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Abstract—Today scientific applications are increasingly rely-
ing on a variety of data sources, storage facilities, and comput-
ing infrastructures, and there is a growing demand for data
analysis and visualization for these applications. In this context,
exploiting Big Data frameworks for scientific computing is
an opportunity to incorporate high-level libraries, platforms,
and algorithms for machine learning, graph processing and
streaming; inherit their data awareness and fault-tolerance;
and increase productivity. Nevertheless, limitations exist when
Big Data platforms are integrated with an HPC environment,
namely poor scalability, severe memory overhead, and huge
development effort. This paper focuses on a popular Big Data
framework –Apache Spark– and proposes an architecture to
support the integration of highly scalable MPI block-based
data models and communication patterns with a map-reduce-
based programming model. The resulting platform preserves
the data abstraction and programming interface of Spark,
without conducting any changes in the framework, but allows
the user to delegate operations to the MPI layer. The evaluation
of our prototype shows that our approach integrates Spark and
MPI efficiently at scale, so end users could can take advantage
of the productivity facilitated by the rich ecosystem of high-
level Big Data tools and libraries based on Spark, without
compromising efficiency and scalability.

Keywords-HPC, Big Data, Spark, MPI, High-Performance
analytics, programming environments.

I. INTRODUCTION

Convergence between high-performance computing
(HPC) and Big Data is now an established research area
that has spawned new research topics such as data-intensive
scientific computing, high-performance data analytics, and
hybrid platforms and infrastructures based on virtualization
techniques and novel storage hierarchies. Therefore,
industry-wide consortia as ETP4HPC [1] and BDV [2], and
the international scientific HPC community [3], [4] have
recognized new opportunities in unifying the platform layer
and data abstractions for both HPC and Big Data. In this
context, there exists an opportunity to incorporate existing
high-level libraries and algorithms for machine learning
and data streaming and inheriting the data awareness and
fault-tolerance mechanisms of Big Data frameworks and

applying them to scientific computing.
Nonetheless, Big Data and HPC frameworks today remain

largely incompatible: programming models and software de-
velopment tools are inconsistent [5]; trying to mix both mod-
els out-of-the-box generates memory overheads and poor
scalability in a HPC environment [6]; the disparity between
collocated and distributed storage architectures in Big Data
and HPC systems, respectively, degrades performance when
running Big Data applications on HPC systems [7]; and
the usage of merged Big Data models presents limitations,
such as high memory consumption and low efficiency in
communication between cooperating processes [8].

In previous works, the authors analyzed several use cases
and compared frameworks and platforms to conclude that
tools like Apache Spark provide an interesting baseline for
intregration of scientific simulations in Big Data environ-
ments comprising clouds and sensor networks. However, the
data abstractions and application model of Spark are not
easily supported using MPI, which is the main programming
model in HPC [9]

To overcome these problems, in this paper we introduce a
framework named Spark-DIY, that allows the usage of native
Big Data programming models using the highly-scalable
data-intensive communication pattern library DIY (Do It
Yourself Block Parallelism) [10]. Spark-DIY runs on top
of MPI to enable the execution of data analysis applications
in a supercomputer. Spark-DIY can also be used to assist in
the integration of existing scientific codes into a Big Data
environment. Consequently, our main goal is to preserve the
usability and flexibility of Big Data tools.

The main contributions of this paper are the implementa-
tion of our Big Data-HPC framework, the definition of an
interoperable data model between Spark and DIY, and the
ability to offload parts of the Spark application to DIY, which
can also be used to incorporate MPI programs into such
application. The Spark-DIY framework allows users to move
data freely between Spark and DIY data structures while
maintaining the Spark programming model. The user can
choose which tasks will run natively on Spark, and which



ones will be delgated to the DIY layer.
The rest of this paper is organized as follows: Section

II motivates our proposal by depicting the needs of a
real application example. Section III introduces the main
aspects of Spark and DIY, and develops the open challenges
regarding the convergence of Big Data and HPC paradigms.
Section IV describes the design and architecture of the
proposed framework. Section VI evaluates how Spark-DIY
performs against Spark as the problem size scales. Section
VII analyzes relevant work in the literature targeting similar
goals, and Section VIII summarizes the contributions of this
paper and previews directions for future work.

