
Boosting Application-specific Parallel I/O Optimization using IOSIG

Yanlong Yin
1

yyin2@iit.edu

Surendra Byna
2

sbyna@lbl.gov

Huaiming Song
1

hsong20@iit.edu

Xian-He Sun
1

sun@iit.edu

Rajeev Thakur
3

thakur@mcs.anl.gov

1Department of Computer Science, Illinois Institute of Technology, Chicago, Illinois
2Computational Research Division, Lawrence Berkeley National Lab, Berkeley, California

3Mathematics and Computer Science Division, Argonne National Lab, Argonne, Illinois

Abstract—Many scientific applications spend a significant

portion of their execution time in accessing data from files.

Various optimization techniques exist to improve data access

performance, such as data prefetching and data layout

optimization. However, optimization process is usually a

difficult task due to the complexity involved in understanding

I/O behavior. Tools that can help simplify the optimization

process have a significant importance. In this paper, we

introduce a tool, called IOSIG, for providing a better

understanding of parallel I/O accesses and information to be

used for optimization techniques. The tool enables tracing

parallel I/O calls of an application and analyzing the collected

information to provide a clear understanding of I/O behavior

of the application. We show that performance overheads of the

tool in trace collection and analysis are negligible. The analysis

step creates I/O signatures that various optimizations can use

for improving I/O performance. I/O signatures are compact,

easy-to-understand, and parameterized representations

containing data access pattern information such as size, strides

between consecutive accesses, repetition, timing, etc. The

signatures include local I/O behavior for each process and

global behavior for an overall application. We illustrate the

usage of the IOSIG tool in data prefetching and data layout
optimizations.

Keywords-Parallel I/O, I/O characterization, data access

pattern, I/O optimization

I. INTRODUCTION

As high performance computing (HPC) is moving
towards exa-scale, efficient usage of resources in the large-
scale machines is a critical requirement. Efficient usage
typically translates to faster scientific discovery and to lower
energy consumption. Improving data access performance
plays a significant role in making parallel computers
efficient. Since many scientific applications deal with large
amounts of data, making parallel file I/O efficient has an
enormous impact on making parallel applications execute
faster. Typically, execution time of a parallel program
includes the time spent on computation, communication
among processes, and data I/O. In many data intensive
applications, I/O performance is usually a significant
bottleneck leading to wastage of CPU cycles and the
corresponding wasted energy consumption. In HPC systems,
the gap between computing capacity and I/O performance
keeps increasing because of highly diverse growth rates of
storage devices and processors. As the number of processing
cores in large-scale clusters increase, the insatiable desire for
accessing more data continues to grow. Hence, improving
data access performance is the key for improving efficiency
of HPC applications at exa-scale.

The first step towards efficient data accesses is to
understand their behavior. A few tools exist for profiling
communication and computation overheads in parallel
applications [1] [2] [3] [4]. However, there is a serious lack
of tools for analyzing parallel I/O performance in a
comprehensive manner and for converting the analyzed data
into information that optimization techniques can use. The
existing I/O analysis tools [5] [6] [7] [8] [9] have limited
scope of I/O characterization. Few of these tools [5] [8]
collect a lot of trace information about I/O calls and leave it
for programmers to understand. These tools do not provide
the much needed analysis step to gain a clear insight into I/O
characteristics. Without the analysis step, although some I/O
traces are available, they just sit idle in some server and are
not useful for improving the efficiency. A few other tools [6]
[7][9] provide partial understanding of I/O behavior but also
require programmer involvement in performing
optimizations. The latter category of tools aims towards
reducing overhead and resource requirement in collecting
information about I/O calls by retrieving few details and
infrequently. While they achieve the low resource usage
goal, they can only provide little insight into I/O behavior.

We aim to develop an I/O characterization tool, which
gives comprehensive understanding of the I/O behavior of
parallel applications and paves a path towards automatic
optimization of data access. MPI-IO and parallel file systems
are widely adopted in HPC systems to reduce the negative
impact of the I/O gap as well as for ease of use. While MPI-
IO and file systems bring I/O performance to an acceptable
level, there is a significant scope for optimizing overall
performance of parallel I/O. Many optimization strategies
have been proposed for data read, such as data prefetching,
two-phase collective I/O, data sieving and data requests
scheduling and for data placement and organization, data
replication, and data distribution.

Most existing I/O optimizations can benefit from
knowing I/O behavior of an application. In many occasions,
making the optimal design of performance improvements or
choosing optimal system configuration for performance
tuning requires application-specific information. For
example, in a data prefetching enabled system, untimely or
useless prefetching happens from time to time, which harms
I/O performance. Knowing the application’s data access
pattern, the prefetcher can avoid untimely and useless
prefetching. Section II describes more details on this
example.

