
CoSS: Proposing a Contract-Based Storage System for HPC
Matthieu Dorier, Matthieu Dreher, Tom Peterka, Robert Ross

Argonne National Laboratory
Lemont, IL

{mdorier,mdreher,tpeterka,rross}@anl.gov

ABSTRACT
Data management is a critical component of high-performance
computing, with storage as a cornerstone. Yet the traditional model
of parallel file systems fails to meet users’ needs, in terms of both
performance and features. In this paper, we propose CoSS, a new
storage model based on contracts. Contracts encapsulate in the
same entity the data model (type, dimensions, units, etc.) and the
intended uses of the data. They enable the storage system to work
with much more knowledge about the input and output expected
from an application and how it should be exposed to the user. This
knowledge enables CoSS to optimize data formatting and placement
to best fit user’s requirements, storage space, and performance. This
concept paper introduces the idea of contract-based storage systems
and presents some of the opportunities it offers, in order to motivate
further research in this direction.

CCS CONCEPTS
• Information systems→ Data management systems;

KEYWORDS
HPC, Storage, I/O, Metadata, Data Model, Contract, CoSS

ACM Reference Format:
Matthieu Dorier, Matthieu Dreher, Tom Peterka, Robert Ross. 2017. CoSS:
Proposing a Contract-Based Storage System for HPC. In PDSWŋ-DISCS’17:
PDSWŋ-DISCS’17: Second Joint International Workshop on Parallel Data Stor-
age & Data Intensive Scalable Computing Systems, November 12–17, 2017,
Denver, CO, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.
1145/3149393.3149396

1 INTRODUCTION
High-performance computing has inherited the traditional file-
centric storage approach in the form of parallel file systems. With
an ever increasing gap between computational performance and
the performance of such storage systems, however, the community
has long recognized that the POSIX file system interface was hardly
suitable for data management on supercomputers [27].

Nevertheless numerous researchers have provided optimizations
to this I/O stack: better I/O algorithms in MPI [23], different data
organizations on backend storage [1], and richer data formats [16,
21]. The fact that such optimizations cannot leverage information
from higher levels in the stack is evidence of the inadequacy of the
file-centric approach to HPC data management. As an example, the
file system cannot know that a particular file contains a 2D array

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
PDSW-DISCS’17, November 12–17, 2017, Denver, CO, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5134-8/17/11. . . $15.00
https://doi.org/10.1145/3149393.3149396

of double-precision values, yet such information could be useful to
infer future accesses to such a file.

The traditional HPC storage stack must manage various forms of
metadata, which we categorize in four levels and which are spread
across multiple components of the system.

Level 4: Datamodel. The data model is the part of the metadata
that allows one to make sense of the data objects from a scientific
point of view. It gives a data object its type (from basic types such
as integers and floats to more elaborate, user-defined datatypes),
its dimensions, its name and description, its unit, and its relation
to other data objects, for example within a hierarchy of groups.
The data model remains the same whether the data is in memory
or is stored in a file. It is made explicit through a data format, or
implicitly via community standard practice.

Level 3: Data format. The data format describes the mapping
between the data model and the storage media, which is typically
a file in the context of a file system but could be a row within
a relational database or any other such mapping. It provides the
layout of the data (row/column-major order, endianness, compres-
sion, chunking, etc.) and the organization of associated metadata
(presence of headers and footers).

Level 2: File metadata. The file metadata comprises the file’s
standard POSIX attributes such as location within a hierarchy of
directories, the permissions, and the date of creation / modification.
It may include other attributes added by a user, for example through
extended attributes (xattr).

Level 1: Distribution. The file’s distribution represents how
the file is split and distributed across multiple storage servers
and, within these servers, across storage devices. It also describes
whether data is replicated or protected using erasure coding. Such
distribution can be controlled in some cases; for example OrangeFS
exposes it to users.1

This file-centric organization is not adequate for users of HPC
platforms. A file, while presenting a convenient way of stor-
ing data, is not the central concept to scientific computing.
Rather, data objects and the data models that describe them
are the key concepts. Hence a proper storage system for HPC
should be object-centric and encapsulate all levels of metadata, in
order to provide the user with the data models describing these
objects.