II. MOTIVATION

Although the convergence problem is interesting by the
many technical challenges it supposes, first we focus on why
convergence is actually needed. To clarify this and motivate
the scope of our work, we introduce a data assimilation use
case from the hydrogeology domain (EnKF-HGS).

EnKF-HGS is a tool used to predict the state of hy-
drogeological systems (precipitation, surface water, etc.).
Besides specific models for pre-alpine valleys in the Swiss
Emmental region, the tool can also incorporate sensor data
to refine these predictions, thus resulting in an iterative data
assimilation process. Figure 1 depicts the elements involved
in EnKF-HGS operations: the user provides a base model
that will be distributed, simulated with EnKF-HGS kernels,
and updated with the data fed by the sensor network; after
each step, results are stored in a distributed manner in cloud
storage for subsequent iterations.

This use case relies on cloud services for computation,
data assimilation and storage. In addition, Big Data com-
puting frameworks constitute a natural fit for EnKF-HGS
because they provide facilities to collect data from streaming
sources. On the other hand, this tool must handle many MPI
simulations running in parallel, and high-performance is re-
quired as in any other scientific application. The combination
of these requirements and features makes a case for the
need of convergence for the family of scientific applications
represented by EnKF-HGS. Similar data assimilation tasks
using ensemble Kalman filters to fuse sensor and simulation
data include weather forecasting [11], and carbon cycle [12]
studies.

In previous works [13] we reported our experience com-
bining traditional HPC with Big Data-inspired paradigms
and platforms, in the context of scientific ensemble work-
flows like EnKF-HGS. Our goal was to provide a suitable
environment that combined the HPC and Big Data elements
required by EnKF-HGS, so we integrated the simulation ker-
nels with the Apache Spark framework, which also supports
streaming. We found that Spark was unable to scale due
the memory and communication requirements of the kernels
during the shuffle phase, combined with the platform’s
overhead. Similar results have been corroborated by other

researchers such as [14], [15], who identified inefficiencies
of Spark shuffle like explosion of files, high I/O contention,
and TTL cleaner overhead.

In this context, achieving a data model fully compatible
for Spark and MPI that provides scalability, performance
and interoperability suitable for scientific data assimilation
remains a challenge not fully satisfied by any existing
platform, and this is the goal of our framework.

III. BACKGROUND

A. Spark

Spark is arguably the most popular Big Data processing
framework for data analysis, and it also supports numerous
other tools for machine learning, graph analytics, and stream
processing, among others. Being initially inspired by the
Map-Reduce model, Spark supports extended functionality
and operates primarily in memory by means of its core data
abstraction: the resilient distributed dataset (RDD)[16]. An
RDD is a read-only, resilient collection of objects partitioned
across multiple nodes that holds provenance information
(lineage) and can be rebuilt in case of failures by partial
recomputation from ancestor RDDs. RDDs are by default
ephemeral, which means that once computed and consumed,
they are discarded from memory. However, since some
RDDs might be repeatedly needed during computations, the
user can explicitly mark them as persistent, which moves
them in a dedicated cache for persistent objects.

Two types of operations can be executed in Spark: trans-
formations that execute a function independently in each
partition, and actions that trigger data shuffles between the
partitions. Transformations are executed in a lazy manner
and are triggered by actions. The operations that are con-
tained between two communication points are called stages.

B. DIY

DIY is an MPI-based library that offers efficient and
highly scalable communication patterns over a generic
block-based data model. In DIY, algorithms are written in
terms of data blocks that constitute the basic units of domain
decomposition and parallel work. Blocks are linked forming
neighborhoods that represent the domain in a distributed
manner. The assignment of blocks to MPI processes, often
multiple DIY blocks per MPI rank, is controlled by the DIY
runtime transparent to the user. Given a block decomposition
and assignment to MPI processes, the user is able to run
reusable communication patterns between local blocks in
a neighborhood and global operations such as reductions
over all blocks. Therefore, DIY users can execute common
communication patterns just by defining the block type
and domain topology, without knowledge of the underlying
communication details. Thus, for analytics, one can decom-
pose the analysis problem among a large number of data-
parallel sub-problems and efficiently exchange data among
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Figure 1. Interoperation of EnKF-HGS with the data assimilation sensor network and its supporting cloud infrastructure.

them using regular local and global communication patterns
whose implementation has been tuned for HPC.

