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Abstract—We study the interactions between computational
and economic performance of dispatch operations under highly
dynamic environments. In particular, we discuss the need for
extending the forecast horizon of the dispatch formulation in
order to anticipate steep variations of renewable power and
highly elastic loads. We present computational strategies to solve
the increasingly larger optimization problems in real time. To
illustrate the developments, we use a detailed dispatch model of
the entire Illinois system with out-of-state wind generation.

I. INTRODUCTION

The next-generation power grid will be operated under
highly dynamic regimes, including distributed storage and
cogeneration, large-scale renewable generation, and highly
elastic loads. These resources act as fast disturbances that
need to be balanced out in the grid in real time. Wind power
ramping events are already demanding more proactive and fast
operational systems [14]. This situation is illustrated in Fig.
1, where we present typical profiles for the total load and
wind power at different adoption levels. As can be seen, wind
power supply can fluctuate by an order of magnitude in a few
minutes. Similar trends are expected for the loads under smart
grid environments.

Economic dispatch (ED) is one of the most important
operational tasks in the power grid. The ED system updates
the output levels of the committed generators to match the
load demands in a cost-optimal manner. The solution has to
satisfy both transmission and generation ramping constraints
[19]. This task is of great importance since it clears the real
time market and sets the locational marginal prices [16]. The
ED system is currently designed by using forecast horizons
on the order of a couple of hours with a time resolution (i.e.,
time steps) of a few minutes. Under stable operations, this
horizon might be sufficient to capture load trends. However,
in the presence of steep trends such as those observed during
wind ramping events, the performance of the ED system might
deteriorate if it does not have enough foresight and resolution.
This can lead, for instance, to load and wind curtailment.

Increasing the foresