermediate results.
The main research challenge is to minimize the commu-

nication cost during the parallel reduction of sparse data.

Figure 2: Reduction time of sparse
data with MPI Reduce(), full reduc-
tion, and partial reduction.

A naive approach to imple-
ment partial reduction is
to first partition the sparse
data into groups, to cre-
ate a communicator for the
set of processes that have
the data, and then to exe-
cute an MPI Reduce() for
each communicator. How-
ever, the naive approach
is not scalable because
of design limitations in
MPI [13]. First, creat-
ing each subcommunica-
tor is expensive because it
involves collective opera-
tions. Second, communicators are limited resources because mem-
ory bounds. Third, the only way to create subcommunicators is
to call MPI Comm create() sequentially multiple times, because
each process is usually associated to multiple groups in our appli-
cations. As shown in Figure 2, the parallel reduction of sparse data
with MPI Comm create() and MPI Reduce() takes much more
time than do full reduction and partial reduction.

We instead design a scalable and lightweight partial reduction al-
gorithm that minimizes communication and synchronization costs.
Our partial reduction algorithm has three stages. First, we partition
the result space into groups to conduct partial reductions per group.
Second, we construct reduction partners for each group. The reduc-
tion partners are a subset of processes that contain the partial results
of each group. Third, we concurrently conduct the radix-k [31] re-
duction operations for all communication partners in parallel.

We analyze the performance of partial reduction both theoreti-
cally and empirically. The theoretical analyses show that our partial
reduction performs better than traditional full reduction algorithms
when the partner matrix is sparse. The empirical performance
benchmark also demonstrates the same conclusion. Although there
is some overhead in the first stage in our algorithm, our method usu-
ally outperforms full reductions in real applications. In summary,
the contributions of this study are threefold:

• a novel partial reduction algorithm that minimizes data move-
ment in the parallel reduction of sparsely distributed data,

• a theoretical performance analysis of our partial reduction al-
gorithm, and

• an empirical performance benchmark that validates the cor-
rectness of our theoretical analysis.

2 DRIVER APPLICATIONS

In this section, we describe three example driver applications in
large-scale data analysis and visualization.

2.1 Driver application I: Lagrangian flow analysis

Lagrangian flow analyses, which need to trace the trajectories of
many massless particles in the flow by numerical integration, have
two basic parallelization strategies: task parallelism [12,28,34] and
data parallelism [4, 7, 17, 29, 32, 40, 42]. In this study, we focus
only on the data parallelism that requires parallel reduction. The
data parallelism partitions and distributes the input flow data into
parallel processes. Each particle is traced by the process that owns
the corresponding partition, and the particle is exchanged to other
processes if the particle is out of the local bound of the partition.
As a result, the trajectory of each particle will reside in multiple

Figure 3: Workflow of data-parallel Lagrangian flow analysis paired
with parallel partial reduction.

Figure 4: Data cube query results of 55 million RAS log data [11].
From the visualizations we can see that the result space of data cube
results is sparsely occupied.

partitions that the particle passes through, and each corresponding
process has only incomplete segment(s). Although these interme-
diate results can be exchanged and aggregated during the particle
tracing process, the cost of such a naive and recurrent communica-
tion pattern can be prohibitively high when the results are large.

Table 1 lists various Lagrangian-based flow visualization appli-
cations that can benefit from our partial reduction methods. For ex-
ample, the total length of flow lines can be calculated by summing
the lengths of flow line segments; the operator for the reduction is
“add.” Similarly, streamline statistics (histograms, mean, and vari-
ance) are also based on the add operator. The line integral convolu-
tions (LIC) [3] result of a given streamline seed can be computed by
summing the convolution values across processes. The reduction of
flow line queries, such as predicates [36] and pattern matching [39],
is based on the logical “or” operator.

Table 1: Examples of Lagrangian-based flow visualization and analy-
sis methods.

Measurement Data Type Operator

Length Number Add
Statistics [21] Histogram Add
Geometry quantifications [15] Number Add/Max/Min
Pattern matching [39] Boolean Or
Predicates [36] Boolean Or
LIC [3] Number Add



Figure 5: Examples of three parallel reduction algorithms: (a) direct-send [14], (b) binary-swap [23], and (c) radix-k [31]. Blocks represent
partitions of the result space, and arrows represent movement of the partitions in reduction. Shaded blocks are destinations of the partitions;
different colors represent different rounds in reduction.