DIY has demonstrated efficient scaling on leadership-class
supercomputers in a diverse array of science and analysis
codes, including cosmology, molecular dynamics, nuclear
engineering, astrophysics, combustion, and synchrotron light
source imaging. For example, benchmarks of strong and
weak scaling of parallel Delaunay tessellations [17], one
of the libraries built on top of DIY, demonstrated parallel
efficiency of over 90% on up to 128K MPI processes.

The similarity between Spark RDDs and DIY block par-
allelism, and the resemblance between Spark map-shuffle-
reduce and DIY merge-reduce communication patterns are
the basis for our integration of these two models.

IV. SPARK-DIY ARCHITECTURE

Our approach is to integrate Spark with DIY, without
enforcing the usage of one model or the other, by allowing
the user to freely switch between the two models and select
the one that adapts better to each stage of the problem.
There are three motivations for pursuing the interoperability
between Spark and DIY. (1) Spark users can use HPC
platforms to scale their workloads; (2) HPC users gain access
to Spark libraries and associated projects, which increases
productivity and interoperability with other elements in the
Big Data ecosystem; and (3) both types of users can benefit
from additional data patterns exposed by DIY (e.g. local
neighborhood exchange).

Guided by our objective to offer the user the best features
of both computing models, we formulate the following
design goals for the integrated framework.

Interoperability: DIY and Spark target different canon-
ical problems; therefore adapting a problem from Spark
to DIY and vice versa should be explicit. To make the
user aware of which model is currently active, we keep
both platforms separated, but interoperable through explicit
conversions.

Production-readiness: We believe that the viability of
our solution depends on being able to use standard versions
of Spark and DIY without any changes required to those
platforms. Thus, the adaptation must be made to both of
them using a middleware layer, transparently to the user,
so that applications for Spark or DIY should run almost
immediately.

Usability: Although the user must be aware of the
explicit interoperability (including overheads associated with
switching contexts), the knowledge of the underlying data
model should be minimal to preserve the nature of the
Spark programming and data interface. This would reduce
the learning curve and minimize the impact in existing code.

Flexibility: We want to support multiple data types and
provide flexibility for different datasets to coexist in the same
application.

Performance: The data locality capability of Spark is
one of its key features and must be enforced as much as
possible. On the other hand, the efficiency and scalability
of the communication patterns of DIY should be exploited
whenever possible to accelerate communication-intensive
(e.g., shuffle) operations.

Given the previous design goals, three aspects of Spark
and DIY need to be connected: data abstraction, program-
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ming model, and execution model (see Fig. 2). The adapta-
tions needed to connect each of these components between
the two models are detailed below.

A. Data Abstraction

The first aspect that must be aligned is the way in which
both frameworks represent their data abstractions. Both in
the case of Spark and DIY, the way data are arranged
determines the development of algorithms and the behavior
of the runtime.

Since preserving the RDD abstraction of Spark is key
to maintaining the usability and interoperability with upper
layers, it is necessary to map RDDs to a block-based data
structure in DIY. If we think of the RDD as the equivalent
of the global DIY (distributed) domain, the data partition
in a RDD maps directly to a data block in DIY. In this
context, the RDD dataset is partitioned into independent DIY
blocks, as shown in Fig. 3, where each partition Pi maps to a
corresponding block Bi, preserving the same data elements
inside the partition and respecting locality, since no data
transfers occur to build the DIY dataset. As a consequence,
the DIY dataset constitutes a distributed collection that
reflects the inner structure of an RDD, while adding topology
information for the DIY-based communication patterns. Data
are moved among Spark and DIY, transparently holding the
bindings for each partition and interacting with the Spark
context to control partitioning.

B. Programming Model

Once the data abstractions are mapped, the translation of
the programming model from the Spark interface to the un-
derlying DIY communication patterns follows naturally. The
way we mapped data abstractions facilitates the algorithmic
mapping because we are able to preserve the independence
between partitions and map data shuffles to underlying DIY
communication patterns.

