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Abstract

In this work, we establish an on-line optimization framework to exploit detailed

weather forecast information in the operation of integrated energy systems. We

first discuss how the use of traditional reactive operation strategies that neglect the

future evolution of the ambient conditions can result into high operating costs. To

overcome this problem, we introduce a supervisory dynamic optimization strategy

that can lead to more proactive and cost-effective operations. The strategy is based

on the solution of a receding-horizon stochastic dynamic optimization problem. This

permits the incorporation of economic objectives, statistical forecast information,

and operational constraints in a systematic manner. To obtain the weather forecast

information, we employ a state-of-the-art forecasting model initialized with real

meteorological data. The statistical ambient information is obtained from a set

of realizations generated by the weather model executed in an operational setting.

We present proof-of-concept simulation studies to demonstrate that the proposed

framework can lead to significant savings in operating costs.

1 Introduction

During the past several years, strong socioeconomic pressures have forced diverse in-
dustrial sectors to reassess the efficiency of current energy production and consumption
facilities. In particular, increasing fossil fuel prices and carbon emission penalties will
require the consideration of more efficient designs able to accommodate multiple energy
sources and operating strategies able to maximize the utilization of such resources in
a cost-optimal manner. The design and operation of these integrated energy systems
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are complex tasks because of multiple physical phenomena arising in different units and
because of their strong dependency on exogenous disturbances such as the ambient condi-
tions, time-varying demands, and time-varying fuel and electricity prices. In this context,
the availability of powerful simulation technologies able to predict and assess the per-
formance of these systems under a wide variety of operating environments will become
increasingly important.

Rigorous simulation models for myriad energy systems have been developed over the
past few years and have been used extensively for off-line design and retrofitting tasks.
The availability of these models has led to more systematic practices and, consequently, to
more cost-effective systems. Examples of available simulation software are EnergyPlus and
ADVISOR, developed at the NREL Laboratory to simulate the performance of building
and hybrid vehicle systems [6; 14]; GCTool and PSAT, developed at Argonne National
Laboratory to simulate hybrid vehicles and power train systems [8; 12]; and TRNSYS,
developed at the University of Wisconsin to simulate a wide range of hybrid energy and
building systems [11]. With this simulation technology at hand, several natural questions
arise: Can we use these powerful models on-line to optimize the operation of energy
systems? How can we integrate these simulators with available optimization technology?
Can we handle highly uncertain and dynamic disturbances effectively?

The operation of industrial systems is normally decomposed in a hierarchical man-
ner, as sketched in Figure 1. The high level is normally known as the supervisory or
set-point optimization layer. At this level, the set-points are adjusted in order to opti-
mize the system economic performance. In the context of energy systems, this level is
also known as the centralized energy management system. The lower level is the regu-
latory control level that uses available actuators to track the set-points dictated by the
supervisory level. Most state-of-the-art energy simulation packages provide closed-loop
simulation capabilities that can be used to design and test different operating strate-
gies. These capabilities are based mostly on proportional-integral-derivative (PID) and
logic-based controllers. PID controllers are limited to regulation tasks, while logic-based
controllers can be used for both regulation and set-point optimization. Logic-based con-
trollers consist of a decision-making structure or tree designed to determine the controls
as a function of the current outputs and exogenous disturbances. The decision-making
structure and threshold values are tuned off-line using a simulation model in order to ob-
tain a desired performance [21; 23]. The application of logic-based strategies is intuitive
and can provide satisfactory results for regulatory control and basic optimization tasks.
However, performing high-level supervisory optimization tasks can become cumbersome
in large and tightly interconnected systems. The reason is that, as the amount of in-
formation and number of decision variables grow, the logic structure becomes more and
more complex and tuning the associated threshold values becomes time-consuming and
impractical. In addition, once the logic-based controller is tuned by using the simulation
model on a variety of scenarios, the model will no longer be used on-line. Consequently, it
is difficult to guarantee adequate performance under unexpected conditions, and retuning
might be necessary. Moreover, handling economic objectives and operational limits can
become complicated under this framework.
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Figure 1: Schematic representation of operation hierarchy in industrial systems.

An alternative supervisory strategy is closed-loop real-time optimization (RTO) [15].
The idea is to use a steady-state rigorous model of the system and couple this to a large-
scale optimization solver. The optimizer will determine the optimal output set-points that
maximize the system profit using the current information of the exogenous disturbances.
Note that, since the set-points need to satisfy the operational limits in the real system, a
rigorous model is needed. The RTO output set-points are passed to a set of lower-level
controllers that bring the system to the optimal steady-state. Once this is accomplished,
the set-points are recomputed by RTO using the updated disturbance information. An
advantage of this framework is that economic objectives and operational limits can be
handled directly by the optimizer in a systematic manner. In addition, the rigorous
model is always used and adapted on-line. Consequently, tuning tasks are significantly
reduced. More important, it is always possible to guarantee that the system is at an
optimal operating point. As can be seen, RTO offers significant advantages over logic-
based strategies, especially in highly complex systems. Note also that, since time-varying
factors such as energy prices or weather conditions can be seen as dynamic disturbances
that move the system away from the optimal operating point, RTO can be seen as a closed-
loop optimizer that rejects these disturbances and keeps track of the maximum system
performance. As a result of these desirable economic adaptation features, RTO capabilities
are now widely used in conjunction with chemical process simulators such as AspenPlus c©

and ROMeo c©. This technology has generated millions of dollars in annual savings in
diverse sectors of the chemical industry [25]. Nevertheless, an important limitation of
RTO and logic-based strategies is that they are entirely reactive, in the sense that only
current disturbance information is used to make decisions. This feature can limit their
ability to handle highly dynamic disturbances efficiently. For instance, if the set-points
are updated at a higher frequency than the controller settling time, erratic performance
and instabilities can arise. These are important limitations in integrated energy systems
where performance strongly depends on transient disturbances.

