
High Performance File I/O for The Blue Gene/L Supercomputer

H. Yu, R. K. Sahoo, C. Howson, G. Almási, J. G. Castaños, M. Gupta
IBM T. J. Watson Research Ctr, Yorktown Hts, NY

{yuh,rsahoo,chowson,gheorghe,castanos,mgupta}@us.ibm.com

J. E. Moreira, J. J. Parker
IBM System & Tech. Group, Rochester, MN

{jmoreira,jjparker}@us.ibm.com

T. E. Engelsiepen
IBM Almaden Research Ctr, San Jose, CA

engelspn@almaden.ibm.com

R. B. Ross, R. Thakur, R. Latham, W. D. Gropp
MCS, Argonne Nat’l Lab., Argonne, IL
{rross,thakur,robl,gropp}@mcs.anl.gov

Abstract

Parallel I/O plays a crucial role for most data-intensive
applications running on massively parallel systems like Blue
Gene/L that provides the promise of delivering enormous
computational capability. We designed and implemented
a highly scalable parallel file I/O architecture for Blue
Gene/L, which leverages the benefit of the hierarchical and
functional partitioning design of the system software with
separate computational and I/O cores. The architecture ex-
ploits the scalability aspect of GPFS (General Parallel File
System) at the backend, while using MPI I/O as an interface
between the application I/O and the file system. We demon-
strate the impact of our high performance I/O solution for
Blue Gene/L with a comprehensive evaluation that consists
of a number of widely used parallel I/O benchmarks and
I/O intensive applications. Our design and implementation
is not only able to deliver at least one order of magnitude
speed up in terms of I/O bandwidth for a real-scale appli-
cation HOMME [7] (achieving aggregate bandwidth of 1.8

GB/Sec and 2.3 GB/Sec for write and read accesses, respec-
tively), but also supports high-level parallel I/O data inter-
faces such as parallel HDF5 and parallel NetCDF scaling
up to a large number of processors.

1. Introduction

In recent years, one of the major challenges for compu-
tational scientists is to deal with very large datasets while
running massively parallel applications on supercomputers.
While most computationally intensive challenges are han-
dled by emerging massively parallel systems with thousands

of processors (e.g. Blue Gene/L), data-intensive computing
with scientific and non-scientific applications still contin-
ues to be a major area of interest due to the gap between
computation and I/O speed. Crucial for useful performance
in a high-performance computing environment is the seam-
less transfer of data between memory and a file system for
large-scale parallel programs.

Blue Gene/L [8] is a new massively parallel computer
developed by IBM in partnership with Lawrence Livermore
National Laboratory (LLNL). The Blue Gene/L (BG/L) sys-
tem exploits low power processors, system-on-a-chip inte-
gration and a highly scalable architecture putting together
up to 65536 embedded dual-processor PowerPC nodes (700
MHz) with high speed interconnects. LLNL’s 64K-node
BG/L system will deliver up to 360 Teraflops of peak com-
puting power upon completion. BG/L is currently ranked
as the world’s fastest supercomputer in Top500 list of su-
percomputers, and represents five of the top ten entities in
the list. While impressive scaling results have been obtained
up to 32768 nodes [11], there has been relatively few re-
sults published on I/O performance for data-intensive appli-
cations on BG/L or any other massively parallel system.

A scalable parallel I/O support mainly consists of high-
performance file systems and effective parallel I/O appli-
cation programming interfaces. There have been many ef-
forts developing parallel file systems for supercomputers,
such as GPFS (General Parallel File System) [20] for IBM
SP systems as well as Linux clusters, PVFS [5] and Lus-
tre [2] for Linux-based platforms. In this work, we leverage
GPFS, which is widely used on many large-scale commer-
cial and supercomputing systems for its scalability, stabil-
ity as well as reliability. Representative parallel file I/O pro-
gramming interfaces include POSIX I/O interface [16], MPI
I/O [19], and high-level abstraction layers such as parallel

Hierarchical Data Format (HDF) [1] and parallel NetCDF
(PnetCDF) [17]. Among them, MPI I/O is synonymous with
parallel file I/O for scientific computing, because of its wide
use and its base on MPI. In addition, MPI I/O supports for
relatively rich file access patterns and operations, which al-
lows aggressive optimizations to be integrated.

The primary goal of the paper is to demonstrate the de-
sign, integration, and implementation of a hierarchical scal-
able file I/O architecture for BG/L. Our parallel file I/O so-
lution consists of GPFS at the backend, while the I/O in-
terface is handled through an optimized implementation of
MPI I/O. We came across a number of BG/L specific hard-
ware and software requirements while implementing MPI
I/O (an optimized port of ROMIO [22]). In particular we
evaluate the role of optimization of collective I/O primi-
tives in communication phase, and file-domain partitioning
within our implementation. We also characterize the scal-
ability and performance of our BG/L file I/O solution not
only for a list of I/O intensive benchmarks, but also real-
scale applications as well as high-level libraries.

This paper makes the following contributions:
- We present the design and integration of a hierarchical

parallel file I/O architecture for BG/L supercomputer,
which delivers I/O performance scaling beyond conven-
tional cluster-based parallel systems. We describe opti-
mizations that contribute to the scalability.

- Quantitatively, we show the need to use MPI I/O collec-
tive operations for the scalability of parallel file I/O en-
countered frequently in real-world applications, usually
with non-contiguous and irregular access patterns.

- We report the best bandwidth speedups ever achieved (to
the best of our knowledge) for a number of commonly
used I/O benchmarks, including an important I/O inten-
sive application, HOMME from NCAR [7].

- Our file I/O solution provides efficient support for well-
known high-level parallel file I/O interfaces, parallel
HDF5 and parallel NetCDF. We present the first set of
results demonstrating the scaling of programs written on
these interfaces to a large number of processors.

