
In Situ Workflows at Exascale: System Software to the Rescue
Matthieu Dreher

Argonne National Laboratory
Lemont, IL, USA
mdreher@anl.gov

Swann Perarnau
Argonne National Laboratory

Lemont, IL, USA
swann@anl.gov

Tom Peterka
Argonne National Laboratory

Lemont, IL, USA
tpeterka@mcs.anl.gov

Kamil Iskra
Argonne National Laboratory

Lemont, IL, USA
iskra@mcs.anl.gov

Pete Beckman
Argonne National Laboratory

Lemont, IL, USA
beckman@mcs.anl.gov

ABSTRACT
Implementing an in situ workflow involves several challenges re-
lated to data placement, task scheduling, efficient communications,
scalability, and reliability. Most of the current implementations pro-
vide reasonably performant solutions to these issues by focusing on
high-performance communications and low-overhead execution
models at the cost of reliability and flexibility.

One of the key design choices in such infrastructures is between
providing a single-program, integrated environment or a multiple-
program, connected environment, both solutions having their own
strengths and weaknesses. While these approaches might be appro-
priate for current production systems, the expected characteristics
of exascale machines will shift current priorities.

After a survey of the trade-offs and challenges of integrated and
connected in situ workflow solutions available today, we discuss in
this paper how exascale systems will impact those designs. In partic-
ular, we identify missing features of current system-level software
required for the evolution of in situ workflows toward exascale and
how system software innovations from the Argo Exascale Comput-
ing Project can help address those challenges.

CCS CONCEPTS
• Computing methodologies → Concurrent programming
languages; • Software and its engineering → Software relia-
bility; Data flow architectures;

KEYWORDS
Argo, MPI, In Situ Workflows, Exascale, System Software

ACM Reference Format:
Matthieu Dreher, Swann Perarnau, Tom Peterka, Kamil Iskra, and Pete
Beckman. 2017. In Situ Workflows at Exascale: System Software to the
Rescue. In Proceedings of In Situ Infrastructures for Enabling Extreme-Scale
Analysis and Visualization, Denver, Colorado, USA, November 2017 (ISAV’),
5 pages.
https://doi.org/10.475/123_4

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ISAV’, November 2017, Denver, Colorado, USA
© 2017 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06.
https://doi.org/10.475/123_4

1 INTRODUCTION
Many scientific processes can be expressed as a workflow graph
where nodes are computational tasks (scientific simulations, anal-
ysis, visualization) and edges are data exchanges between tasks.
Traditional workflow infrastructures exchange data through files.
However, the increasing gap between I/O bandwidth and computa-
tional capabilities in current and future supercomputers requires a
change in the way scientists are analyzing data produced by sim-
ulations. File-based workflows must now be replaced by in situ
workflows performing data extraction, data reduction, or online
visualization before storing relevant data to the file system.

Over the past few years, several in situ workflow solutions have
been proposed by different research communities. Their designs
tackle the same set of challenges related to data placement, task
scheduling, efficient communications, scalability, and reliability.
Nevertheless, these communities made different design trade-offs,
based on their target workloads and production platforms.

We distinguish two types of currently available workflow sys-
tems, depending on how a system fits its execution model inside
a typical HPC production machine. Integrated workflows map
all their tasks inside a single MPI environment, providing a view
of the workflow as a single program, and performing communi-
cations inside a single view of the entire execution. Connected
workflows, instead, separate tasks into different executables, ef-
fectively partitioning a resource allocation among different pieces
and communicating across distinct namespaces through explicit
connections. Both types of in situ workflow designs have their
strengths and weaknesses. Integrated workflows are easier to map
inside a single MPI allocation on production systems, but connected
workflows are more flexible to changes in the system and to faults
in particular.

We argue here that, for exascale platforms, the design trade-offs
of current in situ workflows systems need to be re-evaluated, most
notably regarding reliability and flexibility, and that new features
of system-level software can help with the resulting evolution.