Noticing the widespread demand for retrieving parallel
I/O access patterns of applications, we developed IOSIG tool
that helps users to understand the I/O characteristics of their

applications precisely. We motivate the use of I/O patterns
for various optimizations and then describe the design and
development of the IOSIG tool. The rest of this paper is
organized as follows. We discuss the motivation for using
I/O access pattern information in I/O read and write
optimizations in Section II. Section III describes
methodologies including classification of data access
patterns, I/O signature notation, and design and
implementation of IOSIG software. Section IV evaluates
IOSIG toolkit. Section V exhibits several optimizations
using IOSIG. We discuss related works in Section VI and
conclude the paper in Section VII.

II. MOTIVATION

This section exhibits three I/O optimization techniques to
show the usage of I/O access information and a
characterization tool that gives comprehensive understanding
of parallel program’s I/O behaviors.

A. Accurate and timely data prefetching

 Data prefetching is a proven effective way to improve
data access performance and is widely used in many layers
of computer storage system hierarchy. Typically, execution
of many scientific applications includes multiple data access
phases and computation phases. Data prefetching improves
performance by overlapping application’s data access phases
and computation phases. The prefetching thread needs to
predict what data the application will request and fetches the
data from storage devices to local buffer (or a collective
cache in parallel I/O system [10]) before the application
issuing the actual requests.

Effectiveness of prefetching is measured by its coverage
and accuracy. The coverage is the percentage of cache
misses that were avoided by enabling prefetching. Accuracy
refers to whether the prefetched data in cache is used by the
application. If prefetching loads wrong data, or loads correct
data too late, it does not mask the I/O latency but brings
more useless data into the buffer, wasting I/O bandwidth and
possibly replacing useful data in the local buffer. If
prefetching loads the data too early, the cache may be
polluted as useful data might be replaced.

Clearly, prefetching accuracy is directly affected by the
accuracy of prediction on what data to prefetch and when to
prefetch, and so is I/O performance. If a prefetching thread is
aware of I/O characteristics of an application and uses that
information effectively, application performance improves.
Since prefetching method at runtime has to be faster in
decoding future I/O accesses, I/O behavior has to be
represented in a straightforward yet comprehensive
representation. In Section III.B, we define such
representation, called I/O signatures.

B. Determining the optimal data layout

In modern parallel file systems [11], data are typically
distributed over multiple storage nodes in a round robin
fashion, to take advantage of parallel accesses. This round
robin data layout is most widely used because it can provide
acceptable I/O performance for many scenarios. In PVFS2, it
is the default data layout method namely “simple striping”.

However, in some cases, it yields poor performance because
“the number of storage nodes” is not the only parameter
affecting I/O performance. The number of processes, the
request size, offsets of requests, etc., also affect I/O latency.
Parallel file systems do provide more than one data layout
methods to advanced users for choosing optimal layout
configurations. We name three most popularly adopted data
layout methods as 1-DH, 1-DV, and 2-D data layout. As
showed in Fig. 1, 1-DH data layout is the simple striping
method and distributes data across all storage nodes. 1-DV
data layout refers to the policy that data to be accessed by
each I/O client process is stored on one storage node. 2-D
data layout refers to the policy in which data to be accessed
by each process is stored on a subset (called storage group)
of storage nodes.

However, the problem is that, choosing the best data
layout for an application is difficult or even impossible
sometimes to make layout decision without knowing an
application’s I/O characteristics. The “best” data layout
method for some application means while adopting this data
layout, the given application’s overall data access cost
(measured in time) is minimum. Different data layouts result
in different data access behaviors between clients and servers.
Different interactive behaviors result in different data access
cost measured in time.

In the previous work [12], we developed a mathematical
model to investigate the data access cost for the data requests
under different data layouts and application’s different data
access behaviors. To find an optimal data layout for some
given application with lowest data access cost, the model
analyzes the cost for each single request and calculates the
overall cost by summing all single costs up. As a result, in
this approach one part of the input to the model is data access
pattern information, which also brings the demand to the
proposed IOSIG tool.

C. Application-specific adaptive data layout

As mentioned in Section II.B, parallel file systems
typically use simple striping. In addition, the stripe size is
typically a fixed value. This may be acceptable for
applications with some fixed data access patterns, however,
cannot guarantee sustained performance improvements for
various data access patterns. Assume we have an application
with the data access pattern showed in Fig. 2, that is, the
application access the first contiguous 4MB of each
contiguous 16MB data segments in the whole file from the
beginning. Fig. 2 also shows four different parallel file

Data file used by process 0 (P0) Data file used by process 1 (P1)

Data file used by process 2 (P2) Data file used by process 3 (P3)

Storage

Node 0

Storage

Node 1

Storage

Node 2

Storage

Node 3

Storage

Node 0

Storage

Node 1

Storage

Node 2

Storage

Node 3

Storage

Node 0

Storage

Node 1

Storage

Node 2

Storage

Node 3

Client node 0

P0 P1

Client node 1

P2 P3

1-DH Data layout 1-DV Data layout 2-D Data layout

Client node 0

P0 P1

Client node 1

P2 P3

Client node 0

P0 P1

Client node 1

P2 P3

Figure 1. Different data layouts cause different interactions.

systems configured with “simple striping” but with different
stripe size: 1MB, 4MB, 8MB, and 16MB. In the 1MB case,
with each accessed 4MB data block distributed over four
storage nodes, maximum parallelism and balanced workload
are obtained, but there is too much network overhead. In the
4MB case, all the accessed data are on the first storage node
and there is no inter-node parallel access at all. In the 8MB
case, the first half of each stripe on storage node 0 and 2 will
be accessed, which creates a more reasonable arrangement
with respect to the 4MB case. While stripe size is 16MB, the
first one fourth of all stripes will be accessed, which results
in the best situation with the highest degree of parallelism
and balanced workload obtained at the same time, without
creating too much network overhead like the 1MB case.