The rest of the paper is organized as follows. Sec. 2 gives
an overview of BG/L architecture from a parallel file I/O
perspective. Sec. 3 presents the design of a parallel I/O so-
lution followed by the optimizations carried out for scal-
ing application-level parallel I/O. Sec. 4 describes issues re-
lated to our implementation of MPI I/O. Sec. 5 presents a
thorough evaluation for the scaling performance of our solu-
tion against widely used parallel I/O benchmarks and a real-
world application. Finally, we conclude the paper in Sec. 6.

2. Blue Gene/L: A Parallel I/O Perspective

BG/L uses a scalable architecture based on low power
embedded processor, and integration of powerful networks,

using system-on-a-chip technology [8]. It uses a hierarchi-
cal system software architecture to achieve unprecedented
levels of scalability [10]. In this section we describe some
of these features we exploit to achieve highly scalable par-
allel I/O and create an attractive platform for data-intensive
computation.

The BG/L core system consists of compute and I/O nodes
with compute nodes viewed as computational engines at-
tached to I/O nodes. The compute nodes and I/O nodes are
organized into processing sets (pset), each of which con-
tains one I/O node and a fixed number of compute nodes.
Running on simplified embedded Linux, the I/O nodes rep-
resent the core system to the outside world as a cluster. In
each pset, program control and I/O are accomplished via
messages passed among its I/O node and compute nodes
over a collective network. The I/O related communication
among compute nodes and the I/O node in a pset is with
little disturbance. BG/L compute nodes and I/O nodes are
built out of the same chips, with only differences in terms of
packaging and enabled networks. While, the compute node
runs a unique, light-weight compute node kernel (CNK),
the I/O node provides file service via Linux VFS. I/O re-
lated system calls trapped in CNK are shipped to the cor-
responding I/O node and processed by a console daemon
CIOD, thus a POSIX-like I/O interface is supported for user-
level compute processes. The separation and cooperation
accomplished via the simple function shipping off-loads
non-computation related services to the I/O nodes to keep a
noise-free state for the compute nodes while achieving supe-
rior scalability [11]. In addition, the separation of I/O nodes
and compute nodes, together with organizing them into bal-
anced psets and providing almost dedicated communication
channels for I/O operations, essentially provide the capabil-
ity for scalable I/O.

Nevertheless, the scalable I/O capability does not nec-
essarily lead to scalable application-level file I/O. Usually,
such applications involve accessing a single file concur-
rently and with non-contiguous and/or irregular access pat-
terns. While, the rest of the paper describes our effort on
meeting the challenge, we first discuss a couple of BG/L
features that we have particularly utilized.

The BG/L torus network, connecting the compute nodes,
is the primary network for inter-processes communications
for its high speed. Specifically, the bandwidth of a single
link is close to its designed peak, 175 MB/sec in each di-
rection. For the LLNL machine, the 65,536 compute nodes
are organized into a 64 × 32 × 32 three-dimensional torus.
At 1.4 Gb/s per torus link, the unidirectional bisection band-
width of the system will be 360 GB/s. The high bandwidth
and high speed of the torus network provides the capabil-
ity to move large amount of data across the compute nodes.

BG/L-MPI [9] has successfully exploited the rich fea-
tures of BG/L in terms of the network topology, special

purpose network hardware, and architectural compromises.
While BG/L-MPI is originally ported from MPICH2 [3], its
collective routines have demonstrated superior performance
comparing to the original implementation and is close to
the peak capabilities of the networks and processors. From
an I/O perspective, a scalable implementation of BG/L-MPI
provides an effective mean to optimize for concurrent and
coordinated file accesses from a large number of processes.

In the following section, we will describe how we lever-
age BG/L’s features such as its capability for scalable I/O,
its high-performance interconnects, and its MPI implemen-
tation to deliver application-level scalable I/O.

3. A Scalable Parallel I/O Design for BG/L

In this section, we first present our parallel file system so-
lution for BG/L: GPFS. Then, we describe our design steps
and consideration to provide MPI I/O support to comple-
ment the GPFS-based solution and eventually to meet the
I/O demands of applications running on BG/L. Additional
implementation details will be discussed in Sec. 4.

3.1. GPFS-Based Solution

GPFS is IBM’s parallel, shared-disk file system support-
ing both AIX- and Linux-based systems [20]. It allows par-
allel applications’ concurrent access to the same files or dif-
ferent files, from nodes that mount the file system. In its lat-
est release, GPFS 2.3 allows users to share files across clus-
ters, which improves the system capacity as well as simpli-
fies system administration. So far, the largest tested GPFS
cluster contains 1170 Linux nodes [6], which is more than
the I/O nodes of the largest BG/L systems installed so far
(e.g., the LLNL 64-rack system has 1024 I/O nodes and the
ASTRON [4] 6-rack system has 768 I/O nodes).

Our solution for integrating GPFS and BG/L consists of
a three tier architecture (Fig. 1). The first tier of the ar-
chitecture consists of I/O nodes as GPFS clients, whereas
the second tier is an array of NSD (network shared disks)
servers. The third tier consists of the storage area network
(SAN) fabric and the actual disks. The interconnect between
the I/O nodes and the NSD servers are Ethernet, while the
connection between the second and third tier can be either
fiber channel, fiber-channel switch or Ethernet (iSCSI). The
choice of NSD servers, SAN fabric and storage devices de-
pend on the customer requirements. This solution has been
fully implemented and the performance evaluation shows
that it had successfully explored and utilized the enormous
potential I/O bandwidth of BG/L. Later on, we will show
that the aggregated read/write at BG/L compute nodes reach
80% and 60% of that the underneath file system can deliver.

GPFS achieves its high throughput based on techniques
such as large-block based disk striping, client-side caching,

���� �������� ����

������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������

��	
��
���������	
��
���������	
��
���������	
��
�������

������������ ������������ ������������ ������������ ������������

������������������������������������

Figure 1. GPFS layout for BG/L

prefetching, and write-behind [20]. In addition, it supports
file consistency using a sophisticated distributed byte-range
file-locking technique. GPFS has managed to limit the per-
formance side-effect of the file locking operation with an
aggressive optimization for block-level data accesses.