Spark operations on RDDs are internally expressed as
algorithms built on top of DIY patterns to mimic the
functionality expected from Spark. For example, the map
and filter transformations in Spark can be translated to a
foreach pattern in DIY, since both of them represent parallel
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Figure 3. Mapping of data partitions in an RDD to DIY blocks

and independent operations on the dataset; reduceByKey in
Spark was translated to an algorithm based on the swap-
reduce DIY pattern, which conducts several rounds of data
exchanges between blocks, effectively shuffling data across
the partitions; analogously, Spark’s reduce corresponds to a
merge-reduce pattern, similar to swap-reduce but merging
the results in a single value.

To preserve the programming interface of Spark as much
as possible, operations on partitions are triggered by the
inner algorithms in DIY, but expressed as user-defined call-
backs written by the user in Scala, who also defines the data
type of the records and the supported operators (e.g. unary
for independent transformations, binary for reductions, and
hash for partitioning).

C. Execution Model

Besides translating the programming model into DIY
patterns, it is necessary to provide the proper execution
support. In this particular case, we must connect the dynamic
task-based execution model from the Spark framework to
the set of MPI processes that DIY assumes to exist at the
beginning of its execution.

To achieve this, we wrap each Spark worker into an MPI
process that forms a basic communicator for DIY. Since
executors are spawned inside these processes, we can update
the global communicator to include these children processes
using MPI, in a similar way as depicted in Spark-MPI
[18], a solution that extends the Spark ecosystem with the
MPI applications using the Process Management Interface to
allow the creation of MPI processes from Spark. Our work
builds on this solution incorporating the data abstractions
and topologies offered by DIY.

V. DEPLOYMENT AND USAGE

Figure 4 shows the interaction between the main compo-
nents of the proposed architecture. The following sections
explain their role from the end user’s perspective, and the
accompanying internal behavior of the system.
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A. User View

The end user is exposed to a limited number of additional
elements of the interoperation layer in addition to the basic
Spark interface. The driver code of the Spark application
(in Scala or Java) must define and use these components as
follows:

1) Select the record data type: The RDDs to be processed
through DIY are collections of data records that we
can convert to C++ data types through the Java Native
Interface (JNI). To ease this process, a catalogue is
offered where users can select a pre-built data type
that handles type conversion and memory management
from and to the C++ code. Since users may want to
use a custom data type not present in the catalogue,
we have also developed the internals of Spark-DIY
in a generic manner. New data types can be defined
in a helper file later used by the JNI code generation
utility of choice, which is SWIG in our particular case.
New data types must define a serialization function
since both RDD and DIY block elements need to
be serializable. In addition, collections of primitive
data types (byte, short, int, long, char, float, double)
are offered with reduced overhead, since serialization
between Spark and DIY is not required. This is
especially useful for scientific tasks, since most of the
data there are numeric.

2) Define the callback operators for the record: Similarly

as in Spark, the operations to be conducted on the
data must be defined. In order to access these operators
from DIY, users must implement the proper method as
an object that extends the callback interface. For exam-
ple, the interface exposes a unary operator for map-like
transformations, a binary operator for reductions, and a
hash operator for partitioning. Table I shows examples
of Spark-DIY function invocation in simplified Scala
code.

3) Delegate execution on a DIY dataset: A DIY dataset
contains an RDD and mimics the operations the user
would normally run on the RDD. Once an RDD is
created along with its operators, we can run the Spark-
equivalent transformations and actions implemented
using the communication patterns of DIY, running
on MPI. The result of this operation is a new RDD
that can be further used in the driver with subsequent
combinations of Spark functions or DIY algorithms.

B. Internals

Upon invoking a function that is delegated to DIY, several
tasks are conducted internally to pass data from the Java to
the C++ side:

1) Spawn executors: Since DIY algorithms are block-
parallel, we exploit the one-to-one association between
each partition of an RDD and the corresponding block
in the DIY domain. We let Spark handle data serializa-
tion, partitioning, and executor creation by wrapping
the partition-block conversion in a function that is
passed to a mapPartitions Spark operator. This creates
executors that live in the MPI environment and contain
the data of the corresponding partition, which enforces
locality. For datasets containing primitive data types,
data are shared between the partition and the DIY
block, which reduces the number of copies conducted
during the delegation process.