An easily observed fact is that, for one data access
pattern, only some stripe size can ensure optimum
performance in parallel I/O systems. This observation is also
verified to be true with experimental results in [13]. More
noteworthy, in order to find this optimal stripe size, it
requires to know the application’s data access patterns. To
cover the case where one single application may have
various different data access patterns in different phases of
its execution, in the previous work [13], we have proposed
“application-specific adaptive data layout”, which also needs
the knowledge of an application’s data access patterns.

III. IOSIG TOOL DESIGN AND DEVELOPMENT

IOSIG is a toolkit designed to reveal I/O behavior of
parallel applications. We develop IOSIG with the goal of
letting optimization strategies use knowledge of I/O
characteristics at runtime with a low overhead. IOSIG
software consists of two components 1) trace collector and 2)
trace analyzer. These two independent tools also represent
the two basic steps of the approach for I/O characterization,
respectively. The first step is to trace the I/O operations of
some application during its runtime and save all the traced
operations histories into trace files. The second is to perform
offline analysis on the trace files generated in the previous
step, to produce data access pattern information. The trace
analyzer produces I/O characteristics in the form represented
in I/O signatures defined in our previous work [14]. The
produced I/O signatures are easy to be read by humans or
automatic optimization tools for capturing I/O behavior and
for improving data access performance. The rest of this
section describes the design and implementation of the trace

collector, introduces I/O signatures, and provides details of
the trace analyzer.

A. Trace collection

1) Traced file operations
The Message Passing Interface (MPI) [15] is a widely

used programming model for easy and effective
communication among processes of HPC applications. The
MPI2 standard also defines a set of routines for transferring
data to and from external storage, called MPI-IO. The MPI-
IO library is also widely used in HPC applications as the
basic file operation interface. IOSIG trace collector captures
MPI-IO calls and records their information.

For file open, close, and seek operations, the
corresponding MPI-IO routines are MPI_File_open,
MPI_File_close, and MPI_File_seek. For file read and write
operations, MPI-IO provides multiple variations of routines,
considering HPC applications’ needs, such as collective,
non-collective, blocking, and non-blocking file operations.
Table I shows all the MPI-IO read calls that IOSIG trace
collector traces, and the write calls are identical in form
using “write” to replace “read”.

The trace collector captures the described MPI-IO
routines by using the Profiling MPI interface (PMPI) to MPI.
The Profiling MPI interface reroutes MPI calls to user
defined instrumentation wrapped around the basic MPI calls.
The new functionality is available as a static library, and a
developer who wants to trace I/O behavior can link the
library to any MPI-IO based application. Other than this
simple linking step, there is no need for changing the code.
Instrumentation is performed if an application is linked with
the trace library. The instrumentation overhead is minimal
with the use of PMPI. There is zero instrumentation
overhead on the application if the library is not linked. This
flexibility allows developers to use the library while
debugging for performance and discard the linking step
during the production runs.

2) Operation-level traced information
The trace collector gathers information of the file

operations performed by each parallel process, i.e. the
collector generates one file for each process, where each file
operation trace contains the following information.

a) MPI rank and process ID of the process that performs
the operation. We record this information to
distinguish the source of the event because different
processes may have different data access behavior.

b) File ID that identifies the file that the operation
manipulates. One process may access more than one
file with different ID or it may access the same file

1 2 … 1 2 3 5 6 7 9
1

0

1

1

4MB 12MB

16MB 4 storage nodes

Stripe size: 16MBStripe size: 8MBStripe size: 4MBStripe size: 1MB

Data

Logic view

Figure 2. Only some specific stripe size can ensure optimal
performance for a given data access pattern.

TABLE I. TRACED MPIIO FILE READ OPERATIONS.

Non-collective Collective

Blocking

MPI_File_read_at,

MPI_File_read,

MPI_File_read_shared

MPI_File_read_at_all,

MPI_File_read_all,

MPI_File_read_ordered

Non-

blocking

MPI_File_iread_at,

MPI_File_iread,

MPI_File_iread_shared

MPI_File_read_at_all_begin/end,

MPI_File_read_all_begin/end,

MPI_File_read_ordered_begin/end

more than one time, recording file ID can ensure a
clear description of all the possible cases. The ID
need to be unique for different files. Simple
combination of process ID, MPI rank, file handler ID,
and the time value can generate a unique ID.

c) Absolute file offset and request size of the data access,
both in bytes. The size and the offset are the two most
critical parameters for a data access operation.