In this work, we introduce a dynamic real-time optimization (D-RTO) strategy to per-
form economic supervisory decisions in integrated energy systems. The idea is in principle
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similar to RTO, but the key difference is that a rigorous dynamic model is used to compute
future dynamic set-point trajectories [9]. In this context, the D-RTO strategy is a special
variant of Nonlinear Model Predictive Control (NMPC). We show that this strategy per-
mits a consistent handling of highly dynamic disturbances and can directly incorporate
forecast information. This adds proactiveness to the control actions and reduces costs.
In particular, we show that incorporating weather forecast information can translate into
significant savings in energy systems. Nevertheless, we demonstrate that using accurate
forecasts and uncertainty information is critical to achieve a reliable system performance.
To obtain this information, we first propose to construct data-based autoregressive models
using a Gaussian process modeling technique. While this strategy is useful to obtain quick
estimates of certain weather conditions and related uncertainty information, it is limited
to short-term forecasts and can give rise to inconsistent uncertainty bounds. Therefore,
we explore the potential of using detailed weather models. From an operational point
of view, these models are attractive because they can provide comprehensive information
such as spatiotemporal fields of ambient temperature, solar radiation, and humidity. This
information can be fully exploited by the rigorous model embedded within the D-RTO
strategy. In current weather models, however, the uncertainty information is limited or
in forms that are inconsistent with existing optimization technology. We therefore de-
velop simplified uncertainty models for ambient variables that rely on model dynamics
and require only few empirical assumptions. The weather model is driven in an opera-
tional setting with real data and thus provides realistic and attainable estimates on the
uncertainty found in the meteorological fields. We argue that connecting these powerful
weather prediction models with modeling and optimization capabilities has the potential
of achieving unprecedented energy utilization efficiencies and cost reductions in diverse
industrial and residential sectors. We present closed-loop simulation studies on a building
system. We demonstrate that the proposed forecast-based framework is able to reduce
operating costs by exploiting the use of weather forecast information, and by reacting in
a timely manner to slow dynamic trends. We claim that the features can bring significant
savings in more complex energy systems such as hybrid systems, power plants, energy
parks, and integrated building systems.

The paper is organized as follows. In the next section, we establish the stochastic
optimization framework and analyze the impact of adding forecast information in the
economics of integrated energy systems. In addition, we present a strategy to obtain
empirical forecast information using a Gaussian process modeling technique. In Section
3, we present techniques to obtain forecast uncertainty information directly from the
WRF weather prediction system. In particular, we discuss the extraction of uncertainty
information for spatiotemporal fields of the temperature and of the ground solar radiation
through an ensemble-based approach. We close the paper with general conclusions and
directions for future work.

4



2 Optimization Framework

In this section, we derive the basic components of the closed-loop dynamic optimiza-
tion (D-RTO) framework, explain its advantages over steady-state optimization (RTO),
and discuss extensions to consider stochastic disturbance information. We then illus-
trate the economic impact of folding weather forecast information into the operation of a
photovoltaic-hydrogen hybrid energy system and a building system. We illustrate the use
of the Gaussian process modeling technique to obtain on-line forecast information, and
we explain how this information can be connected to the optimization framework.

2.1 Stochastic Dynamic Optimization

We begin by considering a differential-algebraic equation (DAE) model of the form

dz

dτ
= f (z(τ), y(τ), u(τ), χ(τ)) (1a)

0 = g(z(τ), y(τ), u(τ), χ(τ)) (1b)

z(0) = xk, (1c)

where τ is the model time dimension and tk is the current time in the real system. Variables
z(τ) are differential states, y(τ) are algebraic states, u(τ) are the controls or manipulated
variables, and χ(τ) are the exogenous disturbances. In this context, the term exogenous
refers to the fact that the disturbances are not affected by the system variables (e.g., energy
prices). The differential equations (1a) represent conservation equations (energy, mass,
and momentum), while the algebraic equations (1b) represent consistency conditions and
expressions to calculate physicochemical properties. The initial conditions at time tk are
given by the current state of the system xk. Starting from this state and using a set of
future control and disturbance trajectories, we can predict the evolution of the system.
With these predictive capabilities, we can formulate a dynamic optimization problem of
the form

min
u(τ)

∫ tk+T

tk

ϕ(z(τ), y(τ), u(τ), χ(τ))dτ (2a)

dz

dτ
= f (z(τ), y(τ), u(τ), χ(τ)) (2b)

0 = g(z(τ), y(τ), u(τ), χ(τ)) (2c)

0 ≥ h(z(τ), y(τ), u(τ), χ(τ)) (2d)

z(tk) = xk, τ ∈ [tk, tk + T ], (2e)

where T is the length of the prediction or forecast horizon. The objective function (2a)
represents the system operational costs accumulated over the future horizon (e.g., heat-
ing/cooling utilities). The inequality constraints (2d) are used to represent operational
limits (e.g., temperature, pressure, and voltage levels). The dynamic optimization prob-
lem is infinite-dimensional because it depends on time, which is a continuous parameter.
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This problem can be approximated by a finite-dimensional nonlinear programming (NLP)
problem through discretization techniques. Note that any partial differential equation
(PDE) model can also be represented in DAE form through discretization along the space
dimensions.

To formulate the optimization problem at time tk, we assume that we know the
value of the current disturbance χ(tk) but that the future disturbance trajectory is un-
known. Nevertheless, we assume that the future disturbances belong to an uncertain space
χ(τ) ∈ Ωk, τ ∈ [tk, tk + T ] that can be approximated. To do so, we use past disturbance
information χ(τ), τ ∈ [tk − N, tk] and a suitable forecast model. The forecast model can
be either empirical or physics-based. In any case, we can assume that the model pro-
vides a predictive mean χ̄(τ) and that the forecast errors follow a normal or Gaussian
distribution such that χ(τ) = N (χ̄(τ),V(τ)), where V(τ) is the covariance matrix. The
uncertain space adopts an ellipsoidal form

Ωk := { z | (z − χ̄(τ))TV−1(τ)(z − χ̄(τ)) ≤ α}, (3)

where α represents an appropriate confidence level. This uncertainty region is sketched
in Figure 2. Under these assumptions, all that is needed to represent the uncertain
space is the predictive mean and the covariance matrix. However, the proposed structure
of the uncertainty space is a modeling assumption and hence might not be accurate.
Nevertheless, from a practical point of view, what we seek is that the approximate space
can encapsulate the true disturbance realization and that it has a physically meaningful
structure.

