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Abstract. As the number of nodes in cluster systems continues to grow,
leveraging scalable algorithms in all aspects of such systems becomes
key to maintaining performance. While scalable algorithms have been
applied successfully in some areas of parallel I/O, many operations are
still performed in an uncoordinated manner. In this work we consider,
in three file system scenarios, the possibilities for applying scalable algo-
rithms to the many operations that make up the MPI-IO interface. From
this evaluation we extract a set of file system characteristics that aid in
developing scalable MPI-IO implementations.

1 Introduction

The MPI-IO interface [10] provides many opportunities for optimizing access to
underlying storage. Most of these opportunities arise from the interface’s ability
to express noncontiguous accesses, the collective nature of many operations,
and the precise but somewhat relaxed consistency model. Significant research
has used these features to improve the scalability of MPI-IO data operations.
Implementations use two-phase [13], data sieving [14], and data shipping [11],
among others, to efficiently handle I/O needs when many nodes are involved.

On the other hand, little attention has been paid to the remaining operations,
which we will call the management operations. MPI-IO semantics provide op-
portunities for scalable versions of open, close, resize, and other such operations.
Unfortunately, the underlying file system API can limit the implementation’s
ability to exploit these opportunities just as it does in the case of the I/O oper-
ations.

We first discuss the opportunities provided by MPI-IO and the potential
contributions that the parallel file system can make toward an efficient, scalable
MPI-IO implementation. We then focus specifically on the issue of providing
scalable management operations in MPI-IO, using the PVFS2 parallel file system
as an example of appropriate support. We also examine the scalability of common
MPI-IO management operations in practice on a collection of underlying file
systems.
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1.1 MPI-IO Opportunities

Implementations can take advantage of three aspects of the MPI-IO specification
to maximize scalability: semantics, noncontiguous I/O, and collective functions.

MPI-IO provides more relaxed consistency semantics than the traditional
POSIX [6] interface provides. These semantics are relaxed on two fronts: in terms
of the scope of the consistency (just the processes in the communicator) and the
points in time at which views from different processes are synchronized. Under
the default MPI-IO semantics, simultaneous writes to the same region yield an
undefined result. Further, writes from one process are not immediately visible
to another. Active buffering with threads [9], for example, takes advantage of
MPI-IO consistency semantics to hide latency of write operations.

Additionally, MPI datatypes may be used to describe noncontiguous regions
both in file and in memory, providing an important building block for efficient
access for scientific applications. Several groups have implemented support for
efficient noncontiguous I/O, including listless I/O [15], data sieving [14], list
I/O [3], and datatype I/O [2].

MPI-IO also affords many opportunities for scalable implementations through
collective operations. These collective functions enable the implementation to use
scalable communication routines and to reorganize how operations are presented
to the file system. The focus of optimizations of collective MPI-IO routines to this
point has been on read and write operations. Optimizations such as two-phase
have had a significant impact on the performance of collective I/O, particularly
at large scale.

1.2 MPI-IO with POSIX and NFS

POSIX is not the ideal underlying interface for MPI-IO for three reasons. First,
the readv, writev, and lio listio calls are not efficient building blocks for non-
contiguous I/O. The readv and writev calls only allow describing noncontiguous
regions in memory, while these often occur in the file as well. The lio listio
API does allow for multiple file regions, but the language for describing them
through the API is verbose, leading to descriptions larger than the data itself.
Data sieving [14] is not so much an optimization as a workaround for these short-
comings; it is often more efficient to read an entire region containing the data of
interest, discarding much of that data, than to construct and use a noncontiguous
request with the POSIX noncontiguous functions.

The POSIX stateful model is also problematic. The open, read, write, close
model of access requires that all processes desiring to access files directly perform
many system calls. The file descriptor returned by open has meaning to just one
client. Hence, file descriptors cannot be shared among all processors. Each client
must make the open system call. In a large parallel program, opening a file on a
parallel file system can put a large strain on the servers as thousands of clients
simultaneously call open.