d) Name of the invoked I/O routine, such as
MPI_File_read. From a routine’s name, we can get
more information such as its style on synchronization
and collaboration and this information is useful for
the post analysis and also for pinpointing
performance bottlenecks.

e) The I/O routine’s invoking time, which is, the elapsed
time from the starting of the whole application to the
point when the routine is invoked. We gather this
information for the optimizations where time
information is necessary such as prefetching needs to
make decisions on “when to prefetch data”.

f) The I/O routine’s end time - Using this end time
together with the corresponding start time, we can
find the time spent for performing an I/O operation.
We can also calculate the percentage of the total I/O
time in the total execution time, which gives users
more hints on the level of application’s I/O intensity
and help the user to determine the application’s
performance bottlenecks.

g) Mapping between unique File IDs and file paths. This
information is useful when the analyzer needs to
pinpoint the exact file, for example, to analyze the
correlation of files and processes.

B. Trace analysis

I/O accesses in parallel computing typically follow some
patterns due to iterative computations. We classify these
patterns into local and global patterns. The local patterns
explain how each process accesses data and the global
patterns provide an overview of the I/O characteristics of an
application. We have classified local file access patterns in
[14]. In this section, we introduce local and global access
patterns and I/O signatures and describe the implementation
of the trace analyzer.

1) Data access patterns
Based on study of various parallel I/O benchmarks, we

classified I/O accesses based on various parameters,
including spatial locality, size of accesses, temporal locality,
iterative behavior, and I/O operations. Fig. 3 shows the
classification of local I/O access patterns. The spatial locality
is divided into contiguous, non-contiguous, and
combinations of contiguous and non-contiguous patterns.
The non-contiguous patterns are further divided based on
byte order distance between successive accesses. Some data
accesses may just occur once, and some other accesses may
repeat multiple times in the same pattern. The repetitive
behavior occurs often in loop codes. Request size plays a
significant role in striping factor, stripe size, and the number
of requests going to an I/O server. In our classification, we
regard data accesses as small accesses if request size is less

than a page size, medium if it is equal to the page size, and
large if it is more than the page size. Temporal behavior is
difficult to define. We classify based on intervals between
accesses, which can be fixed or random. I/O operations are
divided based on read and write.

2) Local I/O Signature
In order to be used by optimization strategies at runtime

and for easier understanding of I/O behavior, we developed
I/O signature notations, which are compact and informative.
Local I/O signatures include trace signatures and pattern
signatures. A trace signature contains the detailed
information of all I/O operations it covered. The pattern
signature provides an abstract description of the trace
signature. In form, a trace signature looks as follows.

{I/O operation, file_id, initial position, dimension,
([{offset pattern}, {request size pattern}, {pattern of number
of repetitions}, {temporal pattern}], […]), # of repetitions}

It stores information of an I/O operation, starting offset,
depth of a spatial pattern, temporal pattern, request sizes, and
repetitive behavior. In some instances, offsets, request sizes,
timing, and number of repetitions also contain a pattern.
Random temporal patterns are not captured in the trace
signature.

A pattern signature contains all the five factors of the
classification and looks as follows.

{I/O operation, <Spatial pattern, Dimension>,
<Repetitive behavior>, <Request size>, <Temporal
Intervals>}

These signatures represent compressed I/O trace files in
the presence of regular access patterns. However, when
accesses are random, signatures are of limited use. It still can
be beneficial to construct only a pattern signature for random
accesses without constructing a trace signature. Automatic
prefetching and data layout optimization methods can use
pattern signatures for deciding whether to perform
optimizations and use trace signatures for deciding the
optimization parameters.

3) Global I/O Signature
Local I/O signature represents the information of a single

process’s data access patterns. By analyzing all the local I/O
Signatures of the same application, we are able to acquire
global I/O signature that represents the data access pattern of
the whole application.

Global I/O signature is necessary because in some cases
local I/O signatures cannot provide the whole picture of
application’s data access, thus may not be able to help users

Request sizeSpatial Patterns

 Contiguous

 Non-contiguous

 Fixed strided

 2d-strided

 Negative strided

 kd-strided

 Markov

 Combination of contiguous

and non-contiguous patterns

 Fixed

 Variable

 Small

 Medium

 Large

Temporal Intervals

 Fixed

 Random

I/O Operation

 Read only

 Write only

 Read/write

Repetition

 Single occurrence

 Repeating

Figure 3. I/O access pattern classification.

to make a correct decision while optimizing I/O performance
for the whole application. For example, showed in Fig. 4,
some parallel file systems have four storage nodes and an
application has 4 processes that need to access a shared file
distributed over all storage nodes. The request size is equal
to the stripe size. The processes have the same data access
pattern, fixed strided but with different offsets. So process i
(0≤i≤3) accesses data stripe numbered 4(n-1)+i for its nth
access. In other word, process 0 accesses data stripe 0, 4,
8 …; process 1 accesses data stripe 1, 5, 9…; and so on. By
examining the data accesses of a single process, we can find
that the accessed data locate on one single storage node,
which is not a balanced workload with four storage nodes
available. Thus, it is necessary to find a better stripe size and
rearrange the data. However, by considering the data
accesses of all four processes, the whole application’s
workload achieves balance and the data accesses become
contiguous spatially. Hence, global I/O signature that
includes the data access information for the whole
application can help choosing the best data layout. A global
I/O signature includes the following information.