Figure 2: Schematic representation of ellipsoidal uncertainty region.

To exploit the entire statistical information at hand, we formulate a stochastic dynamic
optimization problem of the form

min
u(τ)

E
χ(τ)∈Ωk

[∫ tk+T

tk

ϕ(z(τ), y(τ), u(τ), χ(τ))dτ

]

(4a)

dz

dτ
= f (z(τ), y(τ), u(τ), χ(τ)) (4b)

0 = g(z(τ), y(τ), u(τ), χ(τ)) (4c)

0 ≥ h(z(τ), y(τ), u(τ), χ(τ)) (4d)

z(tk) = xk, τ ∈ [tk, tk + T ], χ(τ) ∈ Ωk, (4e)
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where symbol E[·] denotes the expectation operator. From the solution of this problem,
we obtain the state and control trajectories z∗(τ), y∗(τ), u∗(τ), τ ∈ [tk, tk + T ] that we
send to a lower-level controller as set-points. The controller will try to keep the system
at the recommended target. At the next time step tk+1, we obtain the updated state of
the system xk+1 and the updated forecast disturbance information Ωk+1 that we use to
solve the next stochastic problem (4). In this way, feedback is introduced. The resulting
closed-loop D-RTO strategy is as follows.

1. Obtain current state and forecast: At time tk, obtain current state xk, distur-
bance mean χ̄(τ) and associated covariance matrix V(τ), τ ∈ [tk, tk + T ].

2. Compute set-points: Solve stochastic optimization problem (4). Send optimal
set-points z∗(τ), y∗(τ), u∗(τ), τ ∈ [tk, tk + T ] to low-level control layer.

3. Update: At tk + ∆, set k ← k + 1, and repeat process.

Here, ∆ is the set-point update period. In Figure 3, we sketch this conceptual closed-
loop optimization framework and its interaction with the low-level control layer and the
forecasting capability. Note that, in principle, we can simplify the stochastic problem
by using only the predictive mean χ̄(τ) without taking uncertainty into account. This is
equivalent to solving the deterministic optimization problem

min
u(τ)

∫ tk+T

tk

ϕ(z(τ), y(τ), u(τ),E[χ(τ)])dτ (5a)

dz

dτ
= f (z(τ), y(τ), u(τ),E[χ(τ)]) (5b)

0 = g(z(τ), y(τ), u(τ),E[χ(τ)]) (5c)

0 ≥ h(z(τ), y(τ), u(τ),E[χ(τ)]) (5d)

z(tk) = xk, τ ∈ [tk, tk + T ], (5e)

where χ̄(τ) = E[χ(τ)]. With this approach, however, we cannot guarantee satisfaction
of the operational constraints. Note also that, in the presence of uncertainty, the cost
function becomes a probability distribution because it depends on all the possible realiza-
tions of the disturbances. Therefore, optimizing a single instance of the cost function is
meaningless. These inconsistencies are avoided by considering the stochastic formulation
(4).

Note, however, that in problem (4) we have assumed that the mean of the objective
distribution is an adequate measure of the performance of the system. However, this need
not be the case. For instance, we could also choose the mean-risk approach of Markowitz
where we seek to minimize simultaneously the mean and the variance of the cost dis-
tribution. In this stochastic optimization framework, the structure of the cost function
becomes a design task because it is entirely problem dependent. Note also that the pro-
posed stochastic problem assumes that no recourse exists in the future, as in a dynamic
programming approach. This assumption is necessary in order to handle large-scale sys-
tems and inequality constraints, which becomes impractical in a dynamic programming
setting.
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Figure 3: Structure of closed-loop stochastic optimization framework.

The stochastic dynamic formulation is far more computationally demanding than the
deterministic dynamic optimization formulation. The reason is that the uncertain space Ωk

is also infinite dimensional. To solve the stochastic optimization problem, we use a sample-
average approximation (SAA) approach. The idea is to obtain independent samples from
the disturbance distribution to obtain a Ns realizations {χ1(τ), χ2(τ), ..., χNs

(τ)}. The
samples are illustrated in Figure 2. With this, the approximate stochastic problem be-
comes

min
u(τ)

1

Ns

Ns∑

j=1

[∫ tk+T

tk

ϕ(zj(τ), yj(τ), u(τ), χj(τ))dτ

]

(6a)

dzj

dτ
= f (zj(τ), yj(τ), u(τ), χj(τ)) (6b)

0 = g(zj(τ), yj(τ), u(τ), χj(τ)) (6c)

0 ≥ h(zj(τ), yj(τ), u(τ), χj(τ)) (6d)

zj(tk) = xk, τ ∈ [tk, tk + T ], j = 1, ..., Ns. (6e)

In this formulation, all the variables become a function of the particular disturbance
realization except the controls, which are decision variables. One of the key advantages of
the SAA approach is that it is straightforward to implement. Moreover, it is particularly
suitable for large-scale systems because it gives rise to highly structured problems [13].
The theoretical properties of the SAA approach have been widely studied in the context
of nonlinear programming. For instance, it has been shown that solutions of the SAA
problem converge at an exponential rate to the solution of the stochastic counterpart
[19]. Although no formal convergence results exist in the context of infinite-dimensional
dynamic optimization problems, we can expect that the available convergence guarantees
can be used under mild assumptions. Note also that, in the SAA approach, the forecast
capability can send the disturbance samples directly to the D-RTO component instead of
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the full covariance matrix. This can be useful in large-scale systems because the forecast
capability can run in a centralized manner (consider a large weather model) and send
the disturbance information to multiple D-RTO agents running on smaller, dedicated
machines.