NFS provides an interesting contrast to POSIX. Clients access NFS file sys-
tems using the same functions as POSIX and must deal with same issues with



file descriptors. Although the API is the same, however, the consistency seman-
tics are quite different and impose an additional set of problems. Because clients
cache data aggressively and without synchronization among clients, it is diffi-
cult to predict when writes from one client will be visible to another. Metadata
caching further complicates parallel I/O: when one process modifies the file size
or file attributes, it is difficult to know when those modifications will be visible
to the other processes. The NFS consistency semantics work well in the serial
environment for which they were designed, but they are a poor fit for parallel
I/O.

MPI-IO implementations can function on top of a wide variety of file systems,
but the underlying file system can greatly help the implementation achieve real
scalability, particularly if it addresses the problems outlined above.

1.3 Parallel File System Building Blocks

A parallel file system can provide three fundamentals to aid in a scalable MPI-IO
implementation:

– Efficient noncontiguous I/O support
– Consistency semantics closely matching the MPI-IO model
– Client-independent references to files

Efficient noncontiguous I/O support in the file system has been a focus of
a great deal of recent research [15]. The datatype I/O concept [3] in particu-
lar provides an efficient infrastructure for noncontiguous I/O in MPI-IO, with
similar concepts seen in the View I/O [7] work.

One of the most significant influences on performance of a file system, both in
data and metadata operations, is the consistency semantics implemented by the
file system. For example, the POSIX consistency semantics require essentially
sequential consistency of operations. Enforcing these semantics can result in high
overhead and reduced parallelism. The NFS consistency semantics, on the other
hand, require no additional overhead because there is no guarantee of consistency
between clients. Thus, the consistency semantics drive caching policies, dictating
how clients can cache data and when they must synchronize.

The “nonconflicting write” semantics of PVFS and PVFS2 are an ideal build-
ing block from the MPI-IO perspective. A write operation is nonconflicting with
another write operation if no part of the two operations overlap (interleaved re-
quests can still be nonconflicting). If two processes perform nonconflicting write
operations, then all other processes will see the data from the writers after their
respective writes have completed. If two clients write data to the same region of
a file (i.e., a conflicting write), the result is undefined. The file system counts on
the MPI-IO implementation handling any additional consistency requirements.

While relaxed data consistency can improve scalability, metadata consistency
semantics have an impact on scalable optimizations as well. Some mechanism has
to ensure that all clients have a consistent view of metadata from the MPI-IO
perspective. For file systems such as NFS, all clients end up performing the same



operations because the MPI-IO implementation cannot control caching, limiting
our ability to implement scalable operations. Thus, it is important to have not
just relaxed consistency semantics but appropriate consistency semantics, and
the right hooks to control the data and metadata caches.

A third mechanism that parallel file systems can use to achieve high per-
formance is client-independent references to files. As opposed to the POSIX file
descriptor, which has meaning only to one client, these references can be used
by any client to refer to a file. By sharing these file references among all clients,
programs place fewer demands on the file system. As we will see, this feature
can significantly improve the performance of MPI-IO management operations.

Table 1. MPI-IO Management Operations (all clients call)

Function Collective? No. of FS Operations
NFS POSIX PVFS2

MPI File get size no O(n) O(n) O(n)
MPI File seek no O(n) O(n) —
MPI File delete no O(1) O(1) O(1)

MPI File open yes O(n) O(n) O(1)
MPI File close yes O(n) O(n) O(1)
MPI File sync yes O(n) O(n) O(1)
MPI File set size yes O(n) O(1) O(1)
MPI File preallocate yes O(1) O(1) O(1)

MPI File set info yes O(n) O(n) O(1)
MPI File set view yes O(n) O(n) O(1)

MPI File get position shared no — — —
MPI File seek shared yes — — —

2 MPI-IO Management Operations

We can roughly split the MPI-IO operations into two groups: operations that
read or write data, and operations that do not. We call this second group MPI-IO
management operations. Table 1 lists the management operations that interact
with the file system (calls such as MPI File get position generally require no
corresponding file system operations, using cached data instead). The point of
the table is to help shed light on the options for creating scalable implementations
of the MPI-IO functions.