a) The total number of processes.
b) Each global data access pattern along with the

corresponding processes IDs and the starting and end
time information. A global data access pattern may be
different from those process-level patterns it covers.
As shown in Fig. 4, the global data access pattern is
of contiguous type. The time information is necessary
because there might be multiple “global data access
patterns” in the same execution phase.

c) File sharing information: Summary of the Process ID
information in local patterns provides what processes
share files. This information helps users to identify
the data used by multiple processes and to apply I/O
optimization such as creating multiple replications of
the data for reading it fast and in parallel.

4) Implementation of the trace analyzer
We develop the trace analyzer in Python to perform

offline trace analysis. The trace analyzer utilizes a basic
“template matching” approach to recognize data access
patterns from trace files. Each trace file can be regarded as a
sequence or a list of file operation records. The analyzer uses
a cursor to mark its progress during the analysis. It starts
from the first record and move forward to examine all
records until reaching the end of the list. During scanning,

the analyzer picks a predefined access pattern as the template,
to check whether the pattern matches the records around the
cursor. If the pattern matches, the cursor moves forward
along with the same pattern and continues in the trace until
the match does not hold. If there is no match for the first
template, the analyzer switches to other templates and scans
again. If the analyzer fails to find a match for all templates, it
skips the current record, moves the cursor forward, and starts
over the matching at the new position.

Besides local and global I/O signatures, the analyzer also
generates several other outputs. 1) A figure showing the
offset patterns. 2) A figure showing the request size patterns.
3) A histogram figure of data reads and writes on time axis,
where for each file operation, the x-axis represents time
spent on a file operation and the y-axis represents the actual
bandwidth. 4) A “protobuf” [16] based output file containing
the identified I/O Signatures. While I/O signature form
explained above is human readable, we write the signatures
using protocol buffers format for automatic optimization
systems. The protocol buffers format developed by Google
[16] encodes structured data in an efficient and extensible
way.

Both the trace collector and the trace analyzer work at
application level and require no complex installation, which
is a significant advantage for users without the super user
permissions in large-scale machines.

IV. SOFTWARE EVALUATION

We evaluate the IOSIG toolkit on a 65-node SUN Fire
Linux-based cluster, in which there are 64 computing nodes
and one head node. All the nodes are equipped with HDDs,
and are connected with Gigabit Ethernet and InfiniBand
interconnections. The evaluations include the overhead and
resource consumption by the IOSIG software. We analyzed
performance of parallel I/O benchmarks, such as MPI-TILE-
IO, IOR benchmark, and PIO-BENCH.

A. Runtime overhead

The trace collection library needs to be linked with an
application in order to take effect. The tracing library linked
application generates the trace files during its execution. The
goal of this evaluation is to show that the overhead of IOSIG
tool is negligible. To measure the overhead of the trace
collector, we find the difference of execution times of the
application with and without linking the tracing library. Fig.
5 and Fig. 6 show the trace collection overhead in running
IOR and MPI-TILE-IO benchmarks, respectively. In the
figures, we can observe that the trace collection overhead is
very low. The bars in the graph compare the execution times
of the original application and the application linked with
IOSIG trace collection utility. We run the benchmarks with
varying number of processes on 8 client nodes, accessing
data from 16 storage nodes configured as one parallel file
system with PVFS2. For IOR benchmark, the overhead is
1%, and for MPI-TILE-IO benchmark it is around 2% in
most cases and below 6% overall. These results show that
the overhead introduced by the trace collector is remarkably
low and acceptable.

Node

3

3

7

Node

2

2

6

Node

1

1

5

Node

0

0

4

Process

0

Process

1

Process

2

Process

3 Process

0

Read

Block 0

Read

Block 4

Process

1

Read

Block 1

Read

Block 5

Process

2

Read

Block 2

Read

Block 6

Process

3

Read

Block 3

Read

Block 7

Figure 4. An example that shows that global I/O signature is necessary

to find optimal data layout.

B. Scalability

The experimental results in Fig. 5 and Fig. 6 also show
the scalability of IOSIG tracing library. As the number of
processes increases, the trace collection overhead remains
low. We tested both IOR and MPI-TILE-IO benchmarks
while increasing the number of processes (1 to 128). We
observe that the percentage of overhead remains negligible.
This is because that the library adopts a totally distributed
approach, where each MPI process only generates its own
trace file, and there is no communication or synchronization
among processes.

C. Trace file size

The size of each I/O event record is around 100 bytes.
The size of each trace file is proportional to the number of
I/O events it includes. For a test using PIO-BENCH with 4
processes accessing an 8GB file, the generated trace files
contains 5296 file operation records and their combined sizes
are 514490 bytes, thus 102 bytes per record.

