
Issues in Developing a Thread-Safe
MPI Implementation

William Gropp and Rajeev Thakur

Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, IL 60439, USA
{gropp, thakur}@mcs.anl.gov

Abstract. The MPI-2 Standard has carefully specified the interaction
between MPI and user-created threads, with the goal of enabling users to
write multithreaded programs while also enabling MPI implementations
to deliver high performance. In this paper, we describe and analyze what
the MPI Standard says about thread safety and what it implies for an im-
plementation. We classify the MPI functions based on their thread-safety
requirements and discuss several issues to consider when implementing
thread safety in MPI. We use the example of generating new context ids
(required for creating new communicators) to demonstrate how a sim-
ple solution for the single-threaded case cannot be used when there are
multiple threads and how a näıve thread-safe algorithm can be expen-
sive. We then present an algorithm for generating context ids that works
efficiently in both single-threaded and multithreaded cases.

1 Introduction

With SMP machines being commonly available and multicore chips becoming the
norm, the mixing of the message-passing programming model with multithread-
ing on a single multicore chip or SMP node is becoming increasingly important.
The MPI-2 Standard has clearly defined the interaction between MPI and user-
created threads in an MPI program [5]. This specification was written with the
goal of enabling users to write multithreaded MPI programs easily, without un-
duly burdening MPI implementations to support more than what a user might
need. Nonetheless, implementing thread safety in MPI without sacrificing too
much performance requires careful thought and analysis.

In this paper, we discuss issues involved in developing an efficient thread-safe
MPI implementation. We had to deal with many of these issues when designing
and implementing thread safety in MPICH2 [6]. We first describe in brief the
thread-safety specification in MPI. We then classify the MPI functions based on
their thread-safety requirements. We discuss issues to consider when implement-
ing thread safety in MPI. In addition, we discuss the example of generating con-
text ids and present an efficient, thread-safe algorithm for both single-threaded
and multithreaded cases.

Thread safety in MPI has been studied by a few researchers, but none of
them have covered the topics discussed in this paper. Protopopov et al. discuss a
number of issues related to threads and MPI, including a design for a thread-safe
version of MPICH-1 [8, 9]. Plachetka describes a mechanism for making a thread-
unsafe PVM or MPI implementation quasi-thread-safe by adding an interrupt
mechanism and two functions to the implementation [7]. Garćıa et al. present
MiMPI, a thread-safe implementation of MPI [3]. TOMPI [2] and TMPI [10] are
thread-based MPI implementations, where each MPI process is actually a thread.
A good discussion of the difficulty of programming with threads in general is
given in [4].

2 What MPI Says about Thread Safety

MPI defines four “levels” of thread safety: MPI THREAD SINGLE, where only one
thread of execution exists; MPI THREAD FUNNELED, where a process may be multi-
threaded but only the thread that initialized MPI makes MPI calls;
MPI THREAD SERIALIZED, where multiple threads may make MPI calls but not si-
multaneously; and MPI THREAD MULTIPLE, where multiple threads may call MPI
at any time. An implementation is not required to support levels higher than
MPI THREAD SINGLE; that is, an implementation is not required to be thread safe.
A fully thread-compliant implementation, however, will support
MPI THREAD MULTIPLE. MPI provides a function, MPI Init thread, by which
the user can indicate the desired level of thread support, and the implemen-
tation can return the level supported. A portable program that does not call
MPI Init thread should assume that only MPI THREAD SINGLE is supported. In
this paper, we focus on the MPI THREAD MULTIPLE (fully multithreaded) case.

For MPI THREAD MULTIPLE, the MPI Standard specifies that when multiple
threads make MPI calls concurrently, the outcome will be as if the calls exe-
cuted sequentially in some (any) order. Also, blocking MPI calls will block only
the calling thread and will not prevent other threads from running or executing
MPI functions. MPI also says that it is the user’s responsibility to prevent races
when threads in the same application post conflicting MPI calls. For example,
the user cannot call MPI Info set and MPI Info free on the same info ob-
ject concurrently from two threads of the same process; the user must ensure
that the MPI Info free is called only after MPI Info set returns on the other
thread. Similarly, the user must ensure that collective operations on the same
communicator, window, or file handle are correctly ordered among threads.