This paper is organized as follows. We review current in situ
infrastructures in Section 2, classifying them as either integrated or
connected systems. We then discuss the typical challenges involved
in the design of an in situ workflow system in Section 3. Section 4
details how those challenges are tackled by current implementa-
tions, and how exascale might impact those design choices. From
these observations, we argue in Section 5 that system software can

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4


ISAV’, November 2017, Denver, Colorado, USA Matthieu Dreher, Swann Perarnau, Tom Peterka, Kamil Iskra, and Pete Beckman

help resolve the identified issues, and we focus in particular on new
features of the Argo Exascale Computing Project.

2 RELATEDWORK
Building an in situ infrastructure includes making several critical
choices, starting at the execution model.

2.1 Integrated Workflow Infrastructures
Integrated workflow infrastructures include all their tasks within
a single MPI program sharing a global communicator. We distin-
guish two major designs here. The first uses a host code, typically
a simulation code, to run the analysis tasks within its MPI context.
The analysis tasks take the form of a function call or a plugin to be
loaded by the host code. That strategy was widely adopted by the
visualization community. Current production visualization tools
Paraview [3] and VisIt [2], and their respective in situ libraries
Catalyst [16] and Libsim [22], insert rendering servers executed
synchronously in time partitioning mode [1] within the simulation.
The analysis tasks take the form of filters executed by the rendering
server. ADIOS [17], a flexible I/O interface, enables data transfor-
mations [5] along the I/O path within the same MPI context as the
caller. Damaris [10] adopts a space partitioning strategy. It splits the
initial MPI communicator of the simulation in two groups, the sim-
ulation processes and the analysis processes, allowing the analysis
task to run asynchronously from the simulation. The data transport
method is selected separately from the tasks in an XML file. Some
transport methods allow in situ computation to be performed in
the same MPI program as the caller [5].

The second design, followed by Swift/T [23], organizes a pool
of MPI processes as workers. Tasks taking the form of a function
call are then loaded and executed by the runtime. Swift/T uses its
own programming language to describe the workflow graph and
extract parallelism. The runtime can then select precisely where to
execute the tasks.

2.2 Connected Workflow Infrastructure
A connected workflow infrastructure coordinates tasks separated
into different programs not sharing a common communicator. The
in situ infrastructure must provide mechanisms to connect the
tasks and create the appropriate communication channels. These
frameworks rely on dedicated communication libraries to replace
MPI, limiting portability but allowing more dynamic workflow
graphs.

FlowVR [13] relies on a network of daemons to identify tasks
and coordinate them. Each task requires minor modifications to
connect to the local daemon and exchange messages with the rest
of the application. DataSpaces [7] acts as a distributed data store.
Applications connect to the server to publish or retrieve indexed
data. The dynamic connections of tasks are managed by DART
servers [8], which support high-speed interconnects such as In-
finiBand. FlexPath [6], built on top of EVPath [14], embeds the
connection information of all the tasks so that a new task can join
the network and request the necessary connection information
from any task.

Decaf [12] creates communication channels through MPI or
CCI [4]. In the case of CCI, the addresses of the tasks are shared

through the file system during the startup phase of the workflow,
enabling each task to connect to its dependent tasks.

3 IMPLEMENTATION CHALLENGES
When implementing an in situ infrastructure, integrated or con-
nected, the developer must address several key challenges affecting
the performance, portability, and usability of the designed infras-
tructure [11]. We highlight in this section some of these challenges
and trade-offs and discuss how they can influence in situ infrastruc-
ture designs.

Addressing Tasks: To create communication channels between
tasks, the in situ infrastructure must first be able to identify each
task. This addressing mechanism can come from the underlying
communication library (MPI) or from a service provided by the in
situ infrastructure itself (naming servers, URIs).

Efficient Data Exchanges between Tasks: Each individual task may
have its own communication needs. A workflow also creates ad-
ditional communications to exchange data between tasks. These
inter-task communications might generate interferences with the
computation tasks, degrading their performance. Consequently, in
situ infrastructures should provide efficient communication mecha-
nisms in order to minimize their impact on the task performance.

User Code Integration: Scientific codes such as simulations and
analyses can require the expertise of the developers to modify them.
In situ infrastructures often require modifying the user code to
integrate it within the infrastructure. These modifications should
remain as limited as possible in order to ease the integration of user
codes and promote adoption of the infrastructure.