2) Convert each partition to a DIY block: The partition
set is converted to a DIY domain, where each parti-
tion corresponds to a block. Transformations can be
conducted with independent blocks following a similar
approach to the Spark counterpart, while shuffle oper-
ations are translated to DIY communication patterns.

3) Delegate algorithm to DIY: Once the domain is es-
tablished, we can run the DIY operations through a
wrapper in JNI that executes the user-defined callbacks
for computation. The results are retrieved afterwards
and converted back to an RDD, and the execution is
resumed in Spark.

VI. EVALUATION

We have evaluated a prototype of the framework on
bare metal nodes of the Chameleon cloud at the Uni-
versity of Chicago. Each node has an Intel Xeon CPU
E5-2670v3@2.30GH processor with 12 physical cores and



Table I
COMPARISON OF SPARK AND SPARK-DIY USAGE FOR map, filter, reduce AND reduceByKey OPERATIONS.†

Spark Spark-DIY

map(x => f(x))

Callback extends DIYCallback {
override unary(x) = {f(x)}

}
map_DIY(new Callback())

filter(x => f(x))

Callback extends DIYCallback {
override unary(x) = {f(x)}

}
filter_DIY(Callback())

reduce((x,y) => f(x,y))

Callback extends DIYCallback {
override binary(x,y) = {f(x,y)}

}
reduce_DIY(Callback())

reduceByKey((x,y) => f(x,y))

Callback extends DIYCallback {
override binary(x,y) = {f(x,y)}

}
reduceByKey_DIY(Callback())

†The syntax is purely illustrative and does not reflect minor Scala-specific details.

135GB of RAM each. Both the Spark and Spark-DIY
clusters were configured with single-core workers to limit
the number of executors in order to obtain a fair comparison
against the MPI deployment. Therefore, each executor is
mapped to one worker, and each worker is mapped to a
MPI process.

As indicated by our use case analysis, and also by
the literature, communication-intensive operations generate
most of the scalability issues. For example, EnKF-HGS
makes extensive use of reductions in the post-processing
stage, since the simulation results of each instantiation of
the model need to be shared among them.

Therefore, our experiments will focus on reduceByKey
operations, as a canonical example of a Spark operation
requiring shuffles. We evaluated Spark-DIY for reduceByKey
on synthetic data generated in the driver that is evenly
distributed across a number of partitions, which is equal to
the number of workers in the deployment. Results for the
generic and primitive type implementations of reduceByKey
in Spark-DIY are shown in comparison with Spark’s native
method as the number of workers varies from 8 to 128.

Weak scaling was tested on a dataset holding a constant
problem-per-worker of two million records per partition.
The objective is to determine how the behaviour of both
frameworks evolves as communication for data distribution
increases between workers. Additionally, strong scaling was
analyzed on datasets ranging 8 to 128 millions of records
in total in order to assess the impact of the partition size on
the execution time.

A. Evaluation of Generic Data Types

Figure 5 depicts the evaluation results for reduceByKey
on (string, integer) pairs, thus showing the behaviour of
the generic implementation of Spark-DIY against a Spark

application that uses the same data interface. As indicated by
(a), Spark-DIY offers competitive performance and a similar
scaling trend against Spark, although they both fail to scale
linearly as the problem size increases. Besides preserving
the scaling trend of Spark, Spark-DIY reduces the execution
time an average of 25.6%, but this improvement is reduced
in the case of 128 workers and 256 millions of records. This
shared trend and the reduction in the speed-up provided by
Spark-DIY indicates an issue in the Spark platform, which
is in charge of parallelization and task generation in both
cases, and this is the price we pay for keeping compatibility
and native Spark and DIY frameworks unmodified.

Since we have shown the behavior of the Spark-DIY
reduceByKey is comparable to the Spark counterpart, we
now focus on its scalability as the problem size increases for
a fixed number of workers. Figure 5 shows execution times
as the number of workers and the problem size increases
for Spark (b) and Spark-DIY (b). The beneficial effects
of DIY communication can be clearly appreciated in the
figure, in comparison to the lower scale cases. As seen
in the weak scaling results, data parallelization and task
management take a large portion of the overall execution
time. Therefore, Spark-DIY operations are meaningful in
those cases where there is communication involved, and it
represents a significant portion of the problem. This effect is
clearer as the dataset size increases, which again is a good
feature of Spark-DIY, as it is intended for very large datasets.