3 Thread-Safety Classification of MPI Functions

We analyzed each MPI function (about 305 functions in all) to determine its
thread-safety requirements. We then classified each function into one of several
categories based on its primary requirement. The categories and examples of
functions in those categories are described below; the complete classification can
be found in [1].

None Either the function has no thread-safety issues, or the function has no
thread-safety issues in correct programs and the function must have low over-
head, so an optimized (nondebug) version need not check for race conditions.
Examples: MPI Address, MPI Wtick.

Access Only The function accesses fixed data for an MPI object, such as the
size of a communicator. This case differs from the “None” case because an
erroneous MPI program could free the object in a race with a function that
accesses the read-only data. A production MPI implementation need not
guard this function against changes in another thread. This category may
also include replacing a value in an object, such as setting the name of a
communicator. Examples: MPI Comm rank, MPI Get count.

Update Ref The function updates the reference count of an MPI object. Such a
function is typically used to return a reference to an existing object, such as a
datatype or error handler. Examples: MPI Comm group, MPI File get view.

Comm/IO The function needs to access the communication or I/O system in
a thread-safe way. This is a very coarse-grained category but is sufficient to
provide thread safety. In other words, an implementation may (and probably
should) use finer-grained controls within this category. Examples: MPI Send,
MPI File read.

Collective The function is collective. MPI requires that the user not call collec-
tive functions on the same communicator in different threads in a way that
may make the order of invocation depend on thread timing (race). There-
fore, a production MPI implementation need not separately lock around the
collective functions, but a debug version may want to detect races. The
communication part of the collective function is assumed to be handled
separately through the communication thread locks. Examples: MPI Bcast,
MPI Comm spawn.

Read List The function returns an element from a list of items, such as an
attribute or info value. A correct MPI program will not contain any race that
might update or delete the entry that is being read. This guarantee enables
an implementation to use a lock-free, thread-safe set of list update and access
operations in the production version; a debug version can attempt to detect
improper race conditions. Examples: MPI Info get, MPI Comm get attr.

Update List The function updates a list of items that may also be read. Mul-
tiple threads are allowed to simultaneously update the list, so the update im-
plementation must be thread safe. Examples: MPI Info set,
MPI Type delete attr.

Allocate The function allocates an MPI object (may also need memory alloca-
tion such as with malloc). Examples: MPI Send init, MPI Keyval create.

Own The function has its own thread-safety management. Examples are “global”
state such as buffers for MPI Bsend. Examples: MPI Buffer attach,
MPI Cart create.

Other Special cases. Examples: MPI Abort and MPI Finalize.

This classification helps an implementation determine the scope of the thread-
safety requirements of various MPI functions and accordingly decide how to

Thread 0 Thread 1

MPI_Recv(src=0) MPI_Send(dest=0)MPI_Recv(src=1) MPI_Send(dest=1)

Thread 0 Thread 1

Process 0 Process 1

Fig. 1. An implementation must ensure that this example never deadlocks for any
ordering of thread execution.

implement them. For example, functions that fall under the “None” or “Access
Only” category need not have any thread lock in them. Appropriate thread locks
can be added to other functions.

4 Issues in Implementing Thread Safety

A straightforward implication of the MPI thread-safety specification is that an
implementation cannot implement thread safety by simply acquiring a lock at
the beginning of each MPI function and releasing it at the end of the function: A
blocked function that holds a lock may prevent MPI functions on other threads
from executing, which in turn might prevent the occurrence of the event that is
needed for the blocked function to return. An example is shown in Figure 1. If
thread 0 happened to get scheduled first on both processes, and MPI Recv simply
acquired a lock and waited for the data to arrive, the MPI Send on thread 1 would
not be able to acquire its lock and send its data, which in turn would cause the
MPI Recv to block forever.

In addition to using a more detailed strategy than simply locking around
every function, an implementation must consider other issues that are described
below. In particular, it is not enough to just lock around nonblocking communi-
cation calls and release the locks before calling a blocking communication call.

4.1 Updates of MPI Objects

A number of MPI objects, such as datatypes and communicators, have reference-
count semantics. That is, the user can free a datatype after it has been used in
a nonblocking communication operation even before that communication com-
pletes. MPI guarantees that the object will not be deleted until all uses have
completed. A common way to implement this semantic is to maintain with each
object a reference count that is incremented each time the object is used and
decremented when the use is complete. In the multithreaded case, the reference
count must be changed atomically because multiple threads could attempt to
modify it simultaneously.