Object-centrism is one of the reasons for the success of in situ
analysis and visualization, a technique that bypasses the file sys-
tem to directly communicate objects from simulations to analysis
applications. The design of an object-centric storage system could
thus benefit from recent advances in this area.

In this paper, we present the concept behind CoSS, of a contract-
based, object-centric storage system with augmented knowl-
edge about the data semantics. A contract-based storage system
gathers the capabilities of an object storage system (e.g., RADOS [25]),
with the high-level data models found in scientific data formats
(e.g., HDF5, NetCDF), and the notion of contract currently found in

1http://dev.orangefs.org/trac/orangefs/wiki/Distributions

https://doi.org/10.1145/3149393.3149396
https://doi.org/10.1145/3149393.3149396
https://doi.org/10.1145/3149393.3149396
http://dev.orangefs.org/trac/orangefs/wiki/Distributions

PDSW-DISCS’17, November 12–17, 2017, Denver, CO, USA Matthieu Dorier, Matthieu Dreher, Tom Peterka, Robert Ross

Figure 1: Example of file-centric data flow froma simulation
to various analysis tools on- and off-site.

some in situ analysis frameworks [20] and visualization tools [4].
The key features of such a storage system can be summarized as
follows.

Working with high-level metadata. CoSS directly exposes a
high-level data models, including the information currently found
in data formats such as HDF5, with additional information linking
data objects together to build complex structures and to express
consistent datasets.

Expressing the intended usage through contracts. CoSS is
made aware of the intended usage of the data and can use this
knowledge to manage the way data objects are written, stored,
transformed, and exposed to readers.

2 MOTIVATING EXAMPLE
The shortcomings of current file-based storage systems and the
motivations for a contract-based storage system are best illustrated
by an example.

2.1 Example description
Let us consider a climate simulation writing multiple field variables
such as temperature, pressure, and wind speed. Such an application
periodically writes a set of HDF5 files (in this example one per
process) for analysis and visualization, and for later restart.

We will assume that the application needs to keep the data in
many small files (say, to ease the restarting process). However, the
analysis program requires a single file. Hence, some postprocessing
is done to combine all the files of an iteration into a large HDF5 file.
From these large files, the user extracts subarrays from two fields
and combines them (for example, computing the norm of the wind
speed vectors at various altitudes).

Collaborators also need to analyze part of the data produced by
the simulation, and for this example we will assume that they use
a tool that understands only the NetCDF format. Thus the data has
to be converted into NetCDF and sent over the WAN to a remote
Globus endpoint. From these files, the collaborators can then extract
slices of the temperature field to visualize them.

2.2 Issues posed by the file-centric approach
This file-centric data flow is shown in Figure 1. As the community
around an HPC simulation grows, this flow can grow much more
complex, with the application itself presenting backends for a num-
ber of data formats, along with many handwritten conversion and
postprocessing tools.

The first problem of this approach is data redundancy. In our
example, we find redundant data in several places. The large HDF5
files generated from gathering the per-process files contains the
same or similar data as these small files have, simply organized in
a different manner. The same goes for the NetCDF output, which
is generated and stored for the sole purpose of being sent to and

analyzed by collaborators. Assuming the analysis applications need
to know the coordinates of mesh vertices, these coordinates, even
though they may remain constant throughout the simulation, are
likely to be stored in each and every file to make each file self-
contained. This approach again creates redundancy.

These files may also contain too much data compared with what
is really needed by reader applications. Suppose a field variable
(e.g., pressure) is needed only for restarting the simulation but is
never analyzed. The presence of this variable in the output HDF5
files is useful only for the latest iteration of data but pollutes files
containing previous iterations. Yet this variable cannot just “disap-
pear” from those files when one notices that it is not going to be
useful anymore.

Lossy compression, downsampling, and reduction of precision
are operations that reduce the amount of data stored in files. Yet
for conservative reasons they may not be applied by the user. As-
sume that the application writes double-precision data, but that the
visualization code can accept single-precision data and afford the
loss of accuracy generated by a lossy compressor, while producing
the same visual accuracy. The fact that the file may be needed in
contexts where a lossless, double-precision format is required (e.g.,
to restart the application) will prevent the user from considering
such reduction techniques even for variables that are not needed
in these contexts.