B. Evaluation of Primitive Data Types
Although the results in the previous section show promis-

ing performance, even considering the need for interoper-
ability, a pure Spark application written with data types na-
tive to the selected programming language will deliver much
better performance since less conversion and serialization
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Figure 5. Evaluation results for Spark and generic Spark-DIY in terms of weak scaling (a) and strong scaling with variable dataset size (b) and (c).
Records are collections of strng-integer pairs.
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Figure 6. Evaluation results for Spark and Spark-DIY for primitive data types in terms of weak scaling (a) and strong scaling with variable dataset size
(b). Records are collections of 4-byte integers.

steps would be needed. With this in mind, and considering
that our target use cases (namely applications from the
scientific domain) typically rely on primitive data types, we
now compare a native Spark implementation against a Spark-
DIY implementation using the optimizations for primitive
data types described in Sec. V-A. These experiments using
reduceByKey on (string, integer) pairs are reflected on Fig.
6.

Interestingly, the scaling curves of both platforms do not
indicate the same trend as it occurred in the generic case.
Although at a smaller scale Spark performs better, Spark-
DIY delivers 14.66% and 32% less execution time for 64
and 128 workers respectively. This is also supported by the
strong scaling results portrayed in (b) and (c): Spark shows
a flat curve, which contrasts with the rough slope in Spark-
DIY for 128 millions of records. As a result, Spark-DIY
is 52.1% and 14.6% faster than Spark using 128 and 64
workers respectively, but slower if the number of workers is
less.

Consequently, there is a trade-off between the scale of
the problem and the platform and the interoperability and
performance expected by the end user. At scale, performance
is at least equivalent and the user still has the flexibility
and interoperability offered by Spark-DIY, which enables the
usage of higher level libraries and other associated services
like streaming within their HPC toolchain.

VII. RELATED WORK

Instances of Big Data and HPC convergence are evident
in the literature of computer science, physical sciences, and
business. Malitsky et al. [18] developed Spark workflows
over MPI to parallelize and visualize reconstructions of
synchrotron light source X-ray microscopy. PayPal relies
on the high concurrency and low latency of HPC systems
for fraud detection in Big Data [19]. Convergence in the
opposite direction—big data tools for HPC applications—
also appears, for example, in the usage of machine learning
libraries, specifically TensorFlow, for HPC ptychographic
reconstruction by Nashed et al. [20] or in the creation
of a MapReduce framework over MPI, called Trace, for
tomographic reconstruction [21].

Because Spark underlies many Big Data tools, the per-
formance of Spark for scientific computing has been stud-
ied in several works. A study on Kira [22], a flexible
and distributed astronomy image processing toolkit using
Apache Spark, showed that Spark may be an alternative to
an equivalent C program for many-task applications. The
performance of a Spark implementation of a classification
algorithm in the domain of High Energy Physics (HEP)
was evaluated in [23], showing good scalability, but poor
performance was compared with the results of an untuned
MPI implementation of the same algorithm.

To overcome the former problems, three main approaches
have been proposed: developing tailored frameworks, imple-



menting a MapReduce framework using MPI, and executing
the Spark framework using MPI as the communication
engine.

Several tailored MapReduce and data analytics frame-
works have been developed. All of them target a partic-
ular family of applications or processor architecture, but
they are not generalized for reuse in other contexts. A
preliminary work was ROOT [24], an object-oriented C++
high-energy physics (HEP) framework designed for storing
and analyzing petabytes of data efficiently by using a
TTree object container optimized for statistical data analysis
over very large data sets. A proposal to accelerate Spark
communication was presented in [25], which used a high-
performance RDMA-accelerated data shuffle in the Spark
framework on high-performance networks and provided a
performance improvement of 80%. An adaptation of the
MapReduce framework for specific heterogeneous architec-
tures has been proposed in IBMSparkGPU [26], but it is
valid for local tasks only. Trace [21], mentioned earlier,
is a high-throughput tomographic reconstruction engine for
large-scale datasets using both (thread-level) shared memory
and (process-level) distributed memory parallelization using
a special data structure called a replicated reconstruction
object. Fox et al. studied in [27] various frameworks for deep
learning networks that can scale across multiple machines
with full parallel support and distributed execution, such us
Tensorflow, CNTK, Deeplearning4j, MXNet, H2O, Caffe,
Theano, and Torch.