Figure 3 illustrates how data-parallel Lagrangian flow analysis
is paired with parallel reduction. First, we partition the input data
into blocks and assign the blocks with different parallel processes.
Second, we trace particles in each block and exchange particles that
leave the block. The trajectories of particles—partial flow lines—
are not exchanged and thus distributed in processes. Third, we an-
alyze the partial flow lines in every process and store the partial
results. Fourth, the partial results across processes are aggregated
into complete analysis results by partial reduction. Fifth, the aggre-
gated results are gathered for further processing.

2.2 Driver application II: Data cubes

OLAP data cubes are a fundamental approach to help users under-
stand the spatiotemporal and attribute correlations in multidimen-
sional arrays through interactive visualizations. Figure 4 demon-
strates a data cube visualization [11] for 55 million reliability, avail-
ability, and serviceability (RAS) logs that are generated over five
years by Mira, an IBM Blue Gene/Q supercomputer at Argonne Na-
tional Laboratory. Each log message has multiple attributes includ-
ing timestamp, location, severity, components, and category. Data
cubes provide statistics on how selected data are projected in each
dimension. In Figure 4, a user submits a request for viewing fatal
messages within a time scope. The data cube query engine then
returns a group of histograms that record how the filtered log mes-
sages are distributed in each dimension.

The performance of the data cubes is a critical issue, because
interactivity is critical for visual analytics. In relational databases,
data cubes are implemented by precomputing the results of every
possible combination of multidimensional queries, but both stor-
age and computation costs are prohibitive for large datasets. The
visualization community has recently developed lightweight data
cube implementations that can run on a single server, such as
Nanocubes [19] and imMens [20] for interactive exploration. The
performance is boosted by using screen space approximations and
hierarchical data structures. Distributed and parallel implementa-
tions of data cubes also have been developed in recent years to ac-
celerate the queries [2]. For example, Kylin [1] is a Spark-based
distributed data cube engine that runs on big data clusters.

We found that data cubes are difficult to scale on HPC platforms
because the bottleneck of parallel reduction. The problem can be
alleviated by using partial reduction, because the data cube out-
puts are usually very sparse. For example, in the 14,400-bin time-
varying histogram visualization in Figure 4, many of the slots are
empty. Thus one can avoid the unnecessary data movement of zero
elements with partial reduction. More details and experimental re-
sults are in the following sections.

2.3 Driver application III: Volume rendering

Parallel rendering has three basic approaches: sort-first, sort-
middle, and sort-last. Among the three approaches, sort-last par-
allel volume rendering [25] has been widely used in the visualiza-

tion community. In sort-last parallel volume rendering, data are
first partitioned into blocks and distributed over parallel processes.
Then, the parallel processes render their associated data blocks sep-
arately, and the intermediate rendering results are composited at the
end through image compositing.

Image compositing involves inter processor communication,
which is often the bottleneck of sort-last parallel volume rendering.
For image compositing, direct-send [14] and binary-swap [22, 23]
are the two most commonly used approaches. Various methods
have been proposed to improve and combine direct-send and binary-
swap, such as 2-3 swap [41] and radix-k [16, 31]. More details of
these methods are discussed in the following section.

3 BACKGROUND: PARALLEL FULL REDUCTION

This section formalizes the definitions and reviews related work on
parallel full reduction algorithms. The concept of reduction is to
reduce a set of values into a smaller set, for example, the summation
of an array or the histogram of a scalar field. Parallel reduction, the
collective operation that reduces values in distributed memory, is
studied as a general topic in the HPC community [18, 35]. Parallel
reduction can be formalized as follows:

V =V0⊕V1⊕ . . .⊕Vn−1, (1)

where n is the number of parallel processes, V is the feature vector
denoting the output results, {Vi} are the feature vectors of interme-
diate results in the ith process, and ⊕ is the operator that composes
the intermediate results {Vi} into final results V . Each component

of Vi is denoted as V
j

i , where j is the index of the query. For exam-

ple, in the analysis of flow trajectory, V
j

i is the length of streamline
segment in the ith process for the jth streamline.

For the purpose of image compositing, two early foundational
approaches to reduce dense {Vi} into V are direct-send [14] and
binary-swap [22,23], illustrated in Figure 5(a) and (b), respectively.
Both methods subdivide the result space (output image) into n parts.
The direct-send method sends the partitions to their designated pro-
cesses directly in one single round. The binary-swap method re-
duces the data in multiple rounds. A process swaps the partition
with the designated process within each round, until all rounds are
finished. As documented by various studies [8, 33], direct-send
performs better with small numbers of processes but suffers net-
work congestion with larger scales; binary-swap scales better, but
the number of processes is restricted to powers of two.