One may argue that all the problems identified above can be
solved by agreeing to use a single data format (say, HDF5) for all
codes, preferably the format that carries the semantics required by
all of them, by writing data objects in separate files to be able to
work on them and share them individually, and by applying the
best reductions or transformations possible given the constraints
imposed on each data object individually. This highlights two key
ideas: (1) what is important is not the file or the data format but
the data objects themselves and their semantics; and (2) a priori
knowledge of the data usage can help optimize the storage of such
data.

Yet even if all the code-base around a simulation used an agreed-
upon format and the question of which data to stored was fully
answered, the questions of where and when the data should be
transformed remains. Some transformations, such as slicing, are
easy to apply to the in-memory data inside the simulation, before
writing. Some, however, may be expensive or hard to parallelize
(e.g. compression) or may require extra memory that the simulation
may not have. Some transformations may be pipelined, such as
slicing followed by compression, and even be commutative, such
as downsampling followed by reduction from double to single pre-
cision. Current parallel file systems have no way to select where,
when, and how such transformations should be applied, and cannot
apply them within the file system itself.

This example lays the ground for a new type of storage system,
which we describe in the next section.

3 TOWARD CONTRACT-BASED STORAGE
Building on the hypothesis that applications and data objects (rather
than files) are at the center of HPC workflows, we propose a new
design for an HPC storage system named CoSS (Contract-based
Storage System). The first goal of CoSS is to collocate the various
types of metadata currently scattered across all layers of the storage
stack. Its second goal is to provide the user with views that are
appropriate for the applications that manipulate the data.

CoSS: Proposing a Contract-Based Storage System for HPC PDSW-DISCS’17, November 12–17, 2017, Denver, CO, USA

Figure 2: Overview of CoSS, with its object store and contract
and metadata manager.

3.1 Overview of CoSS
Figure 2 shows an overview of CoSS. The actual storage space is
managed by an object store, which stores data in the form of objects
identified by a unique id. The Contract andMetadata Manager is the
entity that makes sense of these objects according to user-provided
information in the form of a contract.

3.1.1 Object store. The object store is write-once-read-many.
Stored objects cannot be modified. The community has already
recognized that most HPC codes do not actually modify previously
written data. Rather, they rely on explicit versioning (such as creat-
ing a new file at every iteration of the simulation). However, objects
may be written through multiple operations and potentially by mul-
tiple writers. We envision objects to be associated with policies
specifying how they are populated, for example:
• Atomic access: The object will be written in a single operation
by a single process. Once written, the object is considered in a
consistent state.
• Chunked access: The object will be written in multiple opera-
tions, potentially by multiple writers, but the definition of that
object enables CoSS to know when the object is in a consistent
state. For example, a multidimensional array written chunk by
chunk is in a consistent state when the union of all chunks make
up the entire array.
• Log-structured access: The object will be written in multiple
operations, potentially by multiple writers that will append data
to it. An explicit “commit” operation by a writer will let CoSS
know that the object is in a consistent state and should no longer
be written to. An example of such an object is a list of particles
whose length is unknown a priori.
In a typical file system, partial writes to a file make the file

immediately visible to potential readers even though the data inside
is incomplete. Enabling the storage system to have a notion of the
conditions under which a data object is consistent prevents the
system from exposing inconsistent objects to readers, and having a
policy-based approach avoids the need for a single mechanism that
supports all modalities (e.g., a distributed transaction).

3.1.2 Object management. Object management is done by the
contract and metadata manager. Objects are logically gathered into
projects. A project has several branches, each corresponding to an
execution of the simulation. A branch groups objects into several
epochs, which could correspond to iterations of the simulation.
Projects and branches have names. Epochs are identified by a posi-
tive integer. Whenever the simulation runs, a new branch is created.
Whenever the simulation enters an I/O phase, it opens an epoch,
writes objects, and then closes the epoch. Upon closing of the epoch,

the objects of that epoch become visible to reader applications. Any
nonconsistent objects are discarded from the epoch.

The contract and metadata manager also manages level 1 and 2
metadata: it assigns permissions and creation/modification times to
projects, branches, and epochs, and manages the underlying data
distribution in the object store.

