
Self-Consistent MPI Performance Requirements⋆

Jesper Larsson Träff1, William Gropp2, and Rajeev Thakur2

1 NEC Laboratories Europe, NEC Europe Ltd.
Rathausallee 10, D-53757 Sankt Augustin, Germany

traff@ccrl-nece.de
2 Mathematics and Computer Science Division

Argonne National Laboratory
Argonne, IL 60439, USA

{gropp,thakur}@mcs.anl.gov

Abstract. The MPI Standard does not make any performance guaran-
tees, but users expect (and like) MPI implementations to deliver good
performance. A common-sense expectation of performance is that an
MPI function should perform no worse than a combination of other MPI
functions that can implement the same functionality. In this paper, we
formulate some performance requirements and conditions that good MPI
implementations can be expected to fulfill by relating aspects of the MPI
standard to each other. Such a performance formulation could be used by
benchmarks and tools, such as SKaMPI and Perfbase, to automatically
verify whether a given MPI implementation fulfills basic performance re-
quirements. We present examples where some of these requirements are
not satisfied, demonstrating that there remains room for improvement
in MPI implementations.

1 Introduction

For good reasons MPI (the Message Passing Interface) [4, 9] comes without a
performance model and, apart from some “advice to implementers,” without
any requirements or recommendations as to what a good implementation should
satisfy regarding performance. The main reasons are, of course, that the imple-
mentability of the MPI standard should not be restricted to systems with specific
interconnect capabilities and that implementers should be given maximum free-
dom in how to realize the various MPI constructs. The widespread use of MPI
over an extremely wide range of systems, as well as the many existing and quite
different implementations of the standard, show that this was a wise decision.

On the other hand, for the analysis and performance prediction of applica-
tions, a performance model is needed. Abstract models such as LogP [3] and

⋆ This work was supported in part by the Mathematical, Information, and Computa-
tional Sciences Division subprogram of the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Department of Energy, under Contract DE-AC02-
06CH11357.

BSP [13] tend to be too complex (for full applications), too limited, or too ab-
stract to have predictive power. MPI provides much more flexible (but also much
more complex) modes of communication than catered to in these models.

An alternative is to use MPI itself as a model and analyze applications in
terms of certain basic MPI primitives. This may work well for restricted usages
of MPI to, say, the MPI collectives, but full MPI is probably too large to be a
tractable model for performance analysis and prediction.

A related consideration is a hard-to-quantify desire for performance porta-

bility—the desire that an application should, in some qualitative sense, behave
the same when ported to a new system or linked with a different MPI library.
Detailed, public benchmarks of MPI constructs can help in translating the per-
formance of an application on one system and MPI library to another system
with another MPI library [8]. Accurate performance models would also facilitate
translation between systems and MPI libraries, but in their absence simple MPI-
intrinsic requirements to MPI implementations might serve to guard against the
most unpleasant surprises.

MPI has many ways of expressing the same communication (patterns), with
varying degrees of generality and freedom for the application programmer. This
kind of universality makes it possible to relate aspects of MPI to each other
also in terms of the expected performance. This is utilized already in the MPI
definition itself, where certain MPI functions are explained in a semi-formal way
in terms of other MPI functions.

The purpose of this paper is to discuss whether it is possible, sensible, and
desirable to formulate system-independent, but MPI-intrinsic performance re-
quirements that a “good” MPI implementation should fulfill. Such requirements
should not make any commitments to particular system capabilities but would
enforce a high degree of performance consistency of an MPI implementation. For
example, similar optimizations would have to be done for collective operations
that are interlinked through such performance rules. Furthermore, such rules,
even if relatively trivial, would provide a kind of “sanity check” of an MPI im-
plementation, especially if they could be checked automatically. In this paper, we
formulate a number of MPI-intrinsic performance requirements by semi-formally
relating different aspects of the MPI standard to each other, which we refer to
as self-consistent performance requirements. By their very nature the rules can
be used only to ensure consistency—a trivial, bad MPI implementation could
fulfill them as well as a carefully tuned library.

Related work includes quality of service for numerical library components [5,
6]. Because of the complexity of these components, it is not possible to provide
the sort of definitive ordering that we propose for MPI communications.