4.2 Thread-Private Memory

In the multithreaded case, an MPI implementation may sometimes need to use
global or static variables that have different values on different threads. This

cannot be achieved with regular variables because the threads of a process
share a single memory space. Instead, one has to use special functions pro-
vided by the threads package for accessing thread-private memory (for example,
pthread getspecific).

For example, thread-private memory is needed for keeping track of the “nest-
ing level” of MPI functions. MPI functions may be nested because the imple-
mentation of an MPI function may call another MPI function. For example, the
collective I/O functions may internally call MPI communication functions. If an
error occurs in the nested MPI function, the implementation must not invoke
the error handler. Instead, the error must be propagated back up to the top-
level MPI function, and the error handler for that function must be invoked.
This process requires keeping track of the nesting level of MPI functions and not
invoking the error handler if the nesting level is more than one. (The implemen-
tation cannot simply reset the error handler before calling the nested function
because the application may call the same function from another thread and
expect the error handler to be invoked.) In the single-threaded case, an imple-
mentation could simply use a global variable to keep track of the nesting level,
but in the multithreaded case, thread-private memory must be used.

Since accessing thread-private data requires a function call, implementations
must ensure that such access is minimized in order to maintain good efficiency.

4.3 Memory Consistency

Updates to memory in one thread may not be seen in the same order by an-
other thread. For example, some processors require an explicit write barrier to
ensure that all memory-store operations have completed in memory. The lock
and unlock operations for thread mutexes typically also perform the necessary
synchronization operations needed for memory consistency. If an implementa-
tion avoids using mutex locks for higher performance, however, and instead uses
other mechanisms such as lock-free atomic updates, it must be careful to ensure
that the memory updates happen as desired. This is a deep issue, a full discus-
sion of which must include concepts such as sequential consistency and release
consistency and is beyond the scope of this paper. Nonetheless, it suffices to say
that an implementation must ensure that, for any object that multiple threads
may access, the updates are consistent across all threads, not just the thread
performing the updates.

4.4 Thread Failure

A major problem with any lock-based thread-safety model is what happens when
a thread that holds a lock fails or is deliberately canceled (for example, with
pthread cancel). In that case, no other thread can acquire the lock, and the ap-
plication may hang. One solution is to avoid using locks and instead use lock-free
algorithms wherever possible (such as for the Update List category of functions
described in Section 3).

4.5 Performance and Code Complexity

A tradeoff in performance and code complexity exists between using a single,
coarse-grained lock and multiple, finer-grained locks. The single lock is relatively
easy to implement but effectively serializes the MPI functions among threads. A
finer-grained approach, using either multiple locks or a combination of locks and
lock-free methods, risks the occurrence of deadly embrace (when two threads
each hold one of the two locks that the other thread needs) as well as consider-
able code complexity. In addition, if the finer-grained approach requires multiple
locks, each operation may be more expensive than if a single lock is used. MPI
functions that can avoid using locks altogether by using lock-free methods, such
as the functions in the Update List or Allocate categories, can provide a mid-
dle ground, trading a small amount of code complexity for more concurrency in
execution.

4.6 Thread Scheduling

Another issue is avoiding “busy waiting” or “spin locks.” In multithreaded code,
it is common practice to have a thread that is waiting for an event (such as
an incoming message for a blocking MPI Recv) to yield to other threads, so
that those threads can perform useful work. Thread systems provide various
mechanisms for implementing this, such as condition variables. One difficulty
is that not all events have the ability to wake up a thread; for example, if a
low-latency method is being used to communicate between different processes in
the same shared-memory node, there may be no easy way to signal the target
process or thread. This situation often leads to a tradeoff between latency and
effective scheduling.

5 An Algorithm for Generating Context Ids

In this section, we use the example of generating context ids to show how a simple
solution for the single-threaded case cannot be used when there are multiple
threads. We then present an efficient algorithm for generating context ids in the
multithreaded case.

5.1 Basic Concept and Single-Threaded Solution

A communicator in MPI has a notion of a “context” associated with it, which is
invisible to the user. This notion is implicit in a communicator and provides a
safe communication space so that a message sent on a communicator is matched
only by a receive posted on the same communicator (and not any other commu-
nicator).