The visualization community has contributed various methods to
improve and combine direct-send and binary-swap algorithms. For
example, the 2-3 swap method [41] decomposes an arbitrary pro-
cess number p into pairs and triplets, which supports binary-swap
and direct-send, respectively. A multi round reduction similar to
binary-swap is then conducted. Radix-k [16,31] generalizes binary-
swap by factoring p into k processes, which perform direct-send
per round, as illustrated in Figure 5(c). Both 2-3 swap and radix-k



Figure 6: Example of partial reduction for Lagrangian flow analysis. (a) Streamlines starting from different seed locations are partitioned into 4
groups, which are illustrated using different colors. (b) Reduction partners of each group (i.e., processes that contain line segments of the group)
are constructed. (c) Reduction partners are optimized to improve the performance of radix-k parallel reduction. (d) Data reduction of each group
is performed using radix-k. (e) Final results of partial reduction are outputted.

do not require the power of two processes. Further improvements
include optimizing domain partitioning [9, 37], reducing communi-
cation by compression [38], using multi- [10] and many-core [24]
architectures, and creating production libraries [26].

4 OUR METHOD: PARALLEL PARTIAL REDUCTION

Our partial reduction algorithm has three steps: result space parti-
tioning, reduction partner construction and optimization, and com-
munication. First, the feature vector is partitioned into a number
of groups. Second, the reduction partners (a subset of processes)
for each group are determined. Third, a full reduction algorithm is
applied for each group. Depending on the full reduction algorithm
in use, we name our partial reduction algorithms partial direct-send
and partial radix-k. For partial radix-k, we also adjust the number
of reduction partners by introducing other processes into the group.
In the following, we focus on partial radix-k; the partial direct-send
is treated as a special case of partial radix-k when k of each group
equals the number of processes in the group.

Without loss of generality, we use Lagrangian flow analysis to
describe the three steps, as shown in Figure 6. First, the result
space is partitioned into groups. In this stage, flow lines that tra-
verse through similar blocks are grouped together. Second, the re-
duction partners for each group of flow lines are determined and
optimized based on the data blocks traversed by each group of flow
lines. Third, the radix-k reduction algorithm is applied for each
group to reduce flow analysis results.

We compare our approach with two baseline approaches: full
direct-send and full radix-k. The full direct-send and full radix-
k are the full reduction algorithms that exchange data between all
processes. Notice that we do not explicitly compare our method
with full binary-swap, which is the special case of full radix-k when
k equals to 2.

4.1 Result space partitioning

We partition the result space—feature vector V —into g groups to
conduct partial reductions per group. The partition can be arbitrary,

but ideally the distribution of values V
j

i in each group should be
similar, where j is the index of components in the feature vector Vi.

For example, in Lagrangian flow analysis, we choose to partition
the result space based on the Hilbert space-filling curves of seed
locations. Each seed can be transformed into a z-index for partition-

ing. This is based on the fact that flow trajectories starting from
vicinity seed locations are close to each other and thus have a bet-
ter chance to intersect with similar data blocks. The z-index also
preserves spatial coherence of the seeds. In the partitioning pro-
cess, we first label the flow line seeds with the z-index. We then
uniformly partition the result space by the indices. For example, in
Figure 6(a), 16 flow lines are uniformly partitioned into four groups
based on the indices of their seeds. Result space partitioning for
other applications is discussed in the following section.

4.2 Reduction partner construction

The reduction partners Pi are defined as a set of processes that
exchange data for the ith group. We construct reduction partners for
each group, in order to schedule communications within the group.

The reduction partners can be derived from the partner matrix
M, which is a g× p matrix of Boolean values. Each value mi j in M
indicates whether the intermediate results in the ith group exist in
the jth process. The reduction partner Pi is thus a set of processes
that satisfy mi j = true.

The reduction partner construction has two steps. First, we cal-
culate the partner matrix M. For example, in Lagrangian flow anal-
ysis, this process is done by checking whether the group of flow
lines intersect a block across the process, as shown in Figure 6(b).
The partner matrix in different processes can then be gathered and
distributed to all processes with the MPI Allgather(). Second,
we construct the reduction partners Pi based on M for each group.

4.3 Reduction partner optimization

If radix-k is used for the reduction of each group Gi, we also op-
timize the reduction partners Pi to improve the performance. As
documented by Kendall et al. [16] and Moreland et al. [26], the
performance of radix-k highly depends on the number of processes,
that is, pi in our study. However, pi, which eventually depends on
the partner matrix M, could be a prime number or an integer that
cannot be factorized into the product of multiple numbers. Such
a case will lead to poor performance of radix-k in the group and
become the bottleneck of our partial reduction algorithm.