3.1.3 Contracts. A project has an associated contract. The con-
tract is defined either by a document (e.g., in XML, JSON, or YAML),
or programmatically through the execution of a script (e.g., in
Python). The contract contains various information, such as:
• The data model, which includes information typically available
in data formats like HDF5 and NetCDF, such as the data type,
dimensions, layout, and compression. The semantics may also
include information required by visualization software (and that
an XDMF file would typically provide), namely, relationships
between objects allowing complex structures such as meshes to
be built, and field variables to be mapped onto these meshes.
• The views, which express how the data should be presented to
applications that access it. Views are divided into an input view,
on the writer side, and one or more output views, on the reader
side.

3.2 Views
The input view defines how the data is produced by the writer
application. This includes its layout within the memory of the
writing application.

Output views place constraints on how the storage system might
organize and/or reduce the data in the objects that make up the
project. For example, while the input view specifies that the ap-
plication will write a 3D array A of double-precision values, an
output view may require to expose it to readers as a 2D array B
corresponding to the first slice of the array A, in single-precision
values.

Alternatively, an output view may specify that a set of objects
should be made available in the form of a file, that is, a single object
representing a byte stream that can be transferred to a traditional
file system and be read as a file (for example in HDF5 format).

Views also provide a requested level of resilience, which is used
by CoSS to replicate the data and protect it with adequate error
correcting mechanisms.

3.3 Storage system intelligence
Knowing in advance what an application will produce and how the
data will be consumed, allows CoSS to perform a number of opti-
mizations. In particular, the notion of input and output views
represents a contract between the producer and consumers
on one side, and the storage systemon the other side. It allows
the latter to match views: not only can CoSS check that the pro-
duced data can be exposed to the consumers in the required form;
it also decides where, when, and how to transform the data such
that it satisfies the output views, while optimizing performance
and resource usage.

In the example of the 3D array A exposed in the output view
as a 2D array B with reduced precision, CoSS can choose between
several places and times to operate the slicing and reduction. These
options are illustrated in Figure 3.2 The decision can be made by

2Note that a traditional parallel file system does not enable the in-storage options.
Additional tools or scripts are typically written by users to convert data from one
representation to another.

PDSW-DISCS’17, November 12–17, 2017, Denver, CO, USA Matthieu Dorier, Matthieu Dreher, Tom Peterka, Robert Ross

CoSS depending on the current load, memory constraints, run time
constraints, and concurrency. For example the reduction to single
precision can be done on the writer side provided that the writer
has enough memory. It can otherwise be done in storage or by the
reader itself. CoSS can also chose to keep both versions, knowing
that another consumer still needs A as an input.

Regardless of whether the transformation has been performed
or not, CoSS will make the output view available to the reader as
soon as it has the guarantee that such a view can be satisfied, that is,
when all objects required for the view are in a consistent state.

3.4 Updating a contract
Updating a contract can either restrict the existing views, or widen
them.

An update that restricts the input and output views must do so
in such a way that the resulting views remain matching. Restricting
a view V1 to a new view V2 is understood in the sense that if data
is provided under a view V1, then a series of transformations can
make it available under the view V2. For example, in our previous
scenario, one could want the new input view for array A to expose
it as single-precision values. This new view restricts the previous
one (which was exposing double-precision values) and still satisfies
the requirements of the output view.

Widening a view consists of enabling more data to be visible
under the new view than was under the old one. Widening updates
may or may not be accepted by the storage system, since it must
have kept the data required to build the new view despite it being
unnecessary under the old view. For example, if the new output
view requests the array B to be a 3D array instead of a 2D slice, the
update to the contract will be allowed only if the storage system
actually kept 3D arrays and did not proactively transform them.

3.5 Interfaces and convertors
Weenvision CoSS to expose an interface similar to that of Damaris [9]
or ADIOS [19], where read and write functions are being passed
a name (string) and a pointer to the data to access. The rest of
the semantics (including the layout of the data in the application’s
memory) are accessible through the contract and metadata man-
ager.

The API provided by CoSS can be used underneath I/O libraries
that enable a high-level API and are implemented with backend
modularity, such as HDF5 and its file drivers, ADIOS and its trans-
port methods, and Damaris with its plugins. This will make any
application that uses these libraries immediately compatible with
the storage system.

Alternatively, generic convertors can be provided to transform
objects from the storage system into files in a given format. The
availability of both an interface and a convertor for a given format
enables deeper automatic optimizations by CoSS. For example, if
an output view declares that the data will be accessed as an HDF5
file, the system can let the reader application use the system’s I/O
driver in HDF5 to make sense of objects directly, or it can convert
the objects into an HDF5 file to later provide a byte-stream read
through HDF5’s POSIX I/O driver.

4 RELATEDWORK
Over the past years, researchers have proposed solutions to improve
HPC I/O. Some of these solutions improve the existing parallel file
system’s performance by providing more efficient file-based inter-
faces or by providing data formats suitable to scientific datasets.

Many researchers, however, turned toward in situ analysis and
visualization to bypass the storage system and connect a simula-
tion with an analysis application. Such connections require the
semantics of the data to be kept along the data path; hence they
either rely on existing metadata-rich I/O interfaces such as HDF5
or ADIOS [2] or require users to modify their code. In both cases,
this trend hints at the fact that an object-centric approach to data
management is preferable to a file-centric one.

4.1 Data models
Damaris [9], a framework that enables using dedicated cores and
nodes for I/O and data processing, uses contracts in the form of an
XML file. This file describes the variables (data objects) expected
to be output by an application. It allows dedicated processes to
work with a priori knowledge of metadata. This description enables
Damaris to transform the data and pass it to relevant backends
such as HDF5 (for storage), VisIt [17], or ParaView [15] (for in situ
visualization). In order to support in situ visualization, Damaris’
XML model was extended to include the description of entities such
as meshes. They effectively represent relationships between data
objects.

FFS [13] is a data model used with EVpath [14] and meant to
enable semantically rich communications across application com-
ponents. Rather than relying on agreed-upon knowledge of data
objects expected to be sent between components, it proposes these
metadata be embedded within messages. FFS is used by the Flex-
path [7] publish/subscribe mechanism, in which consumers can
register to be notified of the production of data of specific types.

Bredela [11], proposed by Dreher et al. describes the data output
by a simulation in a way that permits semantically aware data
manipulation, in particular splitting, merging, and redistribution
across components. Bredela gives addresses how our contract-base
storage system can make sense of data that is written by multiple
processes.

Conduit [18] uses JSON to manipulate data models. These data
models include data objects as well as complex structures such as
meshes. Damaris’s XML, ADIOS’s XML, and Conduit’s JSON data
models are, in our opinion, viable candidates for implementing
contracts.

4.2 Data transformation
Exchanging data between two tasks often requires transforming the
data. The transformation can be done in situ or as a postprocessing
step, converting data from one file format to another for instance.
Transformations are required for different reasons: data model
mismatch between two components, data compression, selection
of a subset of data for a particular analysis, and so forth.

Several in situ infrastructures offer mechanisms to transform
data along the I/O path. ADIOS [2] introduced a transformation
step performed synchronously when the application is writing data.
PreData [28] used small codelets to rearrange the data structure be-
tween two tasks. Decaf [12] enhanced the communication channel
between two tasks with a dedicated staging area to transform and
redistribute the data between tasks.

Dorier et al. [10] proposed taking into account some measures
(e.g., entropy) of the relevant data to perform in situ reduction of
part of the data and accommodate the need in subsequent visual-
ization. Such techniques could be integrated in a contract-based
storage system since views can describe the required level of details.

CoSS: Proposing a Contract-Based Storage System for HPC PDSW-DISCS’17, November 12–17, 2017, Denver, CO, USA

(a) By the writer (b) In storage, at write time (c) In storage, keeping both (d) In storage, at read time (e) By the reader

Figure 3: Possible places for a transformation filter to be applied. The grey box represents the storage system. A producer
application is on the left, and a consumer on the right.

In all these systems, the user is providing the functions necessary
to transform data between tasks. However, these transformations
could be automated with more information from the user or from
the tasks themselves.

The notion of a contract was introduced by Childs et al. [4] to
describe the inputs and outputs of components. This information
enables new methods to automatically transform data between
the tasks. It is what enables VisIt to optimize its data flows within
a visualization pipeline. In VisIt, each component of a pipeline
describes its requirements and its impact on the data. For example,
given a component A reading a 3D dataset and a component B
extracting a slice from it, the requirements of component B (“I
need only the parts of the data that intersect with the slice”) are
propagated upstream in the pipeline so that component A reads
only the appropriate parts of the input file. This is similar to our
contracts, in which a priori knowledge of the output views can be
propagated back to the writing application and used by the storage
system so that only the relevant data is stored and potentially
transformed along the data path.

Mommessin et al. [20] adopted a similar approach for in situ
workflows. Their contracts describe the data that a component
will output and what it expects as input. This approach enables
components to be connected by matching their contracts, and it
effectively filters the content of a message output by a producer to
contain only the data required by the consumer. It also enables an
in situ runtime to potentially transform data automatically between
two tasks, for instance transforming an array of double-precision
floating point values into an array of single-precision floating point
values.

4.3 Data formats
The HDF5 format enables data objects to be stored in a hierarchical
manner. It allows the user to work with data objects rather than
with the file itself, by abstracting how the data is laid out in the un-
derlying file. While HDF5 is unable to express how data objects can
be composed to make up a complex structure like a mesh, additional
information can be provided by using XDMF.3 HDF5 files coupled
with an XDMF description can easily be read by visualization tools
such as VisIt. VizSchema4 targets a goal similar to that of XDMF.

The popularity of HDF5, NetCDF, and other similar data formats
exposing a rich data model supports the fact that users prefer to
work with data objects rather than with files. This motivates the de-
sign of a storage system that conserves the same level of semantics
as such formats.

4.4 Storage
Many of today’s parallel file systems such as Lustre [8], Ceph [24],
PVFS [3], and PanFS [26] are characterized as “object-based” in
3http://www.xdmf.org/index.php/XDMF_Model_and_Format
4https://ice.txcorp.com/trac/vizschema

the sense that they decouple metadata management from data
storage and store data as objects in a flat namespace. These objects
are usually hidden from the users, who see a typical file system
interface with its hierarchy of folders and files. This shows that
the right trend to managing objects has existed in the community
for years, but the convenience of a file system interface prevented
it from being used to its full potential. Ceph does expose a direct
access to objects from its underlying RADOS object store.

The concept of view at storage level can be found in the Vesta
parallel file system [5], where different views of the same file can
be exposed to different processes in a way similar to what MPI
file views do at application level. However such views do not rely
on high-level data semantics. They describe regions of the file’s
data, for example to help partitioning a file’s data across processes.
The views we propose describe series a transformations that can be
applied to the data in order to go from its stored form to a requested
form.

Closer to our proposed storage system is SciDB [6]. SciDB is
a storage system for scientific applications. It is array-oriented
rather than file-oriented. It keeps a high-level data model and en-
ables running data manipulation queries (e.g., array slicing, chunk-
ing), within the database and in a parallel manner. Contrary to
our contract-based storage model, however, SciDB does not know
anything about the intended use of the data and cannot optimize
the data layout or transform the data ahead to respond faster to
readers later.

The notion of programmable storage systems also has started
to appear [22]. Such programmability would be a way to let users
implement object filters to enable views from nonconventional data
structures.

5 CONCLUSION
We have proposed CoSS, and the concept of a contract-based storage
system. Such a storage system is an object store augmented with the
notion of a contract between producers, storage, and consumers.
This object-centric system is more natural to scientific data storage
than the traditional file system approach; and the knowledge gained
by the storage system about the intended use of the data enables
automatic optimizations by allowing the system to choose what to
store and how, when, and where to transform the data from what a
producing application generates to what a consuming application
expects.

The building blocks of such a storage system already exist. Ob-
ject stores make up the storage layer of many current parallel
file systems. File formats and in situ analysis libraries provide the
high-level of semantics and the filters required to implement the
contracts, respectively.

We plan to develop the concept behind CoSS further and to
design, implement, and evaluate a prototype.

http://www.xdmf.org/index.php/XDMF_Model_and_Format
https://ice.txcorp.com/trac/vizschema

PDSW-DISCS’17, November 12–17, 2017, Denver, CO, USA Matthieu Dorier, Matthieu Dreher, Tom Peterka, Robert Ross

ACKNOWLEDGEMENTS
This material was based upon work supported by the U.S. Depart-
ment of Energy, the Office of Science, Advanced Scientific Com-
puting Research, under Contract DE-AC02- 06CH11357, program
manager Lucy Nowell. This work was done in the context of the
DOE SSIO project "Mochi" (http://press3.mcs.anl.gov/mochi/), a
Software Defined Storage Approach to Exascale Storage Services.

REFERENCES
[1] John Bent, Garth Gibson, Gary Grider, Ben McClelland, Paul Nowoczynski, James

Nunez, Milo Polte, and Meghan Wingate. 2009. PLFS: A checkpoint filesystem
for parallel applications. In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis (SC). IEEE, 1–12.

[2] D.A. Boyuka, S. Lakshminarasimham, Xiaocheng Zou, Zhenhuan Gong, J. Jenkins,
E.R. Schendel, N. Podhorszki, Qing Liu, S. Klasky, and N.F. Samatova. 2014. Trans-
parent I Situ Data Transformations in ADIOS. In 14th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid). 256–266.

[3] Phil H Carns, Walter B Ligon, Robert B Ross, and Rajeev Thakur. 2000. PVFS:
A parallel file system for Linux clusters. In Proceedings of the 4th annual Linux
Showcase and Conference.

[4] Hank Childs, Eric Brugger, Kathleen Bonnell, Jeremy Meredith, Mark Miller,
Brad Whitlock, and Nelson Max. 2005. A contract based system for large data
visualization. In Visualization, 2005. VIS 05. IEEE. IEEE, 191–198.

[5] Peter F Corbett and Dror G Feitelson. 1996. The Vesta parallel file system. ACM
Transactions on Computer Systems (TOCS) 14, 3 (1996), 225–264.

[6] Philippe Cudré-Mauroux, Hideaki Kimura, K-T Lim, Jennie Rogers, Roman
Simakov, Emad Soroush, Pavel Velikhov, Daniel L Wang, Magdalena Balazinska,
Jacek Becla, and others. 2009. A demonstration of SciDB: a science-oriented
DBMS. Proceedings of the VLDB Endowment 2, 2 (2009), 1534–1537.

[7] Jai Dayal, Drew Bratcher, Greg Eisenhauer, Karsten Schwan, Matthew Wolf,
Xuechen Zhang, Hasan Abbasi, Scott Klasky, and Norbert Podhorszki. 2014.
Flexpath: Type-based publish/subscribe system for large-scale science analytics.
In 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid). IEEE, 246–255.

[8] Stephanie Donovan, Gerrit Huizenga, Andrew J Hutton, C Craig Ross, Martin K
Petersen, and Philip Schwan. 2003. Lustre: Building a file system for 1000-node
clusters. In Proceedings of the Linux Symposium.

[9] Matthieu Dorier, Gabriel Antoniu, Franck Cappello, Marc Snir, Robert Sisneros,
Orcun Yildiz, Shadi Ibrahim, Tom Peterka, and Leigh Orf. 2016. Damaris: Address-
ing performance variability in data management for post-petascale simulations.
ACM Transactions on Parallel Computing (TOPC) 3, 3 (2016), 15.

[10] Matthieu Dorier, Robert Sisneros, Leonardo Bautista Gomez, Tom Peterka,
Leigh Orf, Lokman Rahmani, Gabriel Antoniu, and Luc Bougé. 2016. Adap-
tive Performance-Constrained In Situ Visualization of Atmospheric Simulations.
In IEEE International Conference on Cluster Computing (CLUSTER). IEEE, 269–278.

[11] Matthieu Dreher and Tom Peterka. 2016. Bredala: Semantic data redistribution
for in situ applications. In IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, 279–288.

[12] M. Dreher and T. Peterka. 2017. Decaf: Decoupled Dataflows for In Situ High-
Performance Workflows. Technical Report.

[13] Greg Eisenhauer, MatthewWolf, Hasan Abbasi, Scott Klasky, and Karsten Schwan.
2011. A type system for high performance communication and computation. In
IEEE Seventh International Conference on e-Science Workshops (eScienceW). IEEE,
183–190.

[14] Greg Eisenhauer, MatthewWolf, Hasan Abbasi, and Karsten Schwan. 2009. Event-
based systems: opportunities and challenges at exascale. In Proceedings of the
Third ACM International Conference on Distributed Event-Based Systems. ACM, 2.

[15] Nathan Fabian, Kenneth Moreland, David Thompson, Andrew C Bauer, Pat
Marion, Berk Gevecik, Michel Rasquin, and Kenneth E Jansen. 2011. The ParaView
coprocessing library: A scalable, general purpose in situ visualization library. In
IEEE Symposium on Large Data Analysis and Visualization (LDAV). IEEE, 89–96.