Overall, GPFS is highly optimized for large-chunk I/O
operations with regular access patterns (contiguous or reg-
ularly strided). However, its performance for small-chunk,
non-contiguous I/O operations with irregular access patterns
(non-constant strided) is less optimized. Particularly, con-
current accesses (from distinct processes) to different file
regions in the same GPFS block introduce additional file
system activities associated to its file locking mechanism,
which can hurt performance. To complement GPFS, we use
MPI I/O for I/O operations in scientific applications.

3.2. MPI I/O Design Goals

MPI I/O is the parallel I/O interface specified in the MPI-
2 standard [19]. Because of its support for a much richer file
access patterns and operations, MPI I/O is better suited for
MPI based parallel programs than POSIX I/O interface. Par-
ticularly, MPI I/O includes a class of collective I/O opera-
tions (enabling a group of processes to access a common
file in a coordinated fashion), which provide better flexibil-
ity for MPI I/O implementations to optimize I/O, by aggre-
gating/distributing I/O operations transparently.

The general technique for implementing MPI I/O collec-
tive operations is by means of providing collective buffer-
ing [21]. Collective buffering is based on a common ex-
perience that the aggregated inter-processor communication
speeds are significantly higher than I/O speeds. It rearranges
and aggregates data in memory prior to writing to files to re-
duce the number of disk accesses. For scientific applications
(typically with non-contiguous and irregular file access pat-
terns), collective buffering is effective for achieving scal-
able I/O, particularly for systems without efficient support
of asynchronous communication primitive, and exploiting
massive parallelism like BG/L. Therefore, we set our de-

sign goal of MPI I/O for BG/L as to maximize the perfor-
mance of MPI I/O collective operations.

To facilitate the design goals, we started our work on
MPI I/O from ROMIO [21], an implementation of MPI I/O
from Argonne National Laboratory. The primary reason for
choosing ROMIO is for it’s fully functional MPI I/O im-
plementation (except data representation). Further, ROMIO
integrated the collective buffering technique into its imple-
mentation of collective I/O operations, which allows us to
concentrate on performance optimizations. In the follow-
ing sub-sections, we elaborate our design decisions made
in providing a scalable implementation of MPI I/O collec-
tive operations for BG/L configured with GPFS.

3.3. The pset Organization

I/O systems by nature are much more efficient for con-
tiguous disk accesses than for non-contiguous, or irreg-
ular accesses. Particularly, GPFS is highly optimized for
large-chunk, regular (contiguous or regularly strided) I/O
accesses [20]. Therefore, it is better for the I/O requests
from compute nodes to be contiguous.

As stated previously, pset organization of compute and
I/O nodes plays a key role for BG/L I/O performance. Ex-
ploiting the collective buffering technique, MPI I/O collec-
tive operations provide opportunities for the pset structure
of BG/L to be communicated, and an optimized file access
pattern can be reached. The specific motivations for using
pset and collective buffering approach are two folds. First,
the best observed I/O performance of a BG/L partition con-
taining multiple psets is often obtained when the I/O load
is balanced across all the I/O nodes. Second, we have ob-
served that for the case of a relatively large compute node to
I/O node ratio (e.g. 64:1 on LLNL system), the I/O perfor-
mance of a pset reaches the peak when 8-16 compute nodes
perform I/O concurrently, not all the compute nodes.

The implementation of collective buffering in ROMIO
(referred as two-phase I/O) distinguishes two interleaved
phases: an inter-process data exchange phase and an I/O
phase [21]. The two-phase I/O first selects a set of processes
as I/O aggregators, which partitions the I/O responsibilities
for a file. Based on this file partitioning, the in-memory data
exchange phase routes the data among all participating pro-
cesses and the I/O aggregators. In the I/O phase, the I/O ag-
gregators issue read or write system calls to access file data.

In our design, the I/O aggregators are chosen in such
a way that they are evenly distributed across the partici-
pating psets. Each BG/L node has a personality structure
which keeps its run-time configuration data [10]. We uti-
lize the pset configuration information. First, each compute
node collects its pset ID, MPI rank. Then, the information
of all compute nodes is gathered onto each compute node.
Finally, each compute node generates a list of I/O aggrega-

tors so that they are distributed evenly across the psets, and
the I/O aggregators from the same pset are contiguous in the
list. When one MPI I/O collective routine is called, the col-
lective file access region is computed and the I/O responsi-
bility is distributed across the selected I/O aggregators. For
a collective I/O operation with small data amount, a sub-
set of the pre-selected I/O aggregators are used.

Here, the BG/L I/O nodes are not used for I/O aggre-
gation. First, with the same ASIC as the compute nodes,
I/O nodes have limited processing power for relative com-
plicated aggregation tasks. Second, the possible commu-
nication channels among the I/O nodes are Ethernet and
BG/L collective network. Although the collective network
can be configured to contain multiple I/O nodes, the bisec-
tion bandwidth of the collective network is bounded by 350
MB/sec. The I/O nodes can potentially talk to each other
over Ethernet. However, additional communication among
I/O nodes through Ethernet may interfere with the file sys-
tem client-side operations running on the I/O nodes. A com-
parison of file access operations on compute nodes against
that from I/O nodes indicated little performance difference.
Hence, having the compute nodes as I/O aggregators poten-
tially provides more flexibility for dealing different BG/L
configurations that have different compute nodes to I/O
nodes ratio, avoiding a potential bottleneck at the I/O nodes.

3.4. File Domain Partitioning

As mentioned, GPFS block-level file accesses are highly
optimized and scalable. Therefore, if a GPFS client node
(i.e. BG/L I/O node in our design) only issues data-access
requests having large size and aligning to GPFS block
boundaries, the scalability of GPFS will be preserved, while
successfully meeting the MPI I/O collective operation re-
quirements. ROMIO assigns the I/O responsibilities for a
file across the I/O aggregators with a balanced partitioning
of the file region defined by the first and last file offsets of
the collective operation. It has been reported in [14] that the
simple file-partitioning method has various drawbacks and
there are multiple ways for its optimization. For the case
of GPFS, the main problem of the default file-partitioning
method is that it can generate I/O operations only access-
ing part of GPFS blocks, which will trigger additional file
system activities related to file locking.

To investigate the effect of associating the I/O aggrega-
tors with file regions align to the GPFS blocks, we wrote a
synthetic program that partitions the file domain across pro-
cesses in an absolutely balanced manner or with additional
consideration to align with GPFS blocks. We call the two
file partitioning methods as balanced and aligned file parti-
tioning, respectively. After establish a mapping from file re-
gions to processes, each process performs one contiguous
write operation to its designated file region. Here, when ap-

0 1/2 1/4 1/8 1/16 1/32
0

500

1000

1500

Balanced : mod (NB,NP) / NP

A
gg

re
ga

te
d

B
W

 (
M

B
/s

ec
) NB/NP =16

NB/NP = 4
NB/NP = 1
NB/NP = 0

0 1/2 1/4 1/8 1/16 1/32
0

500

1000

1500

Aligned : mod (NB,NP) / NP

A
gg

re
ga

te
d

B
W

 (
M

B
/s

ec
)

NB/NP =16
NB/NP = 4
NB/NP = 1
NB/NP = 0

Figure 2. Balanced vs Aligned file partitioning

plying the balanced file partitioning, the neighboring I/O ag-
gregators will compete for the lock of a single GPFS block.
On the other hand, when applying aligned file partitioning,
load imbalance could be a problem. This way, we will find
which hurts performance more between concurrent accesses
of a GPFS block and the imbalanced load.

We ran the experiment on an I/O rich BG/L system using
256 compute nodes and 32 I/O nodes (details of the plat-
form is given in Sec. 5.1). Fig. 2 shows the results of the
two mapping methods. Here, NB represents the total num-
ber of GPFS blocks and NP represents the number of pro-
cesses. A non-zero value of X = mod (NB,NP) / NP indicates
that R = X × NP file blocks will be shared by multiple pro-
cesses for the balanced partitioning case; for the aligned par-
titioning case, there will be R processes each of which ac-
cesses one additional file block comparing to the other pro-
cesses. The results indicate that aligned file partitioning out-
performs balanced file partitioning and its I/O performance
stays flat for most of the cases, except when some of the I/O
nodes have no work to do.

Based on the observation, we augmented ROMIO’s de-
fault file partitioning method to have each I/O aggregator’s
file domain aligned to GPFS block in both size and off-
set. The GPFS block size can be reset using an environment
variable at run-time, with a pre-set value as 1MB (the max-
imal file block size currently supported in GPFS). Later on
(Sec. 5), we will show that the file-domain partitioning opti-
mization (referred as Aligned) has contributed to significant
performance improvement.

3.5. Communication Phase Optimizations

For the two phases of MPI I/O collective operations, the
performance of file accesses issued by the I/O aggregators
are bounded by the POSIX I/O performance on BG/L. How-
ever, for certain I/O access patterns (e.g. all processes read-

ing the same data from a file), the inter-process data ex-
change phase may dominate the overall performance. To ad-
dress the issue of the communication phase of MPI I/O col-
lective operations, we rely on the BG/L MPI implementa-
tion [9] as it has successfully explored and utilized the rich
network features of BG/L machine. We tuned the communi-
cation phase of MPI I/O collective operations to choose the
best performing communication method among BG/L MPI
routines. Here, we highlight two optimizations whose bene-
fits are clearly demonstrated in our experiments.

3.5.1. Inter-Process Data Exchange ROMIO has im-
plemented the communication phase of MPI I/O collec-
tive operations by using MPI send/receive functions, which
can be further optimized on BG/L. As reported in [9], on
BG/L, the optimized collective communication functions
usually achieve much higher performance than the point-to-
point communication functions. Particularly, the optimized
MPI Alltoall and MPI Alltoallv can utilize up to 98% of
the peak bandwidth of the underneath torus/mesh network
for long messages, and their performance scales with the
number of compute nodes. Therefore, we have replaced
the use of the point-to-point functions in this phase with
MPI Alltoallv. In our experiments, we refer to this specific
optimization as Alltoall.

3.5.2. Access Range Information Exchange Prior to
the interleaved communication and I/O phases, the two-
phase I/O implementation schedules the communication
among the I/O aggregators and the processors issuing I/O
operations. Here, all processes exchange the information
about their I/O requests. This was originally implemented
via MPI Allgather operations so that each process will have
the file range information of all the I/O requests. We found
that these operations take up to 30% of the time of the col-
lective write operations in a few runs of the BTIO bench-
mark (see Sec. 5.1 for details). On BG/L, the MPI Allgather
operation is implemented by performing P MPI Bcast op-
erations, where P is the number of processes in the commu-
nicator. On BlueGen/L, for very short messages, MPI Bcast
has high overhead. We replaced the MPI Allgather with an
MPI Allreduce, which performs much better for short and
medium sized messages to gain the MPI benefits. The opti-
mization is referred as Allreduce in our experiments.

4. MPI I/O Implementation Issues

Having been ported to a large number of parallel sys-
tems [22], ROMIO’s portability mainly relies on two fea-
tures. First, it uses MPI, which allows ROMIO to be ported
to most parallel computing platforms that support MPI. Sec-
ondly, ROMIO has an intermediate interface called ADIO
(Abstract Device Interface for I/O), which hides the imple-
mentation details for different file systems and makes it a

Program Description From Used by
IOR General I/O benchmarking LLNL LLNL
NAS BT-IO NAS BT benchmark with checkpointing NASA Ames Research Ctr [21] [14] [25]
coll perf ROMIO collective I/O performance test ANL [13]
FLASH io bench Benchmark for the I/O requirements of FLASH2 U Chicago [17] [13] [14]
HOMME High Order Method Modeling Environment NCAR [7]

Table 1. Benchmarking programs and applications

relatively easy task for porting and performance tuning on
a specific system. To port ROMIO onto a specific system
or file system, one only needs to implement a small set of
system-dependent functions under ADIO. Most of our de-
velopment for BG/L MPI I/O that presented in this paper
are under the ROMIO ADIO layer. Concentrating on opti-
mizing MPI I/O collective operations, we have overridden
ADIO’s default implementation for this class of operations.