2 General Rules and Notation

We first formulate and discuss a number of general self-consistent MPI perfor-
mance requirements, presupposing reasonable familiarity with MPI. We consider
the following relationships (metarules) between MPI routines:

1. Replacing all communication with the appropriate use of MPI Isend, MPI Irecv,
and MPI Wait should not reduce the communication time. In the context of
MPI-2, this can be applied even to the MPI one-sided communication rou-
tines.

2. Subdividing messages into multiple messages should not reduce the commu-
nication time.

3. Replacing a routine with a similar routine that provides additional semantic
guarantees should not reduce the communication time.

4. For collective routines, replacing a collective routine with several routines
should not reduce the communication time. In particular, the specification
of most of the MPI collective routines includes a description in terms of
other MPI routines; each MPI collective should be at least as fast as that
description.

5. For process topologies, communicating with a communicator that imple-
ments a process topology should not be slower than using a random com-
municator.

The first of these requirements provides a formal way to derive relationships
between the MPI communication routines—write each routine in terms of an
equivalent use of MPI Isend, MPI Irecv, and MPI Wait, and then compare the
time taken. In the rest of this paper, we give more specific examples of each of
these rules.

We use the notation that

MPI A(n) � MPI B(n) (1)

means that MPI functionality A is not slower than B when evoked with parame-
ters resulting in the same amount of communication or computation n. Note that
MPI buffers are not always specified in this way. We use p to denote the number
of processes involved in a call, and MPI A{c} for A called on communicator c.
As an example

MPI Send(n) � MPI Isend(n) + MPI Wait (2)

states that an MPI Send call is possibly faster, but at least not slower than a call
to MPI Isend with the same parameters followed by an MPI Wait call. In this
case, it would probably make sense to require more strongly that

MPI Send(n) ≈ MPI Isend(n) + MPI Wait (3)

which means that the alternatives perform similarly. Quantifying the meaning
of “similarly” is naturally contentious. A strong definition would say that there
is a small confidence interval such that for any data size n, the running time of
the one construct is within the running time of the other with this confidence
interval. A somewhat weaker definition could require that the running time of
the two constructs is within a small constant factor of each other for any data
size n.

3 General Communication

Rule 2 can be made more precise as follows: Splitting a communication buffer
of kn units into k buffers of n units, and communicating separately, never pays
off.

MPI A(kn) � MPI A(n) + · · · + MPI A(n)
︸ ︷︷ ︸

k

(4)

For an example where this rule is violated with A = Bcast, see [1, p. 68].

Similarly, splitting possibly structured data into its constituent blocks of
fixed size k should also not be faster.

MPI A(kn) � MPI A(k) + · · · + MPI A(k)
︸ ︷︷ ︸

n

(5)

One might be able to elaborate this requirement into a formal requirement for
the performance of user-defined MPI datatypes, but this issue would require
much care.

Note that many MPI implementations will violate Rule 2 and (4) because
of the use of eager and rendezvous message protocols. An example is shown in
Figure 1. A user with a 1500-byte message will achieve better performance on
this system by sending two 750-byte messages. This example shows one of the
implementation features that competes with performance portability—in this
case, the use of limited message buffers. To satisfy Rule 2, an MPI implementa-
tion would need a more sophisticated buffer management strategy, but in turn
this could decrease the performance of all short messages.

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

tim
e

(u
s)

Size (bytes)

Comm Perf for MPI (Processor <0,0,0,0> in a <4, 4, 2, 1> mesh) type blocking

Fig. 1. Measured performance of short messages on IBM BG/L. Note the large jump
around 1024 bytes; this is the transition from eager to rendezvous protocol in the MPI
implementation.

As an example of Rule 3, we have the following

MPI Send � MPI Ssend (6)

Since the synchronous send routine has an additional semantic guarantee (the
routine cannot return until the matching receive has started), it should not be
faster than the regular send.

4 Collective Communication

The MPI collectives are strongly interrelated semantically, and often one col-
lective can be implemented in terms of one or more other related collectives.
A general requirement (metarule) is that a specialized collective should not be
slower than a more general collective. Thus, with good conscience, users can be
given the advice to always use the most specific collective (which is, of course,
exactly the motivation for having so many collectives in MPI).