Task Placement: Task placement is performance-critical for large-
scale in situ workflows, particularly for data-intensive applications.
Explicitly managing locality between tasks may deliver the best
performance but is cumbersome and error prone and should be
managed by the infrastructure automatically.

Resilience: In situ workflows may involve multiple tasks run-
ning on large scale supercomputers. The increase of computational
resources involved in the workflow increases the probability of fail-
ures. Failures can come from multiple sources, for example, crash
of a task, overflow in a communication channel, or failure of a node.
Workflow engines should detect such faults without compromising
the rest of the workflow and should apply corrective measures if
possible.

Dynamicity: The graph of the workflow may have to change at
runtime for different reasons: completion of a task, insertion of a
new analysis, or temporary connection of a human to the workflow.
Individual tasks might also require dynamicity in order to increase
or reduce their computational resources, for instance, to reclaim
the resources previously allocated to another task.

Portability: Supercomputers provide a wide range of special-
ized hardware, for example, GPUs, accelerators (Xeon Phi), and
high-performance interconnects such as InfiniBand or Gemini. The
developer must rely on specific libraries and runtimes to obtain the
best performance on such hardware. However these libraries are
often developed for a specific hardware and might not be portable
to other platforms. Some libraries such as OpenCL or MPI provide
a generic API supporting a broader spectrum of hardware but with
lower performance than that of specialized libraries.



In Situ Workflows at Exascale: System Software to the Rescue ISAV’, November 2017, Denver, Colorado, USA

4 DESIGN CHOICES FOR CURRENT
SOLUTIONS AND BEYOND

Current in situ infrastructures were developed to focus mainly on
performance and scalability. We discuss in this section how these
infrastructures address the other challenges presented in the pre-
ceding section. We also discuss how exascale system characteristics
might shift the design priorities of future in situ infrastructures.

4.1 Integrated In Situ Infrastructures
Integrated in situ infrastructures host and execute the tasks of
a workflow within a single MPI context. That model provides
several advantages. First, MPI supports a large spectrum of high-
performance interconnects and is available in almost all the super-
computers on the Top500, providing very good portability. Second,
MPI provides an easy mechanism to identify each task (MPI rank)
and to create communication channels (communicators) between
tasks. Third, the runtime has the flexibility to statically (Damaris,
LibSim, Catalyst) or dynamically (Swift) place tasks at runtime and
can therefore support different placement strategies. Fourth, the
single MPI program model is the standard execution model for
current supercomputer environments, making it easy to execute
on today’s platforms.

Yet the MPI model also has certain disadvantages. Because all
the tasks share the same execution context, tasks are implemented
as function calls. In some cases, the base code of one task, typically
the simulation, is used to host the remaining tasks converted into
function calls. In other cases, all the tasks must be converted into
functions driven by one main program. That transformation might
require significant code modifications and expertise in the user
code. Additionally, MPI is not resilient to failures: a crash of a single
task within the workflow causes a crash of the entire workflow.

4.2 Connected In Situ Infrastructures
Connected in situ infrastructures separate tasks in different exe-
cutables. Since tasks no longer share a common MPI context, in
situ infrastructures must replace some functionalities traditionally
handled by MPI. In particular, infrastructures must provide a way
to create communication channels between tasks and distribute
computational resources to each task.

MPI_Connect would provide an answer to the first challenge, but
its lack of support on current supercomputers necessitates other
communication libraries, coming with their own challenges. First,
communication libraries often provide a mechanism to address
each communication point within the workflow, but it is up to the
in situ infrastructure to share the connection information with the
relevant tasks. Second, communication libraries such as DART [8],
CCI [4], or Nessie [18] do not support or are not optimized for
all high-performance interconnects, limiting the portability of the
infrastructure.

In situ infrastructures must also deal with resource allocation.
Because the tasks are not in the same execution context, it is more
difficult to distribute the computational resources between the tasks
unless the user provides more information to the infrastructure.