To provide a complete MPI I/O support, we have aug-
mented CIOD with fcntl byte-range file locking functional-
ity, facilitating MPI I/O atomic mode. On BG/L, fcntl byte-
range file locking is different from most of the file I/O sys-
tem calls, as it cannot be realized by simple function for-
warding. Specifically, when a file lock is trapped at the com-
pute node kernel and forwarded to the I/O node, the CIOD
process is the one that actually issues fcntl for locking a file
region. Since CIOD is a user process, the Linux kernel on
the I/O node treats all the file locking requests (though from
different compute-nodes) as if they are from a single Linux
process. This causes a problem when two compute nodes
in the same pset (i.e., their I/O requests go to the same I/O
node) compete for a lock over the same file region. As a re-
sult, both compute-processes will gain access to the file re-
gion and the MPI I/O atomic semantic is violated.

To support correct fcntl file locking functionality, we
keep the file locking information in CIOD for all the files
opened by the computing-processes in the pset. That is, for
each opened file, CIOD keeps two lists of byte-range pairs.
One list keeps the regions that are locked by compute nodes
in the pset, while another list keeps the pending file lock-
ing requests. Recall that the protocol between BG/L com-
pute and I/O nodes is blocking, and the fcntl is no exception.
For the blocked call of fcntl (e.g. F SETLKW), we do not
want to block the I/O node. In our implementation, CIOD
translates all blocked fcntl file locking requests from com-
pute nodes into repeated non-blocking calls. Specifically, in
CIOD there is a loop repeatedly querying the devices (tree,
Ethernet), and for the denied non-blocking fcntl file locking
requests, CIOD re-tries the file-locking requests for every
few iterations. This process repeats until a fcntl file locking
requests is satisfied. The rest of the implementation is simi-
lar to the file locking implementation in Linux kernel [12].

5. Performance Evaluation

In this section we present the evaluation of our scal-
able parallel I/O solution against a collection of widely used
benchmarks and a real application utilizing parallel I/O. We
will demonstrate scalable performance resulted from our so-
lution showing that it matches the extraordinary computa-
tional power and the corresponding file I/O needs of scien-
tific applications running on BG/L.

5.1. Experiment Setup

We used a two-rack I/O rich BG/L system, containing
2048 compute nodes and 256 I/O nodes. The system has
two 512 compute-node partition and one 1024 compute-
node partition that mount GPFS on their I/O nodes, and no
smaller partitions are configured. To demonstrate scalabil-
ity, we used mapping files [9] that assigns contiguous MPI
ranks to the compute nodes in the same pset to keep the
compute nodes to I/O nodes ratio as 8:1, when using less
than 512 nodes.

The attached GPFS file system contains 32 NSD servers
(running on x335 Linux PCs). The system has 8 DS4300
storage manager (aka FAStT600), with each has 4 Fiber
Channel connections to 4 NSD servers. The 8 DS4300 to-
gether host 448 disks. On the other side, the NSD servers
connect to the BG/L I/O nodes via Gigabit Ethernet. Al-
though the aggregated disk bandwidth can be as high as
10 to 20 GB/sec, the performance of the configuration is
bounded by the bandwidth from the I/O nodes to the NSD
servers (the possible peak bandwidth of the 32 Gb Ether-
net links is 4 GB/sec). The GPFS block size is set to 1 MB
to maximize the system throughput. The page pool size on
I/O nodes is 192 MB (GPFS page pool is used for client-
side caching). Currently, the maximum performance for ac-
cessing a single file from BG/L compute nodes is about
2.0 GB/sec for write and 2.6 GB/sec for read. The gap be-
tween the observed I/O rates from BG/L compute nodes and
available bandwidth of the specific configuration (4 GB/sec)
are from protocol overheads of TCP, and the data transfer
among BG/L compute and I/O nodes.

Table 1 lists five benchmarks and applications we used
here for our experiments.

IOR is a parallel file system test code developed at
LLNL. It performs parallel writes and reads to/from file(s)

using MPI I/O and POSIX operations. It can be configured
to access a single file or each process accessing a separate
file; use collective/non-collective operations; and perform
contiguous or strided accesses, etc. IOR (version 2.8.1) has
been used to measure the parallel file system performance
for BG/L. Here, we compare the performance of IOR us-
ing MPI I/O against using POSIX operations to show that
our MPI I/O implementation delivers comparable perfor-
mance for parallel I/O operations with regular (contiguous
or strided) access patterns. We use the rest of the programs
to demonstrate the advantage of MPI I/O for I/O with non-
contiguous and irregular access patterns. For eliminating
possible client-side caching effects at the I/O nodes, we con-
figured each process to do 384 write/read operations, each
of which access 1 MB of data.

NAS BT-IO [24], an extension of NAS BT benchmark,
simulates the I/O requirement of BT. BT-IO distributes mul-
tiple Cartesian subsets of the global dataset to processes
using diagonal multi-partitioning domain decompositions.
The in-core data structure are three-dimensional arrays and
are written to a file periodically. The file access pattern of
each process is non-contiguous with non-constant strides.
NAS BT-IO’s file access pattern is typical among scien-
tific applications, which has been frequently used for per-
formance evaluation of parallel file I/O [21, 14, 25]. BT-IO
has three implementations for its file I/O. The full-mpiio car-
ries out the I/O using MPI I/O collective routines, while the
simple-mpiio does the I/O using MPI I/O independent rou-
tines, and the fortran-io has FORTRAN iterative write state-
ments in a multi-level loop nest. Here, we used NAS input
class C (the underneath process topologies are squares). To
keep the per-process load constant across runs, we changed
the default problem size parameter to have each process ac-
cess about 3 MB data in each collective I/O call.

coll perf is a synthetic benchmark in ROMIO [23]. It
collectively writes and reads a three-dimensional, block-
distributed array to/from a file in a non-contiguous manner.
To keep the work (data/file size) of each processor constant,
each process accesses 256

3 integer elements, resulting an
average I/O of 64 MB per-process.