If we shrink the prediction horizon of the stochastic dynamic optimization problem (2)
to zero, T → 0, we recover the steady-state RTO problem:

min
u

ϕ(z, y, u, χ(tk)) (7a)

0 = f (z, y, u, χ(tk)) (7b)

0 = g(z, y, u, χ(tk)) (7c)

0 ≥ h(z, y, u, χ(tk)). (7d)

This strategy finds the steady-state economic optimal operating point based only on the
current disturbances, χ(tk), which are known. With this, we no longer rely on any fore-
casting mechanism, and the problem reduces to a finite-dimensional NLP problem that is
far less computationally expensive. While formulations (5) and (7) seem to have compu-
tational advantages, in the next section we show that strong economic penalties can be
incurred by making these simplifications.

2.2 Economic Impact of Forecasting

In this section, we discuss some of the advantages of folding forecast information in oper-
ations. To do so, we present closed-loop D-RTO simulation studies on a building system.
Our objective is to illustrate how the use of forecast information can add proactiveness to
the D-RTO strategy and how this translates into lower operating costs.

Commercial buildings are energy-intensive facilities where considerable cost savings
can be realized through optimal operating strategies. As an example, researchers have
found that the thermal mass of a building can be used for temporal energy storage [2].
With this, one can optimize the temperature set-points trajectories during the day to
shift the heating and cooling electricity demands to off-peak hours and thus reduce costs.
For instance, a cooling strategy that has been used in commercial facilities consists in
cooling down the building as much as possible at night when electricity is cheaper so as
to reduce the amount of cooling needed during the day when electricity is more expensive
[3]. Since the thermal response of the building can be slow (order of hours), this can be
exploited to reduce the on-peak electricity demand the next day. However, we point out
that an issue might arise in the implementation of these peak-shifting strategies: namely,
the optimal timing at which it is decided to start the cooling at night directly depends
on the ambient temperature expected the next day. In addition, special care needs to be
taken to stay within the thermal comfort zone at all times. Motivated by these factors,
in this case study we analyze the effect of adding forecast temperature information in a
D-RTO strategy. We demonstrate that the D-RTO strategy can be easily generalized to
consider simultaneous peak-shifting for both cooling and heating during the entire year
and to consider multiple energy sources.
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Figure 4: Schematic representation of building integration with heating, ventilation, and
air-conditioning (HVAC) system.
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Figure 5: Ambient temperature in Pittsburgh PA, 2006.

The building system under consideration is sketched in Figure 4. We assume a total
volume of 10,000 m3 and a total surface area of 3,500 m2. The building is equipped with
a gas furnace, an electric heater, and an electric cooling system. Ambient temperature
data at position 40 30’N/80 13’W in the Pittsburgh, PA, area for year 2006 were obtained
from the National Weather Service Office [16]. The temperature profile is presented in
Figure 5. Note that strong temperature variations arise at different time scales (daily
and seasonal). The variability is stronger during the winter. The dynamic response of the
building internal temperature is modeled by an ordinary differential equation; the building
wall is modeled by a second-order PDE that accounts for conductive effects along the wall.
The ambient temperature enters the model through a Neumann boundary condition at
the wall external face. The basic heat-transfer model structure has been obtained from
[4]. To analyze the effect of adding forecast information of the ambient temperature, we
follow the approach described in the previous section. We first solve an open-loop dynamic
optimization problem with perfect forecast information and a prediction horizon of one
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year. The optimization problem has the following form

min
ϕelec

c (τ),ϕgas
h

(τ),ϕelec
h

(τ)

∫ tk+T

tk

[
Celec(τ)ϕelec

c (τ) + Celec(τ)ϕelec
h (τ) + Cgasϕ

gas
h (τ)

]
dτ

CI ·
∂TI

∂τ
= ϕgas

h (τ) + ϕelec
h (τ)− ϕelec

c (τ)− S · α′ · (TI(τ)− TW (τ, 0)) (8a)

∂TW

∂τ
= β ·

∂2TW

∂x2
(8b)

0 = α′ (TI(τ)− TW (τ, 0)) + k ·
∂TW

∂x

∣
∣
∣
∣
(τ,0)

(8c)

0 = α′′ (TW (τ, L)− TA(τ)) + k ·
∂TW

∂x

∣
∣
∣
∣
(τ,L)

(8d)

Tmin
I ≤ TI(τ) ≤ Tmax

I (8e)

TI(0) = T k
I (8f)

TW (0, x) = T k
W (x), (8g)

where TA(τ) is the ambient temperature, TI(τ) is the internal temperature, and TW (τ, x)
is the wall temperature (all of them in oC). The controls are the gas heating power ϕgas

h (τ),
the electric heating power ϕelect

h (τ), and the electric cooling power ϕelec
c (τ) (all of them in

kcal/hr). The model parameters are summarized in Table 1. The base wall thickness is
assumed to be 0.20 m. We assume an on-peak electricity price of 0.12 $/kWh available
from 9 a.m. to 10 p.m. The off-peak price is 0.04 $/kWh. A demand rate of 16 $/kW is
charged for the monthly peak electricity demand. The natural gas price is fixed at 0.10
$/kWh. Average prices were obtained from [22]. The thermal comfort zone is assumed
to be 69-77oF. The above PDE-constrained optimization problem is discretized by using
a central difference scheme in the axial dimension and an implicit Euler scheme in time.
The resulting NLP was implemented in AMPL and solved with the solver IPOPT [24].