Typically, the context is implemented as an integer that has the same value
on all processes that are part of the communicator and is unique among all com-
municators on a given process. For example, if the context id of a communicator

‘X’ on a process is 42, all other processes that are part of X must use 42 as the
context id for X, and no other communicator on any of these processes may use
42 as its context id. Processes that are not part of X, however, may use 42 as
the context id for some other communicator.

Whenever a new communicator is created (for example, with MPI Comm create
or MPI Comm dup), the processes in that communicator must agree on a context
id for the new communicator, following the constraints given above. In the single-
threaded case, generating a new context id is easy. One approach could be for
each process to maintain a global data structure containing the list of available
context ids on that process. In order to save memory space, the list can be
maintained as a bit vector, with the bits indicating whether the corresponding
context ids are available. A new context id can be generated by performing an
MPI Allreduce with the appropriate bit operator (MPI BAND). The position of
the lowest set bit can be used as the new context id.

5.2 Näıve Multithreaded Algorithm

The multithreaded case is more difficult. A process cannot simply acquire a
thread lock, call MPI Allreduce, and release the lock, because the threads on
various processes may acquire locks in different order, causing the allreduce
operation to hang because of a deadly embrace.

One possible solution is to acquire a thread lock, read the bit vector, release
the lock, then do the MPI Allreduce, followed by another MPI Allreduce to
determine whether the bit vector has been changed by another thread between
the lock release and the first allreduce. If not, then the value for the context
id can be accepted; otherwise, the algorithm must be repeated. This method is
expensive, however, as it requires multiple MPI Allreduce calls. In addition, two
competing threads could loop forever, with each thread invalidating the other’s
choice of context value.

5.3 Efficient Algorithm for the Multithreaded Case

We instead present a new algorithm that works efficiently in both single-threaded
and multithreaded cases. We have implemented this algorithm in MPICH2 [6].
For simplicity, we present the algorithm only for the case of intracommunicators.
The pseudocode is given in Figure 2.

The algorithm uses a bit mask of context ids; each bit set indicates a context
id available. For example, 32 32-bit integers will cover 1024 context ids. This
mask and two other variables, lowestContextId and mask in use, are stored
in global memory (shared among the threads of a process). lowestContextId
is used to store the smallest context id among the input communicators of the
various threads on a process that need to find a new context id. mask in use
indicates whether some thread has acquired the rights to the mask.

The algorithm works as follows. A thread wishing to get a new context id
first acquires a thread lock. If mask in use is set or the context id of the thread’s
input communicator is greater than lowestContextId, the thread uses 0 as the

/* global variables (shared among threads of a process) */

mask /* bit mask of context ids in use by a process */

mask_in_use /* flag; initialized to 0 */

lowestContextId /* initialized to MAXINT */

/* local variables (not shared among threads) */

local_mask /* local copy of mask */

i_own_the_mask /* flag */

context_id /* new context id; initialized to 0 */

while (context_id == 0) {

Mutex_lock ()

if (mask_in_use || MyComm ->contextid > lowestContextId) {

local_mask = 0

i_own_the_mask = 0

if (MyComm ->contextid < lowestContextId) {

lowestContextId = MyComm ->contextid

}

}

else {

local_mask = mask

mask_in_use = 1

i_own_the_mask = 1

lowestContextId = MyComm ->contextid

}

Mutex_unlock ()

MPI_Allreduce(local_mask , MPI_BAND)

if (i_own_the_mask) {

Mutex_lock ()

if (local_mask != 0) {

context_id =

location of first set bit in local_mask

update mask

if (lowestContextId == MyComm ->contextid) {

lowestContextId = MAXINT;

}

}

mask_in_use = 0

Mutex_unlock ()

}

}

return context_id

Fig. 2. Pseudocode for generating a new context id in the multithreaded case (for
intracommunicators).

local mask (for allreduce) and sets the flag i own the mask to 0. Otherwise, it
uses the current context-id mask as the local mask (for allreduce) and sets the
flags mask in use and i own the mask to 1. Then it releases the lock and calls
MPI Allreduce.

After MPI Allreduce returns, if i own the mask is 1, the thread acquires
the lock again. If the result of the allreduce (local mask) is not 0, it means all
threads that participated in the allreduce owned the mask on their processes
and therefore the location of the first set bit in local mask can be used as the
new context id. If the result of the allreduce is 0, it means that some thread did
not own the mask on its process and therefore the algorithm must be retried.
mask in use is reset to 0 before releasing the lock.