Despite these challenges, the connected mode enables several
key features. First, it allows tasks to join and leave the workflow at
runtime with their own computational resources. This implies that

the initial allocation of the workflow might grow or shrink at run-
time and notifies the infrastructure of those changes. Unfortunately
this feature is not supported by current production batch sched-
ulers. Additionally, a connected in situ infrastructure can sustain
the crash of a task without compromising the rest of the workflow.
The user can then decide how to act on a task or node failure. For
instance, EVPath calls a user-provided function to correct the work-
flow upon detection of the crash of a task. Moreover, the connected
mode preserves the original user code and only requires minor
modifications to enable the task to exchange messages with the
rest of the application. This simplifies the integration process of
complex codes into the infrastructure.

4.3 Exascale Is Coming
The need for performance, the simplicity of the MPI runtime, and
the supercomputer environment constraints tend to favor the inte-
grated mode for past and current solutions. Future exascale systems,
however, will bring new constraints and challenges, causing devel-
opers to reconsider some aspects of current solutions.

First, the projected mean time to failure will decrease by a factor
of 10 [9]. Individual tasks already provide a response to failures in
some cases. However, this rate of failure will also compel in situ
infrastructures to respond to these failures and adjust the work-
flow graph accordingly. Second, the number of cores per node will
increase dramatically, and deeper memory hierarchies will make
efficient placement of tasks more difficult. If tasks share a node,
proper mechanisms for performance isolation will be required for
both compute and memory. Third, we expect human-in-the-loop
interactions to become more prevalent. Consequently the infras-
tructures will have to dynamically readjust the workflow graph
and the distribution of its resources at runtime.

Connected workflows will be better tailored to face these new
challenges. However, current supercomputer environments are not
well suited for these infrastructures as they are more oriented to-
ward integrated execution models. Yet these environments are also
evolving to better support exascale systems and their workloads.
For example, Argo, a system software Exascale Computing Project,
is working on several features to bridge that gap.

5 HELP FROM THE SYSTEM-LEVEL
SOFTWARE

The issues identified in the preceding sections indicate a lack of
flexibility of the current HPC software stack, in particular from
system software needed by in situ workflow infrastructures.

From a system software perspective, this lack of flexibility is
due to a lack of advanced resource management mechanisms that
would enable users and runtimes to build the right management
policies. We define resource management here as the handling of
the following issues.

Dynamicity: If we expect job allocations to be able to shrink
and expand depending on several factors, including current power
budget, node failures, and workload changes, then user-level soft-
ware should be notified of these changes and be able to act on
them. This goes both ways: user-level software should also be able
to communicate to the system software changes in its resource
requirements.



ISAV’, November 2017, Denver, Colorado, USA Matthieu Dreher, Swann Perarnau, Tom Peterka, Kamil Iskra, and Pete Beckman

Node-level management: If a workflow supports multiple tasks
on the same node or requires additional node services, then users
should be able to partition the node resources among the current
processes while taking into account the topology and hardware
features of the node. This partitioning should also provide perfor-
mance isolation between tasks.

Job-level management: Regardless of their executionmodel, work-
flows will have to configure and manage multiple types of tasks
inside the same job, with possibly different configurations and dif-
ferent types of processes on subgroups of nodes.

Argo [19] is aimed at providing such advanced resource man-
agement services and making them directly available to users and
runtimes. We describe here two of its components that will help
future in situ workflows systems deal with those resource manage-
ment issues.

5.1 Containers for Node Resource Management
The Argo NodeOS [21] is a set of extensions on top of the Linux
operating system to provide resource partitioning mechanisms at
the node level to HPC applications. It is designed around the idea
of compute containers: a partition of the available resources where
users can execute arbitrary commands, providing performance iso-
lation from the rest of the processes. The operating system processes
can be isolated in their own container, reducing the noise on the
system. Furthermore, users can describe the resource requirement
of a container in a declarative manner (e.g., this container requires
4 cores and 1 GiB of memory), and a system service called node
resource manager will find a good partition for it.

The node resource manager also provides a local API to appli-
cations that can register themselves with the resource manager
to be notified of changes on the node. For example, if the power
budget of the node changes for administrative reasons, a workflow
manager could react to this information by decreasing or increasing
its workload [15].

We recently showcased how these compute containers can be
used for performance isolation with in situ workflows [21]. In
this setup, a molecular dynamics simulation (Gromacs) is coupled
with an in situ visualization component (isosurface extraction)
using a connected in situ middleware (FlowVR). Data exchanges
between modules are performed by using a shared-memory space
managed by the FlowVR daemon hosted on each node. The daemon
is heavily multithreaded, consisting of four internal threads plus
a thread for each module running on the node; none of them are
computationally intensive.

Correct placement of application processes on the node is crit-
ical to obtaining optimal performance. The five in situ analytics
processes together require at most 20% of the CPU cycles of a sin-
gle core, but they must be kept apart from the Gromacs processes,
which are highly sensitive to perturbations. Using compute con-
tainers, these different components sharing node resources can be
isolated from each other easily, with the same performance as with
a tedious manual placement. Instead, we can just declare the re-
source requirements of each component and have the node resource
manager deal with partitioning.

5.2 Control Bus for Job-Level Resource
Management

The Argo GlobalOS [20] is a set of user-facing distributed services
that can be deployed inside job allocations or as part of the produc-
tion infrastructure to control and monitor the resources available. It
is based on the concept of enclaves: groups of resources that behave
and can be controlled as a single entity.

As one of its core services, the GlobalOS provides a component
called the control bus. This control infrastructure provides an API
to partition a job into a hierarchy of enclaves and enables each
enclave to execute distinct programs or be configured differently.
This allows a native support for connected workflows, with each
task living in a separate enclave. The control bus also enables the in
situ infrastructure to register callbacks on resource events. Those
callbacks will trigger for example when resource allocations shrink
or expend. This allows in situ infrastructure to insert a new task
or remove a finished one with their associated resources without
having to modify the resource allocation of the other running tasks.
Additionally, the in situ infrastructure can use the control bus to
communicate directly with the underlying batch scheduler, to trig-
ger those resource changes itself, using its internal knowledge of
the current and future resource requirements of the workflow. For
instance, in a human-in-the-loop scheme, this allows users to spawn
new tasks and let the workflow infrastructure request the necessary
resources automatically.

This infrastructure can thus be used by in situ workflow man-
agers to perform space-partitioning or to launch different MPI
subjobs. Using the control bus, one can also implement a naming
service to communicate connection information between different
subjobs and connect them back together. This strategy can replace
file-based address exchanges, like in the case of Decaf with CCI.

Callbacks can also be registered with the control bus to trigger
on failure events. The in situ infrastructure can then act on those
events and implement fault recovery schemes. For example, failed
tasks can be restarted on other resources or simply removed from
the workflow. Alternatively, the in situ infrastructure can ask for
additional resources to replace the failed ones.

5.3 Portability of Argo
While some of the features of Argo require changes in the pro-
duction infrastructure (e.g., a different Linux kernel), the features
relevant to in situ workflows discussed here are all in userspace.
As such, they are intended to be portable to as many production
systems as possible and can be deployed by users themselves.

By providing these new system-level features, we hope to sim-
plify the implementation of connected workflows and allow users
more flexibility in managing their allocations on production ma-
chines.

6 ACKNOWLEDGMENT
Part of this work was supported by Advanced Scientific Comput-
ing Research, Office of Science, U.S. Department of Energy, under
Contract DE-AC02-06CH11357, program manager Lucy Nowell.
Other part of this work was supported by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S. Department



In Situ Workflows at Exascale: System Software to the Rescue ISAV’, November 2017, Denver, Colorado, USA

of Energy Office of Science and the National Nuclear Security Ad-
ministration.

REFERENCES
[1] 2016. The In Situ Terminology Project. (Feb 2016).

https://ix.cs.uoregon.edu/h̃ank/insituterminology/index.cgi?n=Phase1B.
Phase1BProposedInSituCategorizations.

[2] Sean Ahern, Eric Brugger, Brad Whitlock, Jeremy S Meredith, Kathleen Biagas,
Mark C Miller, and Hank Childs. 2013. VisIt: Experiences with Sustainable
Software. arXiv preprint arXiv:1309.1796 (2013).