FLASH I/O benchmark [26] simulates the I/O pattern
of the FLASH2 code [15], a parallel hydrodynamics code
that simulates astrophysical thermonuclear flashes in two or
three dimensions by solving the compressible Euler equa-
tions on a block-structured adaptive mesh. The benchmark
program is distributed together with the full FLASH2 ap-
plication and its I/O routines are identical to the routines
used by FLASH2. So the performance demonstrated by the
benchmark would closely reflect the performance of the
full application’s I/O performance. The FLASH I/O bench-
mark recreates the primary data structures in the FLASH2
code and produces a checkpoint file, a plotfile for centered
data, and a plotfile for corner data. Same as FLASH2 code,

8 16 32 64 128 256 512 1024
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Compute Nodes

A
gg

re
ga

te
d

W
rit

e
B

an
dw

id
th

 in
 M

B
/s

ec
.

POSIX single file
MPI−IO contig. coll.
MPI−IO contig. non−coll.
MPI−IO non−contig. coll.
MPI−IO non−contig. non−coll.

8 16 32 64 128 256 512 1024
0

500

1000

1500

2000

2500

Compute Nodes

A
gg

re
ga

te
d

W
rit

e
B

an
dw

id
th

 in
 M

B
/s

ec
.

POSIX single file
MPI−IO contig. coll.
MPI−IO contig. non−coll.
MPI−IO non−contig. coll.
MPI−IO non−contig. non−coll.

Figure 3. Performance baseline (IOR W/R)

the original version of FLASH I/O benchmark uses paral-
lel HDF5 [1]. In short, the in-core data structure of FLASH
I/O benchmark is a block-distributed three-dimensional ar-
ray, and the file structure is a distribution of the three-
dimensional array along the Z-dimension. In its latest distri-
bution, FLASH I/O benchmark includes a version that uses
PnetCDF [17]. The benchmark measures the time spent on a
collection of I/O and data manipulation operations and then
computes the data rate based on these timings. To be consis-
tent with the rest of the performance data shown in this pa-
per, we have instrumented the HDF5 and PnetCDF libraries
to time the MPI I/O file access routines (used inside the li-
braries). Because PnetCDF only uses collective file access
routines, we did not collect independent I/O performance
for FLASH I/O benchmark. We configured the benchmark
for each process to access about 2.5 MB data in each MPI
I/O collective operation.

5.2. Performance Baseline

The performance of application-level parallel I/O
demonstrated in this paper is bounded by the POSIX I/O
performance of our experiment platform, and our first ex-
periment is to establish a performance baseline.

Fig. 3 shows the results from IOR. We ran various config-
urations of IOR. The POSIX single file configuration gives
the I/O bandwidth obtained on the system when all pro-
cesses accessing distinct regions of a common file. The re-
sults indicate that the performance scales well (averaging
100 MB per second for each BG/L I/O node) up to about 256
compute nodes (32 I/O nodes), and then flats out. The spe-
cific GPFS file system was set up for the purpose of devel-
opment and the performance shown in Fig. 3 is quite close

16 25 64 121 256 484 1024
0

100

200

300

400

500

600

700

800

900

Number of Compute Nodes

C
ol

le
ct

iv
e

W
rit

e
B

W
 (

M
B

/s
ec

) Pset
No Aligned
No Alltoall
No Allreduce
Optimized

16 25 64 121 256 484 1024
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Number of Compute Nodes

C
ol

le
ct

iv
e

R
ea

d
B

W
 (

M
B

/s
ec

) Pset
No Aligned
No Alltoall
No Allreduce
Optimized

Figure 4. Optimization effects on BT-IO

to its capability. We have run most of our experiments up
to 1024 compute nodes, and some results show that the per-
formance still grows when 1024 compute nodes are used.
This is because MPI I/O performance is different from raw
I/O performance. It reflects the MPI communication perfor-
mance and how the cross-processor communication and the
I/O activities interacts. For the MPI I/O related configura-
tions, contig. indicates that the accesses from each process
are contiguous; non-contig. indicates that the accesses are
constantly strided; coll. indicates that collective I/O opera-
tions are used; non-coll. indicates that independent I/O oper-
ations are used. The corresponding results are fairly close to
that of POSIX, which indicate that MPI I/O does not intro-
duce significant overhead (from implementation, byte-range
file locking) for simple file access patterns (i.e., having large
contiguous chunks as 1 MB). The following sections will
show that for irregular file access patterns exposed in bench-
marks and applications, MPI I/O becomes the most effective
mean for obtaining high-level I/O performance.

5.3. Effects of Optimizations

In this section, we evaluate the effects of different opti-
mizations discussed in Sec. 3 using NAS BT-IO benchmark.
We compare five configurations:
- Optimized applies all the optimizations from Sec. 3;
- No Allreduce applies Optimized, except the Allreduce

optimization (Sec. 3.5.2);
- No Alltoall applies Optimized, except the Alltoall opti-

mization (Sec. 3.5.1);
- No Aligned applies Optimized, except the Aligned opti-

mization (Sec. 3.4).

8 16 32 64 128 256 512 1024 8 16 32 64 128 256 512 1024
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Number of Compute Nodes

O
bs

er
ve

d
B

W
 (

M
B

/s
ec

.)

Write Read

Independent
Collective

Figure 5. ROMIO coll perf results

- Pset only applies the optimization that integrates the pset
structure into the selection of I/O aggregators (Sec. 3.3).