D. Analysis performance

Execution time of the offline trace analysis is also
proportional to the number of traced records. In other words,
the time complexity is O(n). During our tests, the analyzer
takes less than 2 seconds to finish analyzing the mentioned
trace file with 5296 records on a single core of the client
nodes of our system. When necessary, this process can be
parallelized, such as, using shell scripts to start multiple trace
analyzers working on multiple trace files simultaneously.

E. Memory footprint

The trace collector writes one record for each I/O routine
to the trace files during the routine’s execution. Nowadays,
local file systems usually adopt buffering mechanism that

saves the written data in a buffer and flush the data back to
the trace file occasionally in order to avoid too many small
writes to storage devices. The underlying local file system
client manages the writing buffer. Hence the trace collector
itself does not consume much memory.

The trace analyzer maintains a size-limited queue to store
the I/O events that are under analysis. As mentioned in
Section III.B, the analyzer uses “template matching” method
to detect predefined patterns in the queue of I/O events
retrieved from trace files. To avoid the program using too
much memory, we limited the size of the queue to less than
5000 file operations. Using python environment to run the
analyzer on the trace files with 5296 records, during several
executions, we observe that the memory consumption for the
whole python environment is less than 40MB, which is
acceptable as the memory resource is not scarce for an
offline analysis.

V. OPTIMIZATIONS USING I/O SIGNATURES

This section presents two I/O optimizing techniques that
benefit from IOSIG for their optimizations, to provide a
better illustration for IOSIG’s effectiveness and practicality.

A. I/O Signature based data prefetching

We described in this subsection how knowledge of data
access patterns helps improve the performance of data
prefetching in parallel I/O system.

PIO-BENCH provides the testing ability with several
different I/O access patterns. We set the access pattern as
“nested strided (read)”, work units as 100, and request size as
4096 bytes. We compile PIO-BENCH to link it with IOSIG

0.20%
0.78% 0.54% 0.36% 0.60% 0.12%

0.73% 0.84%

-8.00%

-6.00%

-4.00%

-2.00%

0.00%

2.00%

0.000

5.000

10.000

15.000

20.000

25.000

1 2 4 8 16 32 64 128

O
ve

rh
e

a
d

 (
p

e
rc

e
n

ta
g

e
)

E
xe

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

)

Number of processes

Original IOSIG Overhead

Figure 5. Trace collection overhead with IOR benchmark.

1.90% 0.30%

5.76% 3.95%
0.82% 0.85% 0.27% 1.73%

-30.00%

-20.00%

-10.00%

0.00%

10.00%

0.000

5.000

10.000

15.000

20.000

25.000

30.000

35.000

1 2 4 8 16 32 64 128

O
ve

rh
e

a
d

 (
p

e
rc

e
n

ta
g

e
)

E
xe

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

)

Number of processes

Original IOSIG Overhead

Figure 6. Trace collection overhead with MPI-TILE-IO benchmark.

0

20

40

60

80

100

512K, 1.5M 1M, 3M 2M, 6M 4M, 12M

R
e
a
d
 B

a
n
d
w

id
th

 (
M

B
/s

)

Nested strided access patterns

2 2p 4 4p 8 8p 16 16p

Figure 7. Bandwidth of PIO-Bench, with Nested Strided pattern on NFS.

The numbers in the legend labels are the numbers of processes, and the
suffix “p” in the labels indicates the cases where prefetching is enabled.

0

500

1000

1500

2000

512K, 1.5M 1M, 3M 2M, 6M 4M, 12M

R
e
a
d
 B

a
n
d
w

id
th

 (
M

B
/s

)
Nested strided access patterns

2 2p 4 4p 8 8p 16 16p

Figure 8. Bandwidth of PIO-Bench, with Nested Strided pattern on PVFS.

The numbers in the legend labels are the numbers of processes, and the

suffix “p” in the labels indicates the cases where prefetching is enabled.

tracing library and then run it with four MPI processes. We
conduct this test on two different file systems, NFS and
PVFS2. From generated traces, IOSIG trace analyzer
produces the following local trace signature.

{MPI_READALL, file_id, initPos, 2, ([{initPos, 32768,
1}, 4096, 1], [{initPos+8192, 32768, 1}, 4096, 1,
fixed_interval], 100), 1}

The signature indicates that each process starts its file
operations from offset initPos, reads 4096 bytes, seek
forward by 4096 bytes (so the second read’s offset is
initPos+8192), read 4096 bytes again, seek 20480 bytes, and
then repeat the above two sets of reads and seeks 100 times.
In this circumstance with default read-ahead prefetcher,
when prefetching size is 4096 bytes, the prefetching cache’s
hit ratio is 0. In order to make the hit ratio as large as 100%,
prefetching size needs to be larger than 20480+4096=24576
bytes (assuming every prefetching occurs timely), but only
25% of fetched data gets accessed, which is inefficient. With
the help of data access pattern information included in I/O
signatures, it is possible to make data prefetching highly
accurate and timely, especially for those applications that
have complicated data access patterns. Fig. 7 and Fig. 8
show the I/O performance improvements by enabling the I/O
signature based data prefetching in the parallel I/O system.
The average performance gain on NFS is around 36%, and
that on PVFS for larger strides is around 20% [14].