There are some implementations of MapReduce frame-
works using MPI. Plimpton et al [28] created a parallel
library written with message-passing (MPI) calls that allows
algorithms to be expressed in the MapReduce paradigm,
simplifying programming by using map and reduce oper-
ations callable from C++, C, Fortran, or scripting languages
such as Python . Wang et al. [29] proposed a MapReduce-
like framework, called Smart, to execute data analytics
algorithms online alongside computational simulations (in
situ analytics) in time-sharing or space-sharing modes. A
more recent MapReduce framework over MPI is Mimir
[30], which provides a redesign of the execution model
with optimization techniques to increase performance and
to reduce memory usage, thus increasing scalability to
allow significantly larger problems to be executed. Another
variant is FT-MRMPI [31], an extension to provide a fault
tolerant MapReduce framework on MPI for HPC clusters.
The main limitation of these solutions is that significant
reimplementation effort is required to modify tools, libraries
and applications to use these frameworks, which can impede
adoption.

Due to the aforementioned limitations, executing the
Spark framework using MPI as the communication engine is
becoming the most feasible way to bridge the gap between
HPC and Big Data frameworks. This approach allows users
to benefit from efficient MPI libraries—such as DIY and

others—in Spark with little effort on their parts. In [32],
Liang and Lu proposed an event-driven pipeline and in-
memory shuffle using DataMPI-Iteration, showing a speedup
of 9X - 21X over Apache Hadoop, and 2X - 3X over Apache
Spark for PageRank and k-means clustering. Anderson et al.
[33] proposed a system for integrating MPI with Spark by
offloading computation to an MPI environment from within
Spark. The evaluation made with four distributed graph and
machine learning applications shows speedups between 3X
and 17X, including all of the overheads.

Spark-DIY provides advanced capability compared with
the previously described works. For example, compared with
[25], we provide compatible block management of Spark
for DIY by using JNI and RDMA deployed on high-speed
interconnections. Compared with [34], our solution provides
not only powerful I/O through DIY, but also computing
scalability. Moreover, Spark-DIY is a general solution, not
domain-specific, like the work presented in [35]. Our ap-
proach is more similar to the solution proposed in [33], but
Anderson et al. use HDFS to exchange data among Spark
and MPI, while we use memory directly. Moreover, DIY
manages the block communication graph, which avoids the
burden of direct MPI usage.

VIII. CONCLUSION

In this paper we have explored the potential benefits of
integrating a popular Big Data platform like Apache Spark,
with HPC-oriented communication techniques represented
by DIY block parallelism. We analyzed the literature to de-
rive the key design features that would interest both the HPC
and Big Data communities, and proposed an architecture to
reflect these goals.

We developed the Spark-DIY framework, which preserves
the programming interfaces and Spark environment, thus
making it compatible with any Spark-based application and
tool, while providing efficient shuffle and collectives by
using DIY, a powerful library built on top of MPI. This
framework shows good performance and scalability for
communication-intensive operations in comparison to Spark,
and enables the integration of elements from both the Big
Data and HPC ecosystems for applications with diverse
requirements without sacrificing productivity.

The work presented is relevant for the Big Data commu-
nity since we offer improved performance and reduced la-
tency for shuffle and other communication-intensive phases
of Spark workflows. In addition, we expose the benefits of
using supercomputing infrastructures without changing the
Spark framework because we exploit MPI-based commu-
nication. Future works could enhance the architecture to
support heterogeneity and accelerate independent transfor-
mations, and even extend the Spark programming model
to exploit other DIY communication patterns such as local
neighborhood block exchanges that are available in DIY,
but have no Spark counterpart. On the other hand, the HPC



community can benefit from the myriad libraries and plat-
forms built on top of Spark without giving away scalability.
Spark’s resilience, provenance, and ease of use are lacking
in the HPC software stack, and Spark-DIY affords HPC
practitioners of such characteristics that are commonplace
in the Big Data world.

In the future, we plan to integrate Spark’s elasticity into
our architecture, along with MPI-I/O support to benefit
from highly optimized parallel I/O in HPC systems as an
alternative to current storage systems like HDFS.
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