From the solution of the open-loop dynamic optimization problem, we obtain the op-
timal cost and use it as a reference for the best economic performance of the system. The
resulting minimum annual cost is $28,672 (demand cost is approximately 60% of total
cost). The one-year forecast problem contains 96,613 constraints and 26,349 degrees of
freedom and can be solved in 25 iterations and 30 CPU-seconds. All numerical calcula-
tions are performed on a personal computer with 4 GB of memory and a Duo-Core Intel
processor running at 2.1 GHz. We then solve closed-loop D-RTO problems over the entire
year with prediction horizons of 1, 3, 6, 9, 12, 16, and 24 hr. An update period ∆ of 1
hr is used. The 24-hr forecast problem contains 253 constraints and 70 degrees of free-
dom and can be solved, in warm-start mode, in 10 iterations and 0.1 CPU-seconds. The
relative costs (excluding demand costs) are presented in Figure 6(a). As can be seen, for
a purely reactive strategy, the relative costs can go as high as 24% as a result of lack of
proactiveness. In addition, we observe that a horizon of 24 hr is sufficient to achieve the
minimum potential costs. The reason is that the thermal mass of the building cannot be
used for a very long time because energy is lost through the wall. In fact, we found that
as the building insulation is enhanced, the costs can be further reduced. To illustrate this
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situation, in Figure 6(b) we present the relative costs with an increased wall thickness of
0.3 m. As can be seen, using a forecast of 24 hr can reduce costs by 45%. On the other
hand, when the building is poorly insulated, increasing the forecast horizon does not re-
duce the costs. In other words, the economic potential of adding forecast information is
tightly related to the ability to store energy in the system, which is in turn influenced by the
building characteristics. The predicted cost savings agree with the results of a previous
economic study on a photovoltaic-hydrogen hybrid system [26]. In that study, we found
that the operating costs can be reduced by 75% by incorporating forecast information
of the solar radiation. In that system, increasing the forecast horizon smooths out the
control actions, resulting in higher component efficiencies and reduced power losses.

Table 1: Building model parameters.
Parameter Value Units Meaning

β 0.001 m2

hr
thermal diffusivity of wall

CI 34,800 kcal
oC

internal heat capacity
k 0.1 kcal

m·hr·oC
conductivity of wall

S 3,500 m2 wall total surface area
A 1,000 m2 usable total surface area
V 10,000 m3 building total volume
α′ 4 kcal

m2·hr·oC
convective heat transfer coefficient (wall inner side)

α′′ 10 kcal
m2·hr·oC

convective heat transfer coefficient (wall outer side)
L 0.20 m wall thickness

Celec 0.12 $
kWh

on-peak electricity cost

Celec 0.04 $
kWh

off-peak electricity cost

Cgas 0.10 $
kWh

natural gas cost

In Figure 7 we present the temperature set-points for the 24-hr and 1-hr forecast
cases during 10 days in the winter season. As can be seen, the 24-hr forecast strategy
determines the optimal timing at which electric heating needs to be turned on at night.
Note that the optimum timing and the peak temperature depend on the expected ambient
temperature. On the other hand, the reactive strategy is not able to foresee the structure
of the electricity prices. This strategy suggests that the optimal policy is to keep the
temperature set-point always at the lowest possible value in order to reduce the overall
heating costs. Although this strategy seems intuitive, it is clearly not optimal if the
structure of the electricity rates and the thermal mass of the building can be exploited.
From Figure 8, we observe that the optimal cooling policy during the summer follows a
peak-shifting strategy. The resulting policy recommends letting the building cool down
at night until the temperature gets close to the lower limit of the comfort zone. During
the day, the building is allowed to heat up progressively until it reaches the highest
limit of the comfort zone. Similar results have been obtained by Braun and coworkers
[3]. The proposed closed-loop D-RTO framework can account for time variations and

12



correct the policy automatically on-line. In this simplified study the cooling requirements
are negligible because we account only for heat gains and losses through the wall. In
addition, the day-night temperature difference at this location is large during summer,
as seen in Figure 8. A more detailed study should also account for internal heat gains,
radiation heating, air recycling, and humidity factors. Nevertheless, these preliminary
results indicate that the performance of operating strategies can benefit from anticipating
the weather conditions.
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Figure 6: Impact of forecast horizon on economic performance of building system.
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Figure 7: Optimal temperature set-points of closed-loop D-RTO with 1-hr and 24-hr
forecasts. Comfort zone is highlighted in gray.

2.3 Gaussian Process Modeling

In the previous sections, we have demonstrated that important economic benefits can
be realized by using weather forecast information. But several questions arise: Can we
get accurate forecast information? What techniques can be used? In which form is
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mer. Closed-loop D-RTO with a forecast of 24 hr was used. Comfort zone is highlighted
in gray.

the information needed? What is the effect of neglecting uncertainty? In this section,
we present a technique to derive empirical forecast and uncertainty information based
solely on data. This will be used to explain how to connect the closed-loop optimization
framework with the forecast capabilities. We show that, while the empirical strategy is
practical and useful, it has important limitations. This fact motivates our interest in
obtaining more consistent forecast information through a detailed weather model.

The most straightforward forecasting alternative is to use historical data to construct a
time-series regression model. An approach that has recently received attention is Gaussian
process (GP) modeling [18]. The idea is to construct the regressive model by specifying the
structure of the covariance matrix rather than the structure of the dynamic model itself as
in the Box-Jenkins approach [1]. We have found that this feature makes the GP approach
more flexible. To illustrate the use of this technique, we construct a forecast model for the
ambient temperature by regressing the future temperature (output) χk+1 to the current
and previous temperature values (inputs) χk, ..., χk−N that can be obtained from weather
information data bases. In this case, N is selected long enough to capture the periodic
trends of the ambient temperature. We define the model inputs as X[j] = [χk−N−j, ..., χk−j]
and the outputs as Y[j] = χk+1−j , and we collect a number of training sets j = 0, ..., Ntrain.
We assume that the inputs are correlated through an exponential covariance function of
the form

V(X[j],X[i], η) := η0 + η1 · exp

(

−
1

η2

‖X[j] −X[i]‖
2

)

, (9)

where η1, η2, and η3 are hyperparameters estimated by maximizing the log likelihood
function

log p(Y|η) = −
1

2
YV−1(X,X, η)Y−

1

2
log det(V(X,X, η)). (10)

Once the optimal hyperparameters η∗ are obtained, we can compute mean predictions YP

with associated covariance VP at a set of test points XP . In our context, these are the
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evolving temperature trends. The resulting GP posterior distribution is

YP = V(XP ,X, η∗)V−1(X,X, η∗)Y (11a)