B. Access pattern-aware adaptive data layout

In section II, we described how configuration of stripe
sizes in parallel file systems affects the overall I/O
performance (see Fig. 2). An application accessing a large

data set may have different access patterns in different
phases of its execution or on different data segments. In
order to achieve optimal I/O performance, we need to choose
data layouts adaptively, by changing stripe sizes for different
parts of the application depending on access patterns.

We use 4 IOR benchmarks with different configurations
chained together, to simulate a large I/O intensive
application doing both reads and writes with different access
patterns. Each IOR runs on its own data, and the request
sizes are 1KB, 4KB, 64KB, and 1MB, respectively specified
by IOR command line options. Take the 64KB read test with
IOR as an example, the local trace signature is:
{MPI_READAT, file_id, 0, 1, ([{0, 65536, 1}, 65536, 1,
fixed_interval], 65536), 1}, which means that IOR does a
contiguous read operation, the size of each single read is
64KB and the total number of reads is 65536. The other
IOR’s access patterns are almost the same, only with
different request sizes and numbers.

With default configuration of PVFS2 and without
knowing the I/O Signatures, all data used by this simulated
application are distributed over all storage nodes with a
uniform default strip size. With the knowledge of I/O
Signatures, we determined that the optimal stripe sizes of
different data sets were 4 KB, 16 KB, 64 KB, and 1 MB,
respectively. We tested the overall I/O bandwidth for reads
and writes, with different uniform strip sizes and the adaptive
data layout that allows different optimal strip size for
different data sets. Fig. 9 and Fig. 10 show the results with
the adaptive data layout selection strategy. The performance
improvement of write operations is between 25% and 101%,
and that of read operations is between 9% and 71%
compared with the default layout strategies where the stripe
size is static and fixed for all the data sets.

VI. RELATED WORK

Reed et al. have studied and categorized common data
access pattern of parallel applications [17] [18] [19],
including the global data access pattern.

Carns et al. of Argonne National Lab have designed and
developed Darshan to explore I/O characteristics of HPC
application that ran on IBM Blue Gene/P series of computers
where Darshan gets deployed full time [6] [20]. To keep
runtime overhead minimum, Darshan traces several
accumulative or statistics information and access patterns of
application or files, and does not provide details any single
file operation. While Darshan is useful for understanding the
I/O behavior, IOSIG goes further in providing signatures that
optimization strategies can directly utilize.

There are a few tools focusing on tracing data I/O events,
like HPCT-IO [5], LANL-Trace [8], IOT [7], and
ScalaIOTrace [9], but these tools do not provide enough
comprehensive trace analysis or data access representation.

HPC community also developed several general tracing
and profiling tools with analysis and visualization
functionalities, such as TAU [1], jumpshot [2], Periscope [3],
Upshot [21], and EPILOG [4]. These tools mainly focus on
profiling and analyzing an individual application’s parallel
processing performance, MPI messaging between computing
nodes and processes/threads, and I/O behaviors in main

0

200

400

600

800

Write Read

B
a
n
d
w

id
th

 (
M

B
/s

)

1K 4K 16K 64K 256K 1M 4M Adaptive

Figure 9. Average bandwidth in Ethernet environment. The sizes in the

legend labels are stripe sizes, and “Adaptive” means the adaptive stripe size

in the adaptive data layout scheme.

0

200

400

600

800

Write Read

B
a
n
d
w

id
th

 (
M

B
/s

)

1K 4K 16K 64K 256K 1M 4M Adaptive

Figure 10. Average bandwidth in InfiniBand environment. The sizes in the

legend labels are stripe sizes, and “Adaptive” means the adaptive stripe size

in the adaptive data layout scheme.

memory layer instead of file storage layer. IOSIG is
comprehensive in terms of providing tracing capability along
with the analysis of patterns and signature representations.

VII. CONCLUSIONS

High performance computing is moving towards exa-
scale, and the HPC community has proposed and adopted
many I/O optimization techniques to ease the widely
recognized I/O bottleneck and to make large-scale machines
more efficient. One requirement of efficient I/O
optimizations is to understand applications I/O behavior.
Many existing I/O optimizations can benefit from knowing
I/O access patterns of an application. We exhibit three
optimizations of this type to explain the need for an I/O
characterization tool that gives comprehensive understanding
of the I/O behavior of parallel applications and paves a path
for optimization of data access. In this paper, we describe the
work we have done on meeting this requirement. We present
IOSIG tool that helps users to understand the I/O
characteristics of their applications precisely. IOSIG works
in two steps, 1) to trace file operations during one
application's runtime and generate trace files and 2) to
perform analysis on the generated trace files to get the
application’s data access patterns presented in I/O Signatures.
Comparing with existing I/O characterization tools, IOSIG
has several advantages. 1) It is light-weight. 2) It produces
traces that are more detailed. 3) It can detect local and global
data access patterns from trace files. 4) It works in
application level, which is a valuable advantage for users
without the administrator’s permission in large-scale
machines. The software evaluation proves that IOSIG keeps
the overhead at a minimal level with common resource
requirements. We explain the usage of IOSIG tool through
two existing parallel I/O optimization strategies.