Some functions, such as MPI File get size, are not collective and thus can-
not be optimized – every process wanting the file size would need to make the



call, or the application programmer would need to synchronize, make a single
MPI-IO call, and then broadcast the result. Little can be done in this case.
Functions such as MPI File delete fall into the same category, except that it
is generally assumed that the application programmer will perform synchroniza-
tion and make only one call, since calling this function many times would likely
result in success on one process and failure on all others.

Next is a core set of collective management functions that are often used
in MPI-IO applications, including MPI File open and MPI File close among
others. The stateful nature of the POSIX and NFS APIs requires that open and
close file system operations be performed on all processes. Likewise, the fsync
operation that is the interface for synchronizing data in the POSIX and NFS
APIs flushes changes only on the local node, requiring a file system operation per
node (generally implemented by calling fsync on each process for simplicity).
The NFS metadata caching makes relying on NFS file sizes problematic, so
ROMIO chooses to call ftruncate on all processes. This situation could perhaps
be avoided by maintaining file size data within ROMIO rather than relying on
the file system, but implementing such a feature would touch many other calls.

For example, the file truncation function MPI File set size is a collective
operation that may be made scalable even under the POSIX API. A single
POSIX ftruncate operation may be performed and the result broadcast to
remaining processes (see Figure 1). We can use MPI-IO semantics here to further
improve scalability: MPI File set size is treated like a write operation, so the
caller must synchronize client calls if that is desired. We note, however, that this
cannot be done in the NFS environment, where metadata is not kept consistent
between nodes; in that case we must perform the truncate on all nodes.

if (rank == 0) {
/* perform the truncate on one node */
ret = ftruncate(fd , size);
MPI_Bcast (&ret , 1, MPI_INT , 0, comm);

} else {
/* the result is broadcast to the other processors */
MPI_Bcast (&ret , 1, MPI_INT , 0, comm);

}
/* at this point , all processors know the status of the ftruncate
* call , even though only one processor actually sent the request */

Fig. 1. Scalable MPI File set size (pseudocode)

The MPI File sync function offers a slightly different example. It, too, is
a collective operation but has the added property that no outstanding write
operations should be in progress on any process. Figure 2 demonstrates one
possible scalable implementation. By using MPI Reduce (or MPI Gather), we can
ensure that all processes have performed their write operations before one process
initiates the flush. This scheme assumes there will be no client-side caching of
data. In the POSIX and NFS environments, where local caching occurs and the



fsync flushes only local buffers, calls must be performed by all clients to ensure
that changes on all nodes make it out to disk.

MPI_Reduce (&dummy1 , &dummy1 , 1, MPI_INT , MPI_SUM , 0, comm);

if (rank == 0) {
ret = fsync(fd);
MPI_Bcast (&ret , 1, MPI_INT , 0, comm);

} else {
MPI_Bcast (&ret , 1, MPI_INT , 0, comm);

}
/* at this point , all processors know the status of the fsync call ,
* even though only one processor actually sent the request */

Fig. 2. Scalable MPI File sync (pseudocode). We do not want to sync until we know all
other processors have finished writing. The call to MPI Reduce ensures that all processes
have completed any outstanding write operations. In this example, rank 0 will not call
fsync until all other processors have sent rank 0 an integer.

The MPI File set info and related calls are interesting because they may
or may not require file system operations, depending on the hints passed in and
supported by the file system. For example, setting the MPIO DIRECT READ option
on file systems that support it (e.g., XFS) would require a file system call from
each process.

Moreover, because no commonly used file systems support shared file point-
ers, the implementation in ROMIO uses a shared file approach to store the
pointer. There may be more scalable options for implementing this support; this
is an open research area.

3 File System Support: PVFS2

The new PVFS2 parallel file system [12] is a good example of providing efficient
building blocks for scalable MPI-IO. It is no accident that PVFS2 is well suited
for MPI-IO: it was expressly designed with such a goal in mind.