4.1 Regular Communication Collectives

The following three rules are instances of the metarule that specialized functions
should not be slower than more general ones.

MPI Gather(n) � MPI Allgather(n) (7)

MPI Scatter(n) � MPI Allgather(n) (8)

MPI Allgather(n) � MPI Alltoall(n) (9)

The next rule implements a collective operation in terms of two others. Again
the specialized function (MPI Allgather) should not be slower.

MPI Allgather(n) � MPI Gather(n) + MPI Bcast(n) (10)

This is not as trivial as it may look. If, for instance, a linear ring algorithm
is used for the MPI Allgather, but tree-based algorithms for MPI Gather and
MPI Bcast, the relationship will not hold (at least for small n).

A less obvious requirement relates MPI Scatter to MPI Bcast. The idea is
to implement the MPI Scatter function, which scatters individual data to each
of the p processes, by a broadcast of the combined data of size pn; each process
copies out its block from the larger buffer.

MPI Scatter(n) � MPI Bcast(pn) (11)

Again this is a nontrivial requirement for small n for MPI libraries with an effi-
cient MPI Bcast implementation and forces an equally efficient implementation
of MPI Scatter.

A currently popular implementation of broadcast for large messages is by
a scatter followed by an allgather operation [2, 10]. Since this is an algorithm
expressed purely in terms of collective operations, it makes sense to require that
the native broadcast operation should behave at least as well.

MPI Bcast(n) � MPI Scatter(n) + MPI Allgather(n) (12)

4.2 Reduction Collectives

The second half of the next rule states that a good MPI implementation should
have an MPI Allreduce that is faster than the trivial implementation of reduc-
tion to root followed by a broadcast.

MPI Reduce(n) � MPI Allreduce(n)

� MPI Reduce(n) + MPI Bcast(n) (13)

A similar rule can be formulated for MPI Reduce scatter.

MPI Reduce(n) � MPI Reduce scatter(n)

� MPI Reduce(n) + MPI Scatterv(n) (14)

The next two rules implement MPI Reduce and MPI Allreduce in terms of
MPI Reduce scatter and are similar to the broadcast implementation of require-
ment (12).

MPI Reduce(n) � MPI Reduce scatter(n) + MPI Gather(n) (15)

MPI Allreduce � MPI Reduce scatter(n) + MPI Allgather(n) (16)

For the reduction collectives, MPI provides a set of built-in binary operators,
as well as the possibility for users to define their own operators. A natural
requirement is that a user-defined implementation of a built-in operator should
not be faster.

MPI Reduce(MPI SUM) � MPI Reduce(user sum) (17)

A curious example where this is violated is again given in [1, p. 65]. For a
particular vendor MPI implementation, a user-defined sum operation was signif-
icantly faster than the built-in MPI SUM operation!

4.3 Irregular Communication Collectives

The irregular collectives of MPI, in which the amount of data communicated
between pairs of processes may differ, are obviously more general than their reg-
ular counterparts. It is desirable that performance be similar when an irregular
collective is used to implement the functionality of the corresponding regular
collective. Thus, we have requirements like the following.

MPI Gatherv(v) ≈ MPI Gather(n) (18)

This requires that the performance of MPI Gatherv be in the same ballpark
as the regular MPI Gather for uniform p element vectors v with v[i] = n/p.
Again this is not a trivial requirement. For instance, there are easy tree-based
algorithms for MPI Gather but not for MPI Gatherv (at least not as easy because
the irregular counts are not available on all processes), and thus performance
characteristics of the two collectives may be quite different [11]. Thus, ≈ should
be formulated carefully and leave room for some overhead.

4.4 Constraining Implementations

In addition to the rule above that relates collective operations to other collective
operations, it would be tempting to require that a good MPI implementation
fulfill some minimal requirements regarding the performance of its collectives.
For example, the MPI standard already explains many of the collectives in terms
of send and receive operations.

MPI Gather(n) � MPI Recv(n/p) + · · · + MPI Recv(n/p)
︸ ︷︷ ︸

p

(19)

Extending this, one could define a set of “minimal implementations,” for
example, an MPI Bcast implementation by a simple binomial tree. Correspond-
ingly one could require that the collectives of an MPI library perform at least as
well. This requirement could prevent trivial implementations from fulfilling the
rules, but how far this idea could and should be taken is not clear at present.