We hence optimize the reduction partners by involving additional
processes that are not in Pi, in order to obtain a better value of
pi and thus to boost the performance of our algorithm. The pseu-
docode of the reduction partner optimization is in Algorithm 1. For



Algorithm 1 Optimization of the reduction partners P0, . . . ,Pg−1,
where g is the number of groups. p is the total number of processes;
pi is the number of processes within Pi; t is the maximum number
used to factorize pi.

1: for group id i from 0 to g−1 do

2: pi← |Pi|

3: if Factor(pi, t) then

4: continue

5: else

6: for l from pi to p do

7: if Factor(pi, t) then ⊲ Factor(pi, t) returns true if pi can be factored

into numbers smaller than t

8: d← l− pi

9: break

10: end if

11: end for

12: while d > 0 do

13: q← p/g∗ i

14: P = FindProcess(q,Pi) ⊲ FindProcess(q,Pi) returns the first

process P which is not inside Pi starting from Pq to Pp−1 then from P0 to Pq−1

15: Push P into Pi

16: d← d−1, pi← pi +1

17: end while

18: end if

19: end for

example, in Figure 6(c), G0 has 3 processes in the reduction part-
ners. Assume k is 2, which cannot divide 3 evenly. We then intro-
duce another process into this group; thus pi equals 4, which can be
factored into 2×2 for efficient radix-k for this group.

4.4 Concurrent reduction for all groups

We concurrently use the radix-k algorithm to reduce results for each
group Gi based on the reduction partners Pi. The reduction pro-
cess is illustrated in Figure 6(d). First, we factorize the number of

processes pi into ∏
ri

j=0 k
j
i , where i is the index of group, ri is the

number of factors, and k
j
i is the jth factor. Second, we exchange

data between processes in ri rounds based on the radix-k algorithm.

Notice that the per group reductions are conducted simultane-
ously over all processes. We synchronize after every round of radix-
k in each group, so we have maxri,0≤ i≤ g−1, rounds in total. In
each round, messages that have the same destination are aggregated
to reduce the number of messages.

4.5 Theoretical costs

Table 2 compares the theoretical costs of our method with three
baseline algorithms in latency, bandwidth, and computation. No-
tice that the theoretical model in this section does not include the
reduction partner construction.

We follow the model used by Chan et al. [6], Cavin and Demen-
geon [5], and Peterka et al. [31] to model the theoretical costs of
our algorithm. First, there are p processes in a distributed mem-
ory parallel architecture with a fully connected network. Processes
send and receive messages simultaneously with non-overlapping
communication and computation and without network contention.
Second, there are n data items that need to be reduced in each pro-
cess. Third, the communication cost of sending one message be-
tween two nodes is α +nβ , where α is the latency of one message,
and β is the transmission time per data item (bandwidth). Fourth,
the computation time γ is the cost of reducing one single data item.

The three baseline approaches—direct-send, binary-swap, and
radix-k—have fixed cost of latency, bandwidth, and computation.
For the latency, each process in the direct-send algorithm sends and
receives p−1 messages; hence the latency is α(p−1). The binary-
swap algorithm has log2(p) rounds, and each process sends and re-
ceives only one message; thus the latency is α log2(p). The latency

Table 2: Comparison of our partial reduction algorithm with three full
reduction algorithms in theoretical latency, badwidth, and computa-
tion costs.

Algorithm Latency Bandwidth Computation

Direct-send α(p−1) nβ p−1
p nγ p−1

p

Binary-swap α log2(p) nβ p−1
p nγ p−1

p

Radix-k α ∑r−1
i=0 (ki−1) nβ p−1

p nγ p−1
p

Our method 0∼ rα(p−1) nβ ∑
g−1
i=0

pi−1
pig

nγ ∑
g−1
i=0

pi−1
pig

of radix-k is between the binary-swap and direct-send methods, de-
pending on the k value. The bandwidth of the three full reduction

methods is bounded by nβ p−1
p , and the computation cost of the

three full reduction methods is bounded by nγ p−1
p .

We derive the theoretical costs of our algorithm, which depend
on the reduction partners. We assume that each group has n/g com-
ponents of the feature vector V and has r rounds in total.

The latency of our algorithm method is bounded by 0 and
rα(p−1). In the best case that the number of processes in a group
is 0 or 1, the latency is 0 because there is no communication. In the
worst case, if a process needs to exchange messages with all other
processes, the latency is rα(p−1).