We took advantage of several PVFS2 features to optimize our MPI-IO imple-
mentation. Naturally, these features resemble the points laid out in Section 1.3:

– support for arbitrary noncontiguous I/O patterns
– consistency semantics well-suited for MPI-IO
– client-independent handles
– no client-side cache

Support for noncontiguous access in PVFS2, similar to the datatype I/O
prototype in PVFS1 ([2],[4]), provides the necessary API for efficient indepen-
dent I/O. Nonconflicting write consistency semantics, which leave the results of
byte-overlapped concurrent writes undefined, provide sufficient consistency for
building the nonatomic MPI-IO semantics.



Opaque, client-independent file references allow open operations to be per-
formed scalably, and the stateless nature of the file system means that close
operations are also trivial (a single synchronize operation is performed to flush
all changes to disk).

For example, only one process in a parallel program has to perform actual
PVFS2 function calls to create files (see Figure 3). One process performs a
lookup, creating the file if it does not exist. The PVFS2 server responds with
a reference to the file system object. The client then broadcasts the result to
the other clients. MPI File set size is another win: one client resizes the file
and then broadcasts the result to the other clients. Servers experience less load
because only one request comes in. The same approach is used for MPI File sync
(Figure 2). Only one process has to ask the file system to flush data. The result
is the same: all I/O servers write out their caches, but they have to handle only
one request each to do so.

/* PVFS2 is stateless : clients perform a ’lookup ’ operation
* to convert a path into a handle . This handle can then
* be passed around to all clients . */

if (rank == 0) {
ret = PVFS_sys_lookup(fs_id , path_name ,

credentials , & response , PVFS2_LOOKUP_LINK_FOLLOW );
if (ret == ENOENT ) {

ret = PVFS_sys_create(name , parent , attribs ,
credentials , NULL , & response );

}
}
MPI_Bcast (&ret , 1, MPI_INT , 0, comm);
MPI_Bcast (&response , 1, MPI_INT , 0, comm);

/* now all processors know if the lookup succeeded , and
* if it did , the handle for the entity */

Fig. 3. Scalable open for PVFS2 (heavily simplified). In a real implementation, one
could create an MPI datatype to describe the handle and error code and perform just
one MPI Bcast. We perform two for simplicity.

4 Results

To evaluate MPI-IO implementations, we performed experiments on the Jazz
cluster at Argonne National Laboratory [8], the ALC cluster at Lawrence Liv-
ermore National Laboratory [1], and the DataStar cluster at NPACI/SDSC [5].
Jazz users have access to two clusterwide file systems: NFS-exported GFS vol-
umes and PVFS (version 1). Additionally, we temporarily deployed PVFS2
across a subset of available compute nodes for testing purposes. The ALC cluster
has a Lustre file system and the DataStar cluster has GPFS: we have included
them for reference, even though we do not discuss their design elsewhere in this
paper. In these tests, PVFS2 ran with 8 I/O servers, one of which also acted



as a metadata server. For fairness in these tests, the PVFS2 servers used TCP
over Fast Ethernet. We used a CVS version of MPICH2 from mid-April 2004,
including the ROMIO MPI-IO implementation (also from mid-April).

In the first experiment, we created 1,000 files in an empty directory with
MPI File open and computed the average time per create. Table 2 summarizes
the results. PVFS2 – the only stateless file system in the table – achieves con-
sistent open times as the number of clients increased. Additionally, the average
time to create a file on PVFS2 is an order of magnitude faster than the time it
takes to do so on any of the other file systems. From a scalability standpoint, the
NFS+GFS file system performs remarkably well. File creation may be relatively
expensive, but as the number of clients increases, the cost to open a file remains
virtually constant. PVFS1 demonstrates poor scalability with the number of
clients, because PVFS1 each client must open the file to get a file descriptor
(PVFS1 is stateful in this regard). With more clients, the metadata server has
to handle increasingly large numbers of requests. Thus, the metadata server be-
comes a serialization point for these clients, and the average time per request
goes up. While Lustre and GPFS both outperform PVFS1, they too must per-
form an open on each client. The time per operation increases as the number of
clients and the demand placed on the file system increases significantly.