[16] Mike Folk, Gerd Heber, Quincey Koziol, Elena Pourmal, and Dana Robinson. 2011.
An overview of the HDF5 technology suite and its applications. In Proceedings of
the EDBT/ICDT 2011 Workshop on Array Databases. ACM, 36–47.

[17] T Kuhlen, R Pajarola, and K Zhou. 2011. Parallel in situ coupling of simulation
with a fully featured visualization system. In Proceedings of the 11th Eurographics
Conference on Parallel Graphics and Visualization (EGPGV).

[18] Lawrence Livermore National Laboratory. Conduit: A scientific data exchange
library for HPC simulations. http://software.llnl.gov/conduit/index.html. (????).

[19] Qing Liu, Jeremy Logan, Yuan Tian, Hasan Abbasi, Norbert Podhorszki, Jong Youl
Choi, Scott Klasky, Roselyne Tchoua, Jay Lofstead, Ron Oldfield, and others. 2014.
Hello ADIOS: the challenges and lessons of developing leadership class I/O
frameworks. Concurrency and Computation: Practice and Experience 26, 7 (2014),
1453–1473.

[20] Clement Mommessin, Matthieu Dreher, and Tom Peterka. 2017. Automatic Data
Filtering for In Situ Workflows. In 2017 IEEE International Conference on Cluster
Computing (CLUSTER). IEEE.

[21] Russ Rew and Glenn Davis. 1990. NetCDF: An interface for scientific data access.
IEEE Computer Graphics and Applications 10, 4 (1990), 76–82.

[22] Michael A Sevilla, Noah Watkins, Ivo Jimenez, Peter Alvaro, Shel Finkelstein,
Jeff LeFevre, and Carlos Maltzahn. 2017. Malacology: A Programmable Storage
System. In Proceedings of the Twelfth European Conference on Computer Systems.
ACM, 175–190.

[23] Rajeev Thakur, William Gropp, and Ewing Lusk. 1999. Data sieving and collective
I/O in ROMIO. In Frontiers of Massively Parallel Computation, 1999. Frontiers’ 99.
The Seventh Symposium on the. IEEE, 182–189.

[24] Sage AWeil, Scott A Brandt, Ethan LMiller, Darrell DE Long, and CarlosMaltzahn.
2006. Ceph: A scalable, high-performance distributed file system. In Proceedings
of the 7th symposium on Operating Systems Design and Implementation. USENIX
Association, 307–320.

[25] Sage A Weil, Andrew W Leung, Scott A Brandt, and Carlos Maltzahn. 2007.
RADOS: A scalable, reliable storage service for petabyte-scale storage clusters.
In Proceedings of the 2nd international workshop on Petascale Data Storage: held in
conjunction with Supercomputing’07. ACM, 35–44.

[26] Brent Welch, Marc Unangst, Zainul Abbasi, Garth A Gibson, Brian Mueller, Jason
Small, Jim Zelenka, and Bin Zhou. 2008. Scalable Performance of the Panasas
Parallel File System.. In FAST, Vol. 8. 1–17.

[27] Erez Zadok, Dean Hildebrand, Geoff Kuenning, and Keith A Smith. 2017. POSIX
is Dead! Long Live... errr... What Exactly?. In 9th USENIX Workshop on Hot Topics
in Storage and File Systems (HotStorage 17). USENIX Association.

[28] Fang Zheng, H. Abbasi, C. Docan, J. Lofstead, Qing Liu, S. Klasky, M. Parashar, N.
Podhorszki, K. Schwan, and M. Wolf. 2010. PreDatA - preparatory data analytics
on peta-scale machines. In Parallel Distributed Processing (IPDPS’10). 1–12.

http://press3.mcs.anl.gov/mochi/

	Abstract
	1 Introduction
	2 Motivating Example
	2.1 Example description
	2.2 Issues posed by the file-centric approach

	3 Toward Contract-Based Storage
	3.1 Overview of CoSS
	3.2 Views
	3.3 Storage system intelligence
	3.4 Updating a contract
	3.5 Interfaces and convertors

	4 Related Work
	4.1 Data models
	4.2 Data transformation
	4.3 Data formats
	4.4 Storage

	5 Conclusion
	References