[3] James Ahrens, Berk Geveci, and Charles Law. 2005. ParaView: An End-User Tool
for Large-Data Visualization. The Visualization Handbook (2005), 717.

[4] Scott Atchley, David Dillow, Galen Shipman, Patrick Geoffray, Jeffrey M Squyres,
George Bosilca, and RonaldMinnich. 2011. The common communication interface
(CCI). In 2011 IEEE 19th Annual Symposium on High Performance Interconnects
(HOTI). IEEE, 51–60.

[5] D.A. Boyuka, S. Lakshminarasimham, Xiaocheng Zou, Zhenhuan Gong, J. Jenkins,
E.R. Schendel, N. Podhorszki, Qing Liu, S. Klasky, and N.F. Samatova. 2014.
Transparent In Situ Data Transformations in ADIOS. In 2014 14th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGrid). 256–266.
https://doi.org/10.1109/CCGrid.2014.73

[6] J. Dayal, D. Bratcher, G. Eisenhauer, K. Schwan, M. Wolf, Xuechen Zhang,
H. Abbasi, S. Klasky, and N. Podhorszki. 2014. Flexpath: Type-Based Pub-
lish/Subscribe System for Large-Scale Science Analytics. In 2014 14th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGrid). 246–255.
https://doi.org/10.1109/CCGrid.2014.104

[7] Ciprian Docan, Manish Parashar, and Scott Klasky. 2010. DataSpaces: an In-
teraction and Coordination Framework for Coupled Simulation Workflows. In
Proceedings of the 19th ACM International Symposium on High Performance
Distributed Computing (HPDC ’10). ACM, New York, NY, USA, 25–36. https:
//doi.org/10.1145/1851476.1851481

[8] Ciprian Docan, Manish Parashar, and Scott Klasky. 2010. Enabling High-Speed
Asynchronous Data Extraction and Transfer using DART. Concurrency and
Computation: Practice and Experience 22 (2010), 1181–1204.

[9] Jack Dongarra, Pete Beckman, et al. 2011. The International Exascale Software
Project Roadmap. Int. J. High Perform. Comput. Appl. 25, 1 (Feb. 2011), 58.

[10] Matthieu Dorier, Gabriel Antoniu, Franck Cappello, Marc Snir, and Leigh Orf.
2012. Damaris: How to Efficiently Leverage Multicore Parallelism to Achieve
Scalable, Jitter-free I/O. In CLUSTER - IEEE International Conference on Cluster
Computing. IEEE.

[11] Matthieu Dorier, Matthieu Dreher, Tom Peterka, Justin M Wozniak, Gabriel
Antoniu, and Bruno Raffin. 2015. Lessons Learned from Building in Situ Coupling
Frameworks. In Proceedings of the First Workshop on In Situ Infrastructures for
Enabling Extreme-Scale Analysis and Visualization. ACM, 19–24.

[12] M. Dreher and T. Peterka. 2017. Decaf: Decoupled Dataflows for In Situ High-
Performance Workflows. Technical Report ANL/MCS-TM-371.

[13] Matthieu Dreher and Bruno Raffin. 2014. A Flexible Framework for Asynchronous
In Situ and In Transit Analytics for Scientific Simulations. In 14th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing. https://hal.inria.
fr/hal-00941413

[14] Greg Eisenhauer, Matthew Wolf, Hasan Abbasi, and Karsten Schwan. [n. d.].
Event-based Systems: Opportunities and Challenges at Exascale. In Proceedings
of the Third ACM International Conference on Distributed Event-Based Systems
(DEBS ’09).

[15] Dan Ellsworth, Tapasya Patki, Swann Perarnau, Sangmin Seo, Abdelhalim Amer,
Judicael Zounmevo, Rinku Gupta, Kazutomo Yoshii, Henry Hoffman, Allen Mal-
ony, Martin Schulz, and Pete Beckman. 2016. Systemwide Power Management
with Argo. In High-Performance, Power-Aware Computing (HPPAC).