Table 2. Results: A Comparison of several cluster file systems(milliseconds)

Create
No. of Clients NFS+GFS Lustre GPFS PVFS1 S-PVFS1 PVFS2

1 3.368 8.585 16.38 41.78 - 18.82
4 178.1 51.62 29.77 221.8 - 18.73
8 191.6 56.68 45.80 292.4 - 22.02

16 176.6 67.03 280.2 241.1 - 20.66
25 183.0 146.8 312.0 2157 - 19.05
50 204.1 141.5 400.6 2447 - 24.73
75 212.7 231.2 475.3 3612 - 24.82

100 206.8 322.2 563.9 1560 - 28.14
128 204.0 463.3 665.8 1585 - 32.94

Resize
1 0.252 1.70 7.0 1.26 1.37 0.818
4 3.59 05.39 14.4 2.23 1.54 0.823
8 1.75 13.49 36.0 3.25 1.44 0.946

16 14.88 29.7 36.6 2.75 1.86 0.944
25 36.5 66.0 35.7 25.0 4.07 0.953
50 1960 113 39.5 16.2 2.02 1.11
75 2310 179 43.5 15.0 2.62 1.26

100 4710 233 40.5 19.1 3.10 1.46
128 2820 254 42.4 18.6 3.38 1.07



In the second experiment, we opened a file and then timed how long it took
to perform 100 calls to MPI File set size on one file with a random size pa-
rameter (ranging between 0 and RAND MAX. We then computed the average time
for one resize operation. Table 2 summarizes our results. The file-based locking
of GFS clearly hurts resize performance. The GFS lock manager becomes the
serialization point for the resize requests from the clients, and performance de-
grades drastically as the number of clients increases. The NFS client-side caches
mean we must resize the file on each client to ensure consistency, so we cannot
use the scalable techniques outlined earlier. Again, as with the create test, we
see Lustre’s performance getting worse as the number of clients increases. GPFS
performance appears virtually independent of the number of clients; it would
be interesting to know what approach GPFS takes to achieving scalable opera-
tions for this case. The PVFS column shows performance without the scalable
algorithm from Figure 1. We modified the ROMIO PVFS1 resize routine to use
the more scalable approach(the S-PVFS1 column) . Using the algorithm shown
in Figure 1, both PVFS1 and PVFS2 both show consistent performance. The
small increase in time as the number of clients increases can be attributed to the
increased synchronization time at the reduce and the time taken to broadcast
the results to a larger number of processors.

5 Conclusions and Future Directions

Many opportunities exist for optimizing MPI-IO operations, even in general
purpose file systems. Some of these opportunities have been heavily leveraged,
in particular those for collective I/O. Others require additional support from
the file system. In this work we have described the collection of MPI-IO opera-
tions and categorized these based on the ability of the MPI-IO implementor to
optimize them given specific underlying interfaces. We have pointed out some
characteristics of file system APIs and semantics that more effectively serve as
the basis for MPI-IO implementations: support for noncontiguous I/O, better
consistency semantics, client-independent file references, a stateless I/O model,
and a caching model that allows a single file system operation to sync to storage
(in the case of PVFS2, no client-side caching at all). By building parallel file sys-
tems with these characteristics in mind, MPI-IO implementations can leverage
MPI collective communication and achieve good performance from the parallel
file system even as the number of clients increases.

In future work, we will examine scalable support for the shared file pointer
and atomic access modes of the MPI-IO interface. While inherently less scal-
able than private file pointers and the more relaxed default semantics, these
are important components in need of optimization. It is not clear whether file
system support for shared file pointers and the more strict atomic data mode is
warranted or if this support should be provided at the MPI-IO layer. Addition-
ally, we continue to examine options for more aggressively exploiting the I/O
semantics through client-side caching at the MPI-IO layer.
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