The bandwidth and computation costs of our algorithm are less
than the costs of the full reduction algorithms. For each group, the
bandwidth and computation costs of the partial reduction method

are nβ pi−1
pig

and nγ pi−1
pig

, respectively. By summing up the costs for

all groups, the total bandwidth is

nβ
g−1

∑
i=0

pi−1

pig
, (2)

and the computation cost is

nγ
g−1

∑
i=0

pi−1

pig
. (3)

We can see that the coefficients in bandwidth and computation costs

are ∑
g−1
i=0

pi−1
pig

and
p−1

p in our method and the full reduction algo-

rithms, respectively. Because pi is always less than or equal to p,

we have
pi−1

pi
≤ p−1

p and obviously ∑
g−1
i=0

pi−1
pig
≤ p−1

p .

Aside from communication and computation costs, our algo-
rithm has a fixed cost in reduction partner construction and opti-
mization. In the following section, we will study the overhead by
experiments.

5 PERFORMANCE BENCHMARK

We benchmark our method on Mira, an IBM Blue Gene/Q super-
computer at Argonne National Laboratory. The supercomputer has
49,152 nodes, each of which has 16 PowerPC A2 cores working
at 1600 MHz and sharing 16 GB of RAM. The nodes are intercon-
nected with a 5D torus network. We use up to 8,192 processes (4
processes per node) in our experiments.

We present four groups of experiments results: synthetic data,
Lagrangian flow analyses, data cubes, and volume rendering. In the
experiments, we compare the partial direct-send and partial radix-k
with two baseline approaches: the full direct-send and full radix-k
methods. The k value is set to 4 for the full radix-k method, be-
cause it performs the best among different k values in the experi-
ments. The implementations of both the partial reduction and the
applications are based on C++, MPI, and the DIY2 library [27].

5.1 Synthetic experiments

We study the performance of the partial reduction methods and
evaluate under what conditions they perform better than the base-
line methods by sweeping four parameters: number of processes p,



Figure 7: Reduction time for different partner densities ρ and different sizes of feature vectors. Partner densities ρ are from 10% to 100%, and
the step size is 10%. Size of the feature vectors are 128 MB, 256 MB, and 512 MB. The number of processes p and the number of groups g are
2,048 and 512, respectively.

Figure 8: Reduction time for different numbers of processes and different size of feature vectors. The number of processes is from 512 to 8,192.
Size of the feature vectors are 128 MB, 256 MB, and 512 MB. Number of groups is fixed to 512. Partner density is fixed to 50%.

Figure 9: Reduction time for different numbers of groups, from 64 to
1,024. Number of processes is fixed to 2,048. Partner density is 50%.
Size of the feature vector is 128 MB.

number of groups g, the storage size of the feature vector s, and the
partner density ρ(M). The partner density is the average number
of processes per group over the total number of processes, or the
density of the partner matrix M:

ρ(M) =
∑i, j mi j

gp
. (4)

Basically, ρ(M) indicates the average number of reduction partners.
In extreme cases when ρ equals 100%, the complexity of our algo-
rithm is identical to the cost of the full reduction.

In the synthetic experiments, we randomly generate partner ma-
trices M, in order to sweep arbitrary ρ for performance analysis.

Specifically, we increase ρ from 10% to 100% in steps of 10%. For
other parameters, p is changing from 512 to 8,192, g is from 128 to
1,024, and s is either 128 MB, 256 MB, or 512 MB. We use the add
operator to reduce the arbitrarily generated feature vector V .

Figure 7 shows timings of the full direct-send, full radix-k, par-
tial direct-send, and partial radix-k with different partner density ρ
and feature size s. The number of processes p and the number of
groups g are 2,048 and 512, respectively. We can see that when ρ
increases, the reduction time of the partial direct-send and partial
radix-k increases for all three data sizes s, which is because more
data need to be exchanged when ρ increases. The timings of the
full direct-send and full radix-k in each sub figure remain constant
because they are independent of ρ , and the full radix-k always per-
forms better than the full direct-send. The reduction time for the
partial direct-send performs better than the full radix-k when ρ is
less than 40%, 50%, and 50% for s equal to 128 MB, 256 MB, or
512 MB, respectively. The partial radix-k always performs better
than the full and partial direct-send for all three data sizes and per-
forms better than the full radix-k when ρ is less than 60%, 70%,
and 70% for s equals to 128 MB, 256 MB, or 512 MB, respectively.
When ρ approaches 100%, partial reduction methods exchange a
similar amount of data compared with the amount of the full reduc-
tion methods and take additional time to construct reduction part-
ners. Hence, partial reduction methods take more time than do full
reduction methods when ρ approaches 100%. The reduction time
for the partial radix-k decreases when ρ changes from 90% to 100%.
The reason that when ρ equals 100%, each group has all processes
involved for reduction. As a result, each process will communicate
with the same set of processes for all the group in each round, which
reduces the number of messages in the partial radix-k.