The configurations No Allreducce, No Alltoall, and No
Aligned are to show the performance degradations from the
best configuration (Optimized), when the specific optimiza-
tions are not applied.

Fig. 4 gives the results for BT-IO. It shows that using MPI
I/O collective routines in general gives the best I/O perfor-
mance when the number of processes increases. As shown
in the graph, among the three optimizations, the aligned file
domain partitioning gives the best performance improve-
ment, i.e., while comparing to the best configuration, No
Aligned gives the most performance degradation for write
operations. This is consistent with our synthetic experiment
in Sec. 3.4. For the other two optimizations (Alltoall and
Allreduce), it shows that, when they are not applied, the per-
formance degradations scale with the number of processors,
which confirms that the optimizations result better scaling.
Finally, there is at least three fold speedup for the write op-
erations, when comparing the Optimized and the Pset con-
figurations.

These optimizations have more significant effects on the
write operations than for read, because GPFS’ file byte-
range locking is not optimized for small-chunk file write
operations. In addition, the bandwidth numbers reported in
Fig. 4 represent averaged numbers across all the instances
of MPI I/O collective operations. We have noticed that there
are performance variations across the instances, and we are
investigating the issue.

5.4. Benchmark Results

In Fig. 5 and 6, we show performance obtained on two
widely used benchmark programs. The results for coll perf
confirm that MPI I/O collective operations on BG/L can de-
liver scalable performance that is only bounded by the un-
derlying system. Particularly, the poor performance of inde-
pendent I/O operations states a strong recommendation to
use MPI I/O collective routines. For the write results, there
is a slight drop of the performance when more than 256 pro-
cesses are used. We think the performance drop was due to

8 16 32 64 128 256 512 1024
0

100

200

300

400

500

600

700

800

900

1000

Number of Compute Nodes

B
W

 (
M

B
/s

ec
.)

 w
ith

 H
D

F
5

Checkpointing, MPI
Plot, centered, MPI
Plot, corner , MPI
Checkpointing, HDF5
Plot, centered, HDF5
Plot, corner , HDF5

8 16 32 64 128 256 512 1024
0

100

200

300

400

500

600

700

800

900

1000

Number of Compute Nodes

B
W

 (
M

B
/s

ec
.)

 w
ith

 p
N

et
C

D
F

Checkpointing, MPI
Plot, centered, MPI
Plot, corner , MPI
Checkpointing, PNC
Plot, centered, PNC
Plot, corner , PNC

Figure 6. FLASH I/O Benchmark results

the increasing latency of the inter-process data exchange of
the two-phase I/O when the performance of the I/O phase
reached the system’s capability, and we are working on a
thorough investigation of this behavior.

Fig. 6 shows the performance of the FLASH I/O bench-
mark. We present two sets of results: MPI and HDF5; MPI
and PNC (PnetCDF). The legends marked MPI are obtained
from our instrumentation inside HDF5 and PnetCDF that
measure the wall-time of MPI I/O collective read/write op-
erations. The legends marked with HDF5 or PNC are sim-
ply based on the wall-time of the application-level I/O func-
tions. This results show that at the observation level of high-
level parallel I/O library routines, our solution delivers up
to 240 MB/sec with HDF5, and 500 MB/sec with PnetCDF.
The results are about several folds better than similar exper-
iments presented previously for cluster-based parallel file
I/O solutions [17]. Here, because the bandwidth numbers
are averaged across multiple MPI I/O calls, the results do
not match up with those of IOR. Besides the effects simi-
lar to coll perf, the results show that the best performance
is reached when using 512 processes, this is because that
the data-size was small (averaged 2.5 MB per process per
collective call) and hence the I/O phase could not fully ex-
plore available bandwidth of the system (e.g., disk accesses
are not balanced across a large number of disks) for small
scale runs. Nevertheless, the aggregate performance is sig-
nificant. In addition to scalable MPI I/O performance, the
results marked as Checkpointing, HDF5/PNC indicate that
for the two MPI I/O based high-level interfaces, when ob-
serving at the level of their high-level I/O routines, the I/O
bandwidth numbers scale up to 256/512 processes.

32 64 128 256 512 32 64 128 256 512
0

500

1000

1500

2000

Number of Compute Nodes

O
bs

er
ve

d
B

W
 (

M
B

/s
ec

.)

Write Read

Independent I/O
Collective I/O

Figure 7. HOMME I/O results

5.5. Application Results

Finally, we demonstrate the scalability of the file I/O for
the HOMME (High-Order Multiscale Modeling Environ-
ment) code, a scalable and efficient spectral element based
atmospheric dynamical code. The application has been run-
ning on BG/L and its scalability and performance (without
the I/O part) has been demonstrated with up to 7776 pro-
cessors [7]. The file I/O part of HOMME deals with check-
pointing, restarting from checkpoints and dumping movie
files. In addition, each process dumps a movie file where
MPI I/O is not used. Since writing to separate files is not
interesting from MPI I/O perspective, we did not config-
ure HOMME input file for such operations. The check-
point/restore part of HOMME is written using MPI I/O in-
dependent file access routines in a loop-nest. We have re-
placed the loop nest containing the MPI I/O independent
operations with a MPI I/O collection operation and a file
set-view call within the application.

We used an input of simulation on Aquaplanet with
Emanuel physics [18]. To benchmark its I/O aspect, we have
changed the input configuration of checkpoint frequency
and simulation steps. The total amount of work was kept
constant for all the runs. To evaluate the performance for
both write and read, for each data point in the graphs, we in-
voked the application four times: an initial run with check-
point only configuration followed by three runs with restart
and checkpoint configuration. Each run has 20 time steps
with one checkpointing for every 5 time steps. Each check-
point operation generates a 500 MB file.