VP = V(XP ,XP , η∗)−V(XP ,X, η∗)V−1(X,X, η∗)V(X,XP , η∗). (11b)

The inverse of the input covariance VX := V−1(X,X, η∗) (e.g., its factorization) needs to
be computed only during the training phase. With this, we can define a conceptual GP
model of the form

YP = GP(XP , η∗,VX). (12)

Note that at current time tk, we have measurements to compute only the single-step
forecast χ̄k+1. To obtain multi-step forecasts, we must propagate the GP predictions
recursively. If we define the total number of forecast steps as NF := T/∆, we can use the
following algorithm,

1. Forecast mean computation: For j = 1, ..., NF do,

(a) Set XP
[j] ← [χk−N , χk−N+1..., χk]

(b) Compute YP
[j] = GP(XP

[j], η
∗,VX)

(c) Drop last measurement, set χk+1 ← YP
[j], and update k ← k + 1

2. Forecast covariance computation: Compute self-covariance V(XP ,XP , η∗) and
cross-covariance V(XP ,X, η∗). Compute forecast covariance VP from (11b).

This recursion generates the forecast mean YP = [χ̄k+1, ...., χ̄k+T ] and associated covari-
ance matrix VP . To illustrate the predictive capabilities of the GP modeling technique,
we construct a temperature model based on the Pittsburgh, PA data presented in Figure
5. We used a total of 120 training data sets. We consider a single-step strategy NF = 1
and a multi-step strategy with a horizon of NF = 20. In Figure 9, we present the forecast
mean and 100 samples drawn from the corresponding normal distributions N (YP ,VP ).
In the top graph, we can see that the single-step strategy provides reasonable forecasts
and the uncertainty bounds encapsulate the true temperature realizations. This strategy
can be used to perform operational tasks such as high-frequency regulatory control. From
the economic analysis of the previous section, however, short forecasts are shown to be of
limited use for long-term set-point optimization. In the bottom graph, we can see that
the multi-step GP model is able to capture the periodicity of the trends. However, the
forecast mean drifts away from the true temperature realizations. Moreover, the uncer-
tainty bounds are not able to encapsulate the actual realizations. Hence, the applicability
of long-term GP forecasts for set-point optimization is limited. The ambient tempera-
ture follows strong variations as a result of spatial interactions and slow metereological
phenomena that cannot be taken into account through empirical modeling techniques.
In the following section, we discuss how to obtain more accurate and consistent forecast
information from a detailed weather model, and we present techniques to quantify the
uncertainty of the predictions.
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Figure 9: Temperature forecasts with single-step (top) and multi-step GP model (bottom).
Forecast mean is solid line, samples are in light gray, and markers are actual realizations.

3 Numerical Weather Prediction Model

In this section, we derive an ensemble data assimilation approach based on a detailed nu-
merical weather prediction (NWP) model to assess the forecast uncertainty. In particular,
we are interested in capturing the uncertainty of the temperature field. First we develop a
model for the prior covariance of the spatial temperature field obtained from the weather
model at the current time. Next, the prior distribution is sampled and evolved through
the NWP model dynamics. The resulting trajectories are then assembled to obtain an
approximate forecast covariance matrix.

The Weather Research and Forecasting (WRF) model is a state-of-the-art mesoscale
numerical weather prediction system designed to serve both operational forecasting and
atmospheric research needs [20]. We use the current version of the model, WRF 3.1, with
the default settings for the forecast and uncertainty estimation on temperature fields.

The data used in the WRF model corresponds to North American Regional Reanalysis
data set that covers 160W-20W, 10N-80N, with a resolution of 10 minutes of a degree.
There are 29 pressure levels (1000-100 hPa, excluding the surface) and a three-hour output
frequency. The time period under consideration ranges from August 1 to August 30, 2006.
This data set includes meteorological fields such as temperature, wind, and humidity, as
well as geophysical forcings such as soil albedo and vegetation type.
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3.1 Ensemble Approach to Uncertainty Quantification

At current time tk, the current model states are described through random variables. We
consider random variables with a Gaussian probability density function. By using the
Gaussian distribution, the forecast uncertainty is described completely by the random
variable mean and covariance matrix. The mean is obtained from the WRF model, which
has been reconciled to past measurement data. Traditional state estimation techniques
such as Kalman filtering and 4-D Var (moving horizon estimation) are used internally. The
dimensions of the state vector with a coarse spatial discretization is O(106). Therefore,
the covariance matrix is extremely large (grows with the square of the number of states).
Hence, in practice, the covariance matrix needs to be approximated with a reduced model
[5] or with an ensemble of realizations [17]. In this work, we prefer to use the ensemble
approach because it can be implemented by using the WRF model as a black box.

If the dimension of a random variable x is defined as n, a given covariance matrix
V ∈ R

n×n can be approximated by an ensemble of m realizations xi, 1 ≤ i ≤ m,

V :=
1

m− 1

m∑

i=1

(xi − x) (xi − x)T ≈ E
[

(x− x) (xi − x)T
]

,

x :=
1

m

m∑

i=1

xi ≈ E[x]. (13a)

One also has that

V = D
1

2 CD
1

2 , Ci,j =
Vi,j

√
Di,i

√
Dj,j

=
Vi,j

σiσj

=
σ2

i,j

σiσj

, 1 ≤ i, j ≤ n ,

where C is the correlation matrix and D is a diagonal matrix holding the local variances
(Di,i = σ2

i ). In the context of the closed-loop stochastic optimization framework of Section
2, x represents the current exogenous state or disturbance χ(tk) with mean x := χ(tk)
and covariance V := V(tk). Note that, in this case, the disturbance at tk represents a
three-dimensional spatial field χ(tk, x, y, z). In the following, we simplify the notation by
eliminating the explicit dependence on the space dimensions. Using this representation,
we now discuss how to approximate the forecast covariance.