Figure 8 compares the reduction time for the four reduction meth-



Figure 10: Reduction time for the partial direct-send, partial radix-k
without optimization, and partial radix-k with optimization. Number of
processes and number of groups is fixed to 2,048 and 512, respec-
tively. Partner density increase from 10% to 100% and the step size
is 10%. Size of the feature vector is 128 MB.

(a) (b)

Figure 11: (a) Time to construct reduction partners for different part-
ner density ρ from 10% to 100% for every 10%. The number of
processes, the number of groups, and the feature size are fixed to
2,048, 512, and 256 MB, respectively. (b) Time to construct reduction
partners for different numbers of processes and different numbers of
groups. Number of processes are from 512 to 8,192 and number of
groups are 256 and 512. Partner density is fixed to 50%.

ods with different numbers of processes from 512 to 8,192 and
three feature sizes: 128 MB, 256 MB, and 512 MB. The number
of groups is fixed to 512. Partner density ρ is fixed to 50%. We can
see that the partial direct-send always performs better than the full
direct-send and performs better than the full radix-k when p is less
than 1,024, 2,048, and 2,048 for s equal to 128 MB, 256 MB, or 512
MB, respectively. The partial radix-k performs the best among all
four methods for all three feature sizes. The partial radix-k scales
as well as the full radix-k when the feature size is 256 MB and 512
MB. When the feature size is 128 MB, the partial radix-k increases
faster than the full radix-k as the number of processes increases, be-
cause the proportion of the reduction partners construction time is
high when the feature size is small and the reduction partners con-
struction time increases when the number of processes increases.

Figure 9 compares the reduction time for the four reduction meth-
ods with different numbers of groups from 64 to 1,024. The number
of processes, the feature size, and the partner density ρ is fixed to
2,048, 128 MB, and 50%, respectively. We can see that the partial
radix-k performs the best among all four methods for all three fea-
ture sizes. The reduction time for the partial direct-send and the
partial radix-k increases when the number of groups increases, be-
cause the reduction partner construction time increases when the
number of groups increases.

Figure 10 compares the reduction time for the partial radix-k
with and without reduction partner optimization. The number of
processes, the number of groups, and the feature size are fixed to
2,048, 512, and 128 MB, respectively. Partner density ρ ranges

Figure 12: Data movement per process for different partner density
ρ from 10% to 100% for every 10%. The number of processes, the
number of groups, and the feature size are fixed to 2,048, 512, and
128 MB, respectively.

(a)

(b) (c)

Figure 13: Flow analyses results of the Ocean, Plume, and Nek
datasets. (a) LIC visualization of the Ocean dataset. (b) Streamlines
with similar curvature histograms for the Plume dataset. (c) Stream-
lines with maximum curvature greater than 0.02 for the Nek dataset.

from 10% to 100%, in steps of 10%. In comparison, the partial
radix-k performs better with reduction partner optimization.

Besides the overall reduction time, we further analyzed the over-
head of the partial reduction methods, which is the time for con-
structing reduction partners, as shown in Figure 11. Figure 11(a)
shows the time for constructing reduction partners for the partial
reduction methods with different ρ . The number of processes, the
number of groups, and the feature size are fixed to 2,048, 512, and
256 MB, respectively. By comparison, the time used for construct-
ing reduction partners in the partial radix-k is slightly higher than
for the partial direct-send. This is because, in addition to construct-
ing the reduction partners, the partial radix-k optimizes the reduc-
tion partners as well. For both methods, reduction partner construc-
tion time increases when ρ increases, because when ρ increases,
each process needs to construct reduction partners for more groups.
Figure 11(b) shows the reduction partner construction time with dif-
ferent numbers of processes p and groups g. The data size is fixed
to 128 MB. Partner density is fixed to 50%. We can see that as
the number of processes and the number groups increase, the time
for constructing reduction partners increases. As the size of data
increases, however the reduction partner construction time is still
negligible even with larger numbers of processes.