5 Communicators and Topologies

Let c be a communicator (set of processes) of size p representing an assignment
of p processes to p processors. Let c′ be a communicator representing a different
(random) assignment to the same processors. A metarule like

MPI A{c} ≈ MPI A{c′} (20)

can be expected to hold for homogeneous systems for any MPI communication
operation A. For non-homogeneous systems, such as SMP clusters with a hier-
archical communication system, such a rule will not hold.

For some collectives, it is still reasonable to require communicator indepen-
dence (irrespective of system), for example, the following.

MPI Allgather{c} ≈ MPI Allgather{c′} (21)

This is not a trivial requirement. A linear ring or logarithmic algorithm designed
on the assumption of a homogeneous system may, when executed on a SMP
system and depending on the distribution of the MPI processes over the SMP
nodes, have communication rounds in which more than one MPI process per SMP
node communicates with processes on other nodes. The effect of the resulting
serialization of communication is shown in Figure 2.

It seems reasonable to require communicator independence for all symmet-
ric (non-rooted communication) collectives, that is, requirement (20) for A ∈
{Allgather, Alltoall, Barrier}.

MPI contains routines for defining process topologies, and these should not
decrease performance for their preferred communication patterns. As an example
of Rule 5, using a Cartesian communicator c and then communicating to the
Cartesian neighbors should be no slower than using an arbitrary communicator
c′.

MPI Send{c} � MPI Send{c′} (22)

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06

T
im

e
 (

m
ic

ro
 s

e
c
o
n
d
s
)

Size (Bytes/proc)

MPI_Allgather, 36 nodes, Linear algorithm, MPI_COMM_WORLD versus random

Linear, 8 proc/node (MPI_COMM_WORLD)
Linear, 8 proc/node (random communicator)

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06

T
im

e
 (

m
ic

ro
 s

e
c
o
n
d
s
)

Size (Bytes/proc)

MPI_Allgather, 36 nodes, New algorithm, MPI_COMM_WORLD versus random

New 8, proc/node (MPI_COMM_WORLD)
New 8, proc/node (random communicator)

Fig. 2. Left: performance of a simple, non-SMP-aware linear ring algorithm for
MPI Allgather when executed on the ordered MPI COMM WORLD communicator and on a
communicator where the processes have been randomly permuted. Right: performance
of an SMP-aware algorithm for MPI Allgather on ordered and random communicator.
The degradation for small data for the random communicator is due to specifics of the
target (vector) system; see [12].

6 One-Sided Communication

The one-sided communication model of MPI-2 is interrelated to both point-to-
point and collective communication, and a number of performance requirements
can be formulated. We give a single example. For the fence synchronization
method, the performance of a fence-put-fence should be no worse than a barrier
on the same communicator, followed by an MPI Send of the datatype and address
information, followed by another barrier:

MPI Win fence+ MPI Put(n) + MPI Win fence � (23)

MPI Barrier+ MPI Send(d) + MPI Send(n) + MPI Barrier

where d represents information about the address and datatype on the target.
Figure 3 shows an example where this requirement is violated. On an IBM

SMP system with IBM’s MPI, the performance of a simple nearest-neighbor halo
exchange is about three times worse with one-sided communication and fence
synchronization compared with regular point-to-point communication, even when
two processors are available for each MPI process.

7 Automating the Checks

With a precise definition of the � and ≈ relations, it would in principle be
possible to automate the checking that a given MPI implementation (on a given

Fig. 3. Performance of MPI Put with fence synchronization versus point-to-point com-
munication on an IBM SMP with IBM’s MPI for a simple nearest-neighbor halo ex-
change. The middle line shows the performance bound based on using barrier and
send.

system) fulfills a set of self-consistent performance requirements. A customizable
benchmark such as SKaMPI [1, 7, 8] already has some patterns that allow the
comparison of alternative implementations of the same MPI functionality, similar
to many of the rules formulated above. It would be easy to incorporate a wider
set of rules into SKaMPI. By combining this with an experiments-management
system such as Perfbase [14, 15], one could create a tool that automatically
validates an MPI implementation as to its intrinsic performance. (We have not
done so yet.)