Consider the true state of the weather at time tk, χtrue(tk). Since the numerical model
is not perfect, the true state at tk+1 is given by

χtrue(tk+1) =M (χtrue(tk)) + η(tk), (14)

where M is the WRF model and η represents the model errors that are assumed to be
unbiased with covariance Q, η ∈ N (0, Q). Since the current state is not known exactly,
the numerical prediction at time tk+1, χ(tk+1), is obtained from the model evolution of the
believed state (true solution perturbed with errors) that is represented by a set of unbiased
random variables ε(tk), ε ∈ N (0,V(tk)). With this, we can express the future believed
state as

χ(tk+1) =M (χtrue(tk) + ε(tk)) . (15)
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Since χ(tk+1) becomes a random variable, we define its covariance matrix as V(tk+1). The
matrix is given by

V(tk+1) = E
[

(χ(tk+1)− χtrue(tk+1)) (χ(tk+1)− χtrue(tk+1))
T
]

(16a)

= E [(M (χtrue(tk) + ε(tk))− (M (χtrue(tk)) + η(tk)))

· (M (χtrue(tk) + ε(tk))− (M (χtrue(tk)) + η(tk)))
T
]

. (16b)

This formula reduces to the Kalman filter covariance update under certain special
conditions. To illustrate, we first assume that the initial condition errors ε(tk) and model
errors η(tk) are uncorrelated. Consequently,

E
[
(M (χtrue(tk) + ε(tk))) η(tk)

T
]

= 0.

Moreover, if we assume that the error growth is well approximated by a linearized model,
then

M (χtrue(tk) + ε(tk))−M (χtrue(tk)) = M · ε(tk) .

where M = dM
dy

. It follows that (16a) becomes

V(tk+1) ≈ E
[

(M · ε(tk) + η(tk)) (M · ε(tk) + η(tk))
T
]

,

= E
[
Mε(tk)ε

T (tk)M
T
]
+ E

[
M · ε(tk)η(tk)

T
]
+ E

[
η(tk)ε

T (tk)M
T
]
+ E

[
η(tk)η(tk)

T
]

,

= MV(tk)M
T + Q . (17)

Equation (17) represents a linear approximation of the exact error covariance. The ensem-
ble approach, on other other hand, propagates the uncertainties in the current state field
through the nonlinear WRF model according to (15). The covariance matrix is approxi-
mated by using an ensemble of realizations generated by sampling the prior distribution
ε(tk) ∈ N (0,V(tk)). We obtain multi-step trajectories by recursive model propagation of
each realization

Y[j,i] := χ(tk+j, i) =M(M(...M
︸ ︷︷ ︸

j times

(χtrue(tk) + εi(tk)))), j = 1, ..., NF , i = 1, ..., m, (18)

From these trajectories, we compute the multi-step forecast mean YP and covariance
matrix VP using the ensemble approximations (13). Note that the ensemble approach is
able to capture the strong model nonlinearities more accurately. To estimate the forecast
covariance, however, we need to specify the prior covariance V(tk) which in many cases
cannot be computed because of the large state dimensionality. We next introduce a
method to approximate this matrix.
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3.2 The NCEP Method for Prior Covariance Estimation

The National Centers for Environmental Prediction (NCEP) method [17; 7; 10] has been
used to estimate the spatial uncertainty information. This method was known formerly as
the National Meteorological Center (NMC) method. The idea is to estimate characteristic
correlation distances to construct an artificial covariance matrix. The inferred characteris-
tic horizontal correlation distance for this case is approximated by LH = 2 degrees and by
LV = 500 meters in the vertical direction. This can be obtained by physical intuition. The
spatial correlation function between two spatial points χ(tk, xi, yi, zi) and χ(tk, xj , yj, zj)
is defined as

Ci,j = exp

(

−
(xj − xi)

2 + (yj − yi)
2

L2
H

−
(zj − zi)

2

L2
V

)

. (19)

The correlation function (19) is used to construct the covariance matrix from which the
ensemble for the initial state field is drawn. Here, we focus on the temperature field
T (tk, x, y, z). The true initial temperature field is not known exactly, but we assume
that it is correctly represented by an unbiased random vector εT (tk). With this, the
temperature field T (tk) is characterized by a random vector TB(tk) with the following
properties:

TB(tk) = T (tk) + εT (tk) , E
[
εT (tk)εT (tk)

T
]

= VTT (tk) , E [εT (tk)] = 0

⇒ TB(tk) ∈ N (T (tk),VTT (tk)) .

The initial temperature field is approximated by an m-member ensemble drawn from

TB
j (tk) = T (tk) + GCGT ξj , 1 ≤ j ≤ m , ξ ∈ N (0, 1) ,

where GCGT ≈ VTT (tk). Here, matrix G transforms the unbalanced variables into full
quantities for temperature and is defined as G[j] := σG(zj)I, j = 1, . . . , nz, and G =
diag

(
G[1], . . . , G[nz]

)
, where

σG(zj) = E [T (tk, x, y, zj)] / max
i

(E [T (tk, x, y, zi)]) .

This covariance can then be used to compute the forecast mean and covariance through
the ensemble approach.

3.3 Validation of Weather and Uncertainty Model

We next validate the forecast and uncertainty temperature model by using the independent
measurements of Section 2.2 for the Pittsburgh area [16]. In the left graph of Figure 10,
we show a multi-step ensemble of 30 members for temperature realizations, the expected
temperature value, and measurements for five days (Aug. 1–6, 2006). This corresponds to
a total of NF = 120 forecast steps with ∆ = 1hr. In the right graph we present the recon-
structed forecast distribution (mean ± 3σ) obtained from the ensembles. Note that the
forecast errors are small (±5oC) and the uncertainty envelope encloses the true (measured)
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solution. In addition, the model can capture long-term temperature trends except at the
third day, where an unusual temperature drop is observed. In Figure 11(a), we present
the hourly evolution of the standard scores of the actual realizations for the multi-step GP
model and for the weather model. In Figure 11(b), we present the cumulative standard
error of the actual realizations for the multi-step GP model, for the weather model and
for the standard normal ( in this figure, larger is better). For example, a standard error
less than 2 is obtained 65% of the time by the weather model but only 25% by the GP
model. We conclude that the weather uncertainty model is far more accurate.