We also compared the average data movement per process for
the four reduction methods with different ρ , as shown in Figure 12.
The number of processes, the number of groups, and the feature
size are fixed to 2,048, 512, and 128 MB, respectively. We can see
that the data movement of the partial reduction methods is smaller



(a) (b) (c)

Figure 14: Reduction time of the three flow datasets with respect to different numbers of processes from 512 to 8,192. Number of groups is fixed
to 512.

(a) (b) (c)

Figure 15: Performance benchmarks of Lagrangian flow analyses. (a) Partner density ρ of the three datasets. (b) Number of processes in each
group for the Nek dataset with different numbers of maximum integration steps. Number of processes and number of groups are fixed to 2,048
and 512, respectively. (c) Reduction time of the Nek dataset with different numbers of maximum integration steps. Number of processes and
number of groups are fixed to 2,048 and 512, respectively.

than that of the full reduction methods by taking the advantage of
the data sparsity. When ρ increases, the data movement for the
partial reduction methods. The data movement of the partial radix-
k is slightly higher than for the partial direct-send because unrelated
processes are introduced to certain groups when the partial radix-k
performs reduction partner optimization.

5.2 Lagrangian flow analyses

Table 3: Data specifications and Lagrangian flow analysis method
applied on each dataset.

Data Feature Size (per process) Measurements Operator

Ocean 164.8 MB LIC Add
Plume 496 MB Statistics Add
Nek 128 MB Predicates Or

We demonstrate the efficiency of the partial reduction methods
through experiments on three flow datasets with different applica-
tions: the Ocean dataset, the Plume dataset, and the Nek dataset.
The datasets are listed in Table 3. The Ocean dataset is the output
from an eddy simulation. 1800×1200×20 seeds are sampled reg-
ularly for every 2 grid points on each dimension, and streamlines
are generated with maximum 2,000 integration steps and a step size
of 0.2. LIC is generated based on the resulting streamlines. The
total size of the LIC result is 164.8 MB. The Plume dataset is gen-
erated from a simulation of solar plume on the surface of the sun.
For this application 63× 63× 256 seeds are sampled regularly for
every 8 grid points on each dimension, and streamlines are gener-
ated with maximum 2,000 integration steps and a step size 2.0. A

histogram of 128 bins is computed for the curvatures of each stream-
line. The total size of the histograms is 496 MB. The Nek dataset
is generated by a thermal hydraulics simulation. For this applica-
tion, 256× 256× 256 seeds are sampled regularly for every 8 grid
points on each dimension, and streamlines are generated with a step
size 0.04. We increase the maximum number of integration steps
from 2,000 to 6,000. Two predicates are selected to test whether
the maximum curvature of each streamline is greater than two dif-
ferent thresholds. To be consistent with other flow line analysis
results, we use 4-byte floating-point values to represent Boolean re-
sults, where 1.0 means true and 0.0 means false. The total size of
the analysis results is 128 MB. The Runge-Kutta 4th-order method
is used to trace particles for all three datasets. Figure 13 shows the
flow analysis results of these three datasets.

Figure 14 shows the timings of the four reduction methods with
different numbers of processes from 512 to 8,192 on the three dif-
ferent datasets. The maximum number of integration steps and the
number of groups are fixed to 2,000 and 512, respectively. The par-
tial reduction methods outperform the full reduction methods for
all three datasets, and the partial radix-k method performs the best
among all four methods. Figure 15(a) shows the partner density ρ
of the three datasets with different numbers of processes. We can
see that the partner density ρ is less than 17% for all three datasets
and decreases when the total number of processes increases. Fig-
ure 15(b) shows the median and variance for the number of pro-
cesses in each group for the Nek dataset with streamlines of differ-
ent maximum integration steps. The number of processes and the
number of groups are fixed to 2,048 and 512, respectively. We can
see that when the number of integration steps increases, the median
and variance of the number of processes in each group increase as



Table 4: Parallel reduction benchmark in a data cube query of 55
million RAS logs with respect to different numbers of processes p. d f

and dp is the amount of data movement in the full and partial radix-k
methods, respectively; t f and tp is the execution time of the full and
partial radix-k methods, respectively, in milliseconds. (d f − dp)/d f

denotes the percentage of reduced amount of data movement with
the partial radix-k method.

p ρ(M) (d f −dp)/d f t f tp

64 4.64% 96.88% 18.11 3.46
128 3.89% 96.85% 16.50 3.22
256 3.50% 96.85% 16.70 4.60
512 3.31% 96.80% 17.31 5.52
1,024 3.22% 96.82% 19.38 7.72

well. As a result, the timings of the partial reduction methods in-
crease when the maximum number of integration steps increase, as
shown in Figure 15(c). Based on this figure, when the maximum
number of integration steps is greater than 3,500, the partial reduc-
tion methods take more time than the full radix-k for reduction does.