8 Concluding Remarks

Users often complain about the poor performance of some of the MPI functions
in MPI implementations and of the difficulty of writing code whose performance
is portable. Solving this problem requires defining performance standards that
MPI implementations are encouraged to follow. We have defined some basic,
intrinsic performance rules for MPI implementations and provided examples
where some of these rules are being violated. Further experiments might reveal
more such violations. We note that just satisfying these rules does not mean that
an implementation is good, because even a poor, low-quality implementation
can trivially do so. They must be used in conjunction with other benchmarks
and performance metrics for a comprehensive performance evaluation of MPI
implementations.

References

1. W. Augustin and T. Worsch. Usefulness and usage of SKaMPI-bench. In Recent
Advances in Parallel Virtual Machine and Message Passing Interface. 10th Euro-

pean PVM/MPI Users’ Group Meeting, volume 2840 of Lecture Notes in Computer
Science, pages 63–70, 2003.

2. M. Barnett, S. Gupta, D. G. Payne, L. Schuler, R. van de Geijn, and J. Watts.
Building a high-performance collective communication library. In Supercomput-
ing’94, pages 107–116, 1994.

3. D. E. Culler, R. M. Karp, D. Patterson, A. Sahay, E. E. Santos, K. E. Schauser,
R. Subramonian, and T. von Eicken. LogP: A practical model of parallel compu-
tation. Communications of the ACM, 39(11):78–85, 1996.

4. W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg, W. Saphir,
and M. Snir. MPI – The Complete Reference, volume 2, The MPI Extensions.
MIT Press, 1998.

5. L. C. McInnes, J. Ray, R. Armstrong, T. L. Dahlgren, A. Malony, B. Norris,
S. Shende, J. P. Kenny, and J. Steensland. Computational quality of service for
scientific CCA applications: Composition, substitution, and reconfiguration. Tech-
nical Report ANL/MCS-P1326-0206, Argonne National Laboratory, Feb. 2006.

6. B. Norris, L. McInnes, and I. Veljkovic. Computational quality of service in parallel
CFD. In Proceedings of the 17th International Conference on Parallel Computa-
tional Fluid Dynamics, University of Maryland, College Park, MD, May 24–27,
2006. To appear.

7. R. Reussner, P. Sanders, L. Prechelt, and M. Müller. SKaMPI: A detailed, accurate
MPI benchmark. In Recent Advances in Parallel Virtual Machine and Message
Passing Interface. 5th European PVM/MPI Users’ Group Meeting, volume 1497
of Lecture Notes in Computer Science, pages 52–59, 1998.

8. R. Reussner, P. Sanders, and J. L. Träff. SKaMPI: A comprehensive benchmark
for public benchmarking of MPI. Scientific Programming, 10(1):55–65, 2002.

9. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI – The
Complete Reference, volume 1, The MPI Core. MIT Press, second edition, 1998.

10. R. Thakur, W. D. Gropp, and R. Rabenseifner. Improving the performance of
collective operations in MPICH. International Journal on High Performance Com-
puting Applications, 19:49–66, 2004.

11. J. L. Träff. Hierarchical gather/scatter algorithms with graceful degradation. In In-
ternational Parallel and Distributed Processing Symposium (IPDPS 2004), page 80,
2004.

12. J. L. Träff. Efficient allgather for regular SMP-clusters. In Recent Advances in Par-
allel Virtual Machine and Message Passing Interface. 13th European PVM/MPI
Users’ Group Meeting, volume 4192 of Lecture Notes in Computer Science, pages
58–65. Springer, 2006.

13. L. G. Valiant. A bridging model for parallel computation. Communications of the
ACM, 33(8):103–111, 1990.

14. J. Worringen. Experiment management and analysis with perfbase. In IEEE
International Conference on Cluster Computing, 2005.

15. J. Worringen. Automated performance comparison. In Recent Advances in Parallel
Virtual Machine and Message Passing Interface. 13th European PVM/MPI Users’
Group Meeting, volume 4192 of Lecture Notes in Computer Science, pages 402–403.
Springer, 2006.