The forecast errors for the GP model are within ±15 σ. The forecast errors of the
weather model are always within ±5 σ except at the third day, where the temperature drop
of the third day can be clearly identified. The scores analysis suggests that this sudden
temperature drop might be due to a sensor malfunction. If we drop this malfunction
from the data, the cumulative error would be far closer to the normal for the weather
model in Figure 11(b). Nonetheless, while this seems reasonable, the lack of information
about that event will introduce our bias into the assessment. We therefore report the best
information available and note that, in any event, the weather model is far more accurate
than the GP model.
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Figure 10: Temperature forecast for the Pittsburgh airport area during August 1–6, 2006.
Forecast mean and 30 ensembles obtained from perturbations of initial temperature field
(left). Reconstruction of forecast distribution from ensembles - mean ± 3 σ (right).

The ensemble forecast provides sufficient information to describe the spatial error
distribution. In Figure 12, we illustrate the horizontal correlation field for the temperature
error in the Pittsburgh area corresponding to 10 a.m. August 1 and August 2, 2006 [16].
Note that the error field widens in time as the uncertainty of the forecast increases. Note
also that strong temperature variations can arise in relatively narrow regions. Therefore,
we emphasize that accounting for spatial effects is critical for accurate and consistent
forecasts.
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Figure 11: Standard scores for GP and weather model forecasts.
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Figure 12: Correlation field for the temperature errors in the Pittsburgh area at 10 a.m.
on consecutive days.

3.4 Integrative Study for Building System

We revisit the building system of Section 2.2 in order to illustrate the impact of using
forecast uncertainty information in the operating strategy. Here, we solve the SSA ap-
proximation of the stochastic counterpart of problem (8) over a horizon of 5 days. The
SSA problem is given in equation (20). We use 100 samples drawn from the forecast
distributions of the multi-step GP model and of the weather model shown in Figures 9
and 10, respectively. After discretization, the resulting NLP contains 130,900 constraints
and 357 degrees of freedom. The problem can be solved, in warm-start mode, in 20 it-
erations and 68 CPU-seconds. The resulting open-loop profiles for the building internal
temperature are presented in Figure 13. In the top graph, we present the temperature
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profile for the ideal strategy where perfect forecast information is assumed. Since there
is no uncertainty, the predicted temperature profile matches the actual realization. Note
that the optimal set-point policy hits continuously the bounds of the comfort zone, as it
tries to take advantage of the on-peak and off-peak electricity rates to minimize costs.
In the middle graph, we present the optimal temperature profiles obtained using forecast
information from the GP model. Since the uncertainty structure of the GP forecast is not
able to capture the ambient temperature, the actual realization of the internal building
temperature goes outside the comfort zone. In the bottom graph, we see that the use of
weather model forecast results in an temperature trajectory that stays within the comfort
zone at all times.

The cost penalty sustained by the NCEP weather uncertainty approach from subsec-
tions 3.1 and 3.2 when compared to the GP model uncertainty approach is about 10-20%
of the ideal cost. One should bear in mind, however, that the GP model cost turns out to
be infeasible for the actual realizations (the building temperature significantly exits the
comfort level), so using only cost as a performance is misleading in this case. We could
easily imagine some financial measure of the violation and report it to balance the per-
ceived cost drop. Nevertheless, given the complex regulatory nature of the comfort level
limits, their violation cost may easily be understated. For example, the 10CFR434 federal
regulations for new federal, commercial and multi-family high-rise residential buildings
require compliance with the comfort zone at least 98 % of the time the building is oc-
cupied. Therefore using the GP model would result in the operator being in violation of
the federal law (the constraint violation in Figure 13 would be out of compliance more
than 30 % of the period stated), the cost of which is difficult to fully assess. Given the
difficulty of pricing the violation, it is more beneficial to regard the situation from the
constrained optimization perspective and state that feasibility takes precendence over low
cost. We conclude that the weather uncertainty model is the only one that has a suffi-
ciently accurate description of the uncertainty to result in a feasible policy at a cost that
is still substantially lower than the reactive policy cost.

We also note that the variance of the predicted temperature realizations increases with
time. Since the comfort zone is very narrow (≈5oC), high-precision forecast information
is needed to realize economic benefits.
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Figure 13: Performance of weather forecast-based operating strategies. Thermal comfort
zone is highlighted by thick solid lines, predicted temperatures are gray lines, and actual
realizations are dashed lines.
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4 Conclusions and Future Work

In this work, we demonstrate that significant costs reductions can be achieved by using
operation technology that can anticipate the weather conditions in a systematic manner.
We show that adding forecast information provides a mechanism to compute proactive
policies that can lead to enhanced performance in systems with slow responses.

We discuss strategies to obtain weather forecast information. We emphasize that
a Gaussian-process empirical strategy provides quick estimates but is limited to short
horizons and can lead to inconsistent uncertainty bounds. Motivated by these facts, we
discuss the potential of using detailed weather models to obtain forecasts. We demonstrate
that these models are capable of providing more accurate forecasts and are able to capture
temporal and spatial correlations of the state fields. We extend a weather model to provide
forecast covariance information through the ensemble-based approach.

As future work, we are interested in establishing a full connection between the weather
model forecasts and the stochastic programming framework. To do so, we first must im-
plement the ensemble-based approach in a closed-loop manner. Since the weather model
is extremely computationally expensive, a dedicated, centralized parallel computing ar-
chitecture is needed that can send forecast information to individual control agents. In
addition, since the amount of data to be handled is huge, strategies must be established
to communicate only the essential forecast statistical information. Another important
issue is the fact that the weather model provides information over relatively coarse fields
that need to be mapped to the specific location of the energy system under considera-
tion. To this end, we are interested in using a Gaussian process framework to interpolate
the spatiotemporal fields. We are also interested in addressing the complexity of large-
scale stochastic programming problems through adaptive sampling and variance reduction
techniques. Moreover, we will consider more comprehensive models for energy systems in
order to refine the current estimates of the economic gains.
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