5.3 Data cubes

In the data cube application, we study the performance of the full
and partial radix-k methods for a data cube query of the large RAS
log dataset with 55 million RAS logs. The query result contains
755,424 histogram bins, and the size equals 2.882 MB. For the par-
tial radix-k method, the resulting space is partitioned into 32 equal
sized groups based on the date and time of the RAS logs. For each
group, its corresponding reduction partners are the processes whose
data blocks contain RAS logs within the time interval of the group.

Table 4 shows the benchmark of the full and partial radix-k meth-
ods of the data cube application with respect to different numbers
of processes from 64 to 1,024. From the table we can see that the
partner matrices are sparse in all configurations; thus partial reduc-
tion is very efficient for this problem. We can also see that the
partial radix-k method outperforms the full radix-k method with all
the different numbers of processes. The partial radix-k method also
avoids more than 96% of the data movement, compared with the
data movement of the full radix-k method.

5.4 Volume rendering

We studied the performance of the partial reduction methods for par-
allel volume rendering on a scalar dataset that is from a supernova
core collapse simulation. The resolution of the output image is set
to 4096 × 4096, which has a total size of 256 MB. The rendering
result of the supernova dataset is shown in Figure 16(a).

Figure 16(b) compares the timings of the four reduction meth-
ods with different numbers of processes from 512 to 8,192. For the
partial reduction methods, the result space is partitioned into 16 ×
16 equal sized groups. The reduction partners of each group are de-
fined as the processes whose associated blocks are intersected with
the group when projected on the image space. As shown in Fig-
ure 16(b), the partial reduction methods outperform the full reduc-
tion methods with all the different numbers of processes, and the
partial radix-k performs slightly better than the partial direct-send.

Table 5 shows the partner density ρ and the percentage of data
movement that the partial radix-k reduced. We can see that the
partner density ρ equals 3.11% with 512 processes and keeps de-
creasing as the number of processes increases. We can also see
that the partial radix-k avoids more than 97% of the data movement,
compared with the data movement of the full reduction methods.

6 DISCUSSION

We discuss the scenarios where our partial reduction algorithm
could benefit data-parallel analysis and visualization algorithms.
We notice that in two situations in our benchmarks, our partial
reduction algorithm cannot outperform full reduction algorithms:

(a) (b)

Figure 16: Results of the volume rendering application. (a) Render-
ing result of the supernova dataset. (b) Reduction time of the four
reduction methods with respect to different numbers of processes p.

Table 5: Analysis results of partner density ρ and data movement of
the volume rendering application with respect to different numbers
of processes p; d f and dp are the amount of data movement in full
and partial reduction, respectively. Here, (d f − dp)/d f denotes the
percentage of reduced amount of data movement with the partial
reduction.

p 512 1,024 2,048 4,096 8,192

ρ(M) 3.11% 2.21% 1.58% 1.44% 1.05%

(d f −dp)/d f 97.27% 98.17% 98.80% 98.94% 99.33%

larger ρ and smaller s. First, our method could run slower than full
reductions if the partner density ρ is large. In this case, we cannot
significantly reduce the data movement cost. Second, our partial re-
duction does not pay off if the feature size s is too small. The main
reason is due to the overhead time to determine reduction partners
in our algorithm.

However, our partial reduction method outperforms full reduc-
tion methods in many real-world data analysis and visualization
applications. We can adaptively alternate full/partial reduction ac-
cording to ρ . Our end-to-end performance benchmark provides
guidelines for choosing optimal algorithms for better performance.
Moreover, we foresee that the feature size s will grow in the future,
as the complexities of data analysis and visualization applications
increase.

7 CONCLUSIONS AND FUTURE WORK

In this work, we present a new partial reduction algorithm to aggre-
gate sparse intermediate analysis results distributed in parallel pro-
cesses. The purpose of partial reduction is to exchange only neces-
sary data in the collective communication. Our algorithm schedules
and optimizes communication patterns for efficient communication.
Both theoretical analysis and experiments show that our method
outperforms the traditional parallel reduction algorithms when the
partner matrix is sparse enough.

We would like to explore several directions in the future. First,
we would like to apply our method to even more data analysis and
visualization algorithms. Second, we are going to study the load bal-
ancing issues of the partial reduction algorithm. Third, we would
also like to reduce the synchronizations between each reduction
round to further improve the performance.
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