[16] N. Fabian, K. Moreland, D. Thompson, A.C. Bauer, P. Marion, B. Geveci, M.
Rasquin, and K.E. Jansen. 2011. The ParaView Coprocessing Library: A Scalable,
General Purpose In Situ Visualization Library. In 2011 IEEE Symposium on Large
Data Analysis and Visualization (LDAV). 89–96. https://doi.org/10.1109/LDAV.
2011.6092322

[17] Qing Liu, Jeremy Logan, Yuan Tian, Hasan Abbasi, Norbert Podhorszki, Jong Youl
Choi, Scott Klasky, Roselyne Tchoua, Jay Lofstead, Ron Oldfield, Manish Parashar,
Nagiza Samatova, Karsten Schwan, Arie Shoshani, Matthew Wolf, Kesheng Wu,
and Weikuan Yu. 2014. Hello ADIOS: The Challenges and Lessons of Developing
Leadership Class I/O Frameworks. Concurrency and Computation: Practice and
Experience 26, 7 (2014), 1453–1473. https://doi.org/10.1002/cpe.3125

[18] R. A. Oldfield, P. Widener, A. B. Maccabe, L. Ward, and T. Kordenbrock. 2006. Ef-
ficient Data-Movement for Lightweight I/O. In 2006 IEEE International Conference
on Cluster Computing.

[19] Swann Perarnau, Rinku Gupta, and Pete Beckman. 2015. Argo: An Exascale Oper-
ating System and Runtime. In The International Conference for High Performance
Computing, Networking, Storage and Analysis, SC15.

[20] Swann Perarnau, Rajeev Thakur, Kamil Iskra, Ken Raffenetti, Franck Cappello,
Rinku Gupta, Pete Beckman, Marc Snir, Henry Hoffmann, Martin Schulz, and
Barry Rountree. 2015. Distributed Monitoring and Management of Exascale
Systems in the Argo Project. In IFIP International Conference on Distributed Ap-
plications and Interoperable Systems (DAIS), Short Paper.

[21] S. Perarnau, J. A. Zounmevo, M. Dreher, B. C. V. Essen, R. Gioiosa, K. Iskra, M. B.
Gokhale, K. Yoshii, and P. Beckman. 2017. ArgoNodeOS: Toward Unified Resource
Management for Exascale. In 2017 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). 153–162. https://doi.org/10.1109/IPDPS.2017.25

[22] Brad Whitlock, Jean M. Favre, and Jeremy S. Meredith. 2011. Parallel In Situ
Coupling of Simulation with a Fully Featured Visualization System. In Proceedings
of the 11th Eurographics Conference on Parallel Graphics and Visualization (EGPGV
’11). Eurographics Association, 101–109.

[23] Michael Wilde, Mihael Hategan, Justin M. Wozniak, Ben Clifford, Daniel S. Katz,
and Ian Foster. 2011. Swift: A Language for Distributed Parallel Scripting. Parallel
Comput. 37, 9 (2011). https://doi.org/10.1016/j.parco.2011.05.005

https://doi.org/10.1109/CCGrid.2014.73
https://doi.org/10.1109/CCGrid.2014.104
https://doi.org/10.1145/1851476.1851481
https://doi.org/10.1145/1851476.1851481
https://hal.inria.fr/hal-00941413
https://hal.inria.fr/hal-00941413
https://doi.org/10.1109/LDAV.2011.6092322
https://doi.org/10.1109/LDAV.2011.6092322
https://doi.org/10.1002/cpe.3125
https://doi.org/10.1109/IPDPS.2017.25
https://doi.org/10.1016/j.parco.2011.05.005

	Abstract
	1 Introduction
	2 Related Work
	2.1 Integrated Workflow Infrastructures
	2.2 Connected Workflow Infrastructure

	3 Implementation Challenges
	4 Design Choices for Current Solutions and Beyond
	4.1 Integrated In Situ Infrastructures
	4.2 Connected In Situ Infrastructures
	4.3 Exascale Is Coming

	5 Help from the System-Level Software
	5.1 Containers for Node Resource Management
	5.2 Control Bus for Job-Level Resource Management
	5.3 Portability of Argo

	6 Acknowledgment
	References