Fig. 7 shows the performance of the I/O part of HOMME.
Here, we show the performance improvement associated
with our modification of changing MPI independent I/O op-
erations to collective operations. The results indicate that for
the application, using MPI I/O collective read/write opera-
tions delivers I/O performance that is close to the baseline.
Overall, we achieved 10-15 folds speedups for the time con-
suming I/O part of HOMME compared to its original imple-
mentation (using MPI I/O independent operations).

Program BW in MB/sec.
Write Read

LLNL IOR 1,970 2,600
ROMIO collective I/O performance test 1,400 1,800
NAS BT benchmark with checkpointing 870 2,100
FLASH2 I/O benchmark with HDF5 963
FLASH2 I/O benchmark with PnetCDF 940
HOMME application from NCAR 1,800 2,300

Table 2. Results summary

6. Conclusions and Future Work

Productivity and performance of today’s supercomput-
ing systems have been limited by the I/O bottlenecks due to
the inability of existing software layers to scale to the de-
sired level. While impressive computational scaling results
have been obtained on massively parallel systems like Blue
Gene/L, relatively very few scalable I/O performance results
exist for data-intensive applications on such systems.

We address the challenge with a highly scalable file I/O
design and implementation which would deliver unprece-
dented levels of I/O performance for BG/L. By leveraging
the benefit of functional partitioning and hierarchical struc-
ture of Blue Gene/L system software, our parallel file I/O
design, is able to provide scalable file I/O bandwidth far be-
yond the level of any conventional cluster-based supercom-
puting systems. The design exploits the scalability of GPFS
at the backend and provides effective MPI I/O support (col-
lective operations in particular) as the API for application-
level I/O requirements.

We evaluated our design and implementation on an 1-
rack Blue Gene/L system against a number of popular
benchmarks as well as HOMME [7], a real application.
Highlights of our results (the best aggregated bandwidth of
MPI I/O collective file access operations running on up to
1024 BG/L compute nodes) are summarized in Table 2. It
shows the best bandwidth speedups ever achieved (to the
best of our knowledge) for these benchmarks and applica-
tions. In addition, for the first time, we demonstrate the scal-
ing for popular parallel I/O interfaces such as parallel HDF5
and parallel NetCDF. to a large number of processors.

While the results presented in this paper are obtained on
an I/O rich BG/L system with 1024 compute nodes, our so-
lution is not limited to this configuration. We are investigat-
ing the solution on bigger systems. As a continuation to our
on-going research we would like to expand API solutions
beyond the scope of MPI I/O. We are also investigating the
possibility of optimizing across-process data exchange pat-
terns, exploring effective file domain distribution, and ad-
dressing potential meta-data scalability.

References

[1] HDF5 home page. URL: http:// hdf.ncsa.uiuc.edu/ HDF5.

[2] Lustre scalable storage. URL: http:// www.clusterfs.com.
[3] The MPICH and MPICH2 homepage. URL: http:// www-

unix.mcs.anl.gov/ mpi/ mpich.
[4] LOFAR BlueGene/L Workshop. URL: http:// www.lofar.org/

BlueGene/, 2004.
[5] Parallel Virtual File System 2 (PVFS2). URL: http://

www.pvfs.org/ pvfs2, 2004.
[6] GPFS for Linux, FAQ. URL: http:// publib.boulder.ibm.com/

clresctr/ windows/ public/ gpfsbooks.html, 2005.
[7] HOMME on the IBM BlueGene/L. URL: http://

www.homme.ucar.edu, 2005.
[8] N. R. Adiga et al. An overview of the BlueGene/L supercom-

puter. In SC’02.
[9] G. Almási et al. Optimization of MPI collective communica-

tion on BlueGene/L systems. In ICS’05.
[10] G. Almási et al. An overview of the BlueGene/L system soft-

ware organization. In Euro-Par’03.
[11] G. Almási et al. Scaling physics and material science appli-

cations on a massively parallel BG/L system. In ICS’05.
[12] D. P. Bovet and M. Cesati. Understanding the Linux Kernel.

O’Reilly and Associated, Inc., 2002.
[13] A. Ching et al. Noncontiguous I/O Accesses Through MPI-

IO. In CCGRID’03.
[14] K. Coloma et al. Scalable high-level caching for parallel I/O.

In IPDPS’04.
[15] B. Fryxell et al. FLASH: An adaptive mesh hydrodynamics

code for modeling astrophysical thermonuclear flashes. As-
trophysical Journal Supplement, 2000.

[16] B. Gallmeister. POSIX.4. O’Reilly and Assoc., Inc., 1994.
[17] J. Li et al. Parallel netCDF: A High-Performance Scientific

I/O Interface. In SC’03.
[18] R. D. Loft. Blue Gene/L Experiences at NCAR. in IBM

System Scientific User Group meeting (SCICOMP11), URL:
http:// www.spscicomp.org, 2005.

[19] Message Passing Interface Forum. MPI-2: a message pass-
ing interface standand. High Performance Computing Appli-
cations, 12(1-2), 1998.

[20] F. B. Schmuck and R. L. Haskin. GPFS: a shared-disk file
system for large computing clusters. In FAST’02.

[21] R. Thakur, W. Gropp, and E. Lusk. Data sieving and collec-
tive I/O in ROMIO. In IOPADS’99.

[22] R. Thakur, W. Gropp, and E. Lusk. On implementing MPI-
IO portably and with high performance. In IOPADS’99.

[23] R. Thakur, R. Ross, E. Lusk, and W. Gropp. ROMIO: A
High-Performance, Portable MPI-IO Implementation. URL:
http:// www-unix.mcs.anl.gov/ romio/, 2002.

[24] P. Wong and R. F. V. der Wijingaart. NAS Parallel bench-
mark I/O v2.4. Technical Report NAS-03-002, NASA Ames
Research Center, 2003.

[25] J. Worringen, J. L. Traeff, and H. Ritzdorf. Fast parallel non-
contiguous file access. In SC’03.

[26] M. Zingale. FLASH I/O benchmark routine. http://
flash.uchicago.edu/ zingale/flash benchmark io, 2002.