The logic for lowestContextId exists to prevent a livelock situation where
the allreduce operation always contains some threads that do not own the mask,
resulting in a 0 output. Since threads in our algorithm yield ownership of the
mask to the thread with the lowest context id, there will be a time when all the
threads of the communicator with the lowest context id will own the mask on
their respective processes, causing the allreduce to return a nonzero result, and
a new context id to be found. Those threads will disappear from the contention,
and the same algorithm will enable other threads to complete their operation.

In this algorithm, the case where different threads of a process may have the
same input context id does not arise because it is not legal for multiple threads
of a process to call collective functions with the same communicator at the same
time, and all the MPI functions that need to create new context ids (namely,
the functions that return new communicators) are collective functions.

We note that, in the single-threaded case, this algorithm is as efficient as
the basic algorithm described in Section 5.1, because the mutex locks can be
commented out and no extra communication is needed as the first allreduce itself
will succeed. Even in the multithreaded case, in most common circumstances,
the first allreduce will succeed, and no extra communication will be needed.

Further Improvements A refinement to this algorithm could be to allow
multiple threads to have disjoint masks; if the masks are cleverly picked, most
threads would find an acceptable value even if multiple threads were concurrently
executing the algorithm. Another refinement could be to use a queue of pending
threads ordered by increasing context id of the input communicator. Threads
that are high in this queue could wait on a condition variable or other thread-
synchronization mechanism that is activated whenever there is a change in the
thread with the lowest context id, either because a thread has found a new
context id and is removed from the queue or because a new thread with a lower
context id enters the function.

6 Conclusions and Future Work

Implementing thread safety in MPI is not simple or straightforward. Careful
thought and analysis are required in order to implement thread safety correctly

and without sacrificing too much performance. In this paper, we have discussed
several issues that an implementation must consider when implementing thread
safety in MPI. Some of the issues are subtle, but nonetheless important.

The default ch3:sock channel (TCP) in the current version of MPICH2 (1.0.3)
is thread safe. It, however, needs to be configured and built separately for
thread safety, with the configure option --enable-threads. In the next re-
lease, 1.0.4, the default build of the ch3:sock channel will support thread safety,
but thread safety will be enabled only if the user calls MPI Init thread with
MPI THREAD MULTIPLE. If not, no thread locks will be called, so there is no
penalty. We are also working on performance improvements to the thread sup-
port in MPICH2 and extending thread safety to all the communication channels.

Although many MPI implementations claim to be thread safe, no compre-
hensive test suite exists to validate the claim. We plan to develop a test suite
that can be used to verify the thread safety of MPI implementations.

Acknowledgments

This work was supported by the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Department of Energy, under Contract W-31-
109-ENG-38.

References

1. Analysis of thread safety needs of MPI routines.
http://www.mcs.anl.gov/mpi/mpich2/developer/design/threadlist.htm.

2. Erik D. Demaine. A threads-only MPI implementation for the development of par-
allel programs. In Proc. of the 11th International Symposium on High Performance
Computing Systems, pages 153–163, July 1997.

3. Francisco Garćıa, Alejandro Calderón, and Jesús Carretero. MiMPI: A
multithread-safe implementation of MPI. In Proc. of 6th European PVM/MPI
Users’ Group Meeting, pages 207–214, September 1999.

4. Edward A. Lee. The problem with threads. Computer, 39(5):33–42, May 2006.
5. Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing In-

terface, July 1997. http://www.mpi-forum.org/docs/docs.html.
6. MPICH2. http://www.mcs.anl.gov/mpi/mpich2.
7. Tomas Plachetka. (Quasi-) thread-safe PVM and (quasi-) thread-safe MPI without

active polling. In Proc. of 9th European PVM/MPI Users’ Group Meeting, pages
296–305, September 2002.

8. Boris V. Protopopov and Anthony Skjellum. A multithreaded message passing
interface (MPI) architecture: Performance and program issues. Journal of Parallel
and Distributed Computing, 61(4):449–466, April 2001.

9. Anthony Skjellum, Boris Protopopov, and Shane Hebert. A thread taxonomy for
MPI. In Proc. of the 2nd MPI Developers Conference, pages 50–57, June 1996.

10. Hong Tang and Tao Yang. Optimizing threaded MPI execution on SMP clusters.
In Proc. of the 15th ACM International Conference on Supercomputing, pages 381–
392, June 2001.