In the future, we plan to extend IOSIG with the ability to
identify the data I/O intensity of HPC applications
quantitatively.

ACKNOWLEDGMENT

The authors are thankful to and Dr. Robert Ross and
Samuel Lang of Argonne National Laboratory for their
constructive and thoughtful suggestions toward this work.
The authors are also grateful to anonymous reviewers for
their valuable comments and suggestions. This research was
supported in part by National Science Foundation under NSF
grant CCF-0621435 and CCF-0937877, and in part by the
Office of Advanced Scientific Computing Research, Office
of Science, U.S. Department of Energy, under Contract DE-
AC02-06CH11357.

REFERENCES

[1] Shende, S. and Malony, A. D., "The tau parallel performance system,"

International Journal of High Performance Computing Applications,

vol. 2, pp. 287--311, 2006.

[2] Zaki, O., Lusk, E., Gropp, W., and Swider, D., "Toward scalable

performance visualization with jumpshot," International Journal of

High Performance Computing Applications, vol. 13, no. 3, pp. 277-

288, 1999.

[3] M. Gerndt and M. Ott, "Automatic performance analysis with

periscope," Concurrency and Computation: Practice and Experience,

vol. 22, no. 6, pp. 736-748, 2010.

[4] B. Mohr and F. Wolf, "KOJAK - a tool set for automatic performance

analysis of parallel," in Proc. of the European Conference on Parallel

Computing, 2003.

[5] S. Seelam, I.-H. Chung, D.-Y. Hong, H.-F. Wen, and H. Yu, "Early

experiences in application level I/O tracing on Blue Gene systems," in

Proceedings of the IEEE International Parallel and Distributed

Processing Symposium, 2008.

[6] Carns, P., Latham, R., Ross, R., Iskra, K., Lang, S., and Riley, K.,

"24/7 Characterization of petascale I/O workloads," in IEEE

International Conference on Cluster Computing, 2009.

[7] P. C. Roth, "Characterizing the I/O behavior of scientific

applicationson the Cray XT," in Proceedings of the 2nd

InternationalWorkshop on Petascale Data Storage, 2007.

[8] "HPC-5 open source software projects: LANL-Trace," [Online].

Available: http://institute.lanl.gov/data/software/#lanl-trace.

[9] Vijayakumar, K., Mueller, F., Ma, X., and Roth, P. C., "Scalable I/O

tracing and analysis," in Proceedings of the 4th Workshop on

Petascale Data Storage, 2009.

[10] Liao, W.-keng, Ching, A., Coloma, K., and Choudhary, A., "An

implementation and evaluation of client-side file caching for MPI-IO,"

in Proc. of the IEEE International Parallel and Distributed

Processing Symposium, 2007.

[11] Carns, P.H., Ligon, W.B. III, and Ross, R.B., "PVFS : a parallel file

system for linux clusters," in Proceedings of the 4th Annual Linux

Showcase and Conference, 2000.

[12] H. Song, Y. Yin, Y. Chen, and X.-H. Sun, "A cost-intelligent

application-specific data layout scheme for parallel file systems," in

Proc. of the 20th International ACM Symposium on High

Performance Distributed Computing, 2011.

[13] H. Song, Y. Yin, X.-H. Sun, R. Thakur, and S. Lang, "A segment-

level adaptive data layout scheme for improved load balance in

parallel file systems," in Proc. of the 11th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing, 2011.

[14] S. Byna, Y. Chen, X.-H. Sun, R. Thakur, and W. Gropp, "Parallel I/O

prefetching using MPI file caching and I/O signatures," in

International Conference for High Performance Computing

Networking Storage and Analysis (SuperComputing), 2008.

[15] Gropp, W., Lusk, E., and Skjellum, A., Using MPI: portable parallel

programming with the message passing interface, MIT Press, 1999.

[16] Google Inc., "Protocol buffers - Google's data interchange format,"

Google Inc., 2008.

[17] Madhyastha, T.M. and Reed, D.A., "Learning to classify parallel

input/output access patterns," IEEE Transactions on Parallel and

Distributed Systems, vol. 13, no. 8, 2002.

[18] Madhyastha, T.M. and Reed, D.A., "Exploiting global input/output

access pattern classification," in ACM Press., 1997.

[19] Madhyastha, T.M. and Reed, D.A., "Input/output access pattern

classification using hidden markov models," in Workshop on

Input/Output in Parallel and Distributed Systems, 1997.

[20] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham, and

R. Ross., "Understanding and improving computational science

storage access through continuous characterization," in 27th IEEE

Conference on Mass Storage Systems and Technologies, 2011.

[21] V. Herrarte and E. Lusk, "Study parallel program behavior with

Upshot," MCS Division, Argonne National Laboratory, 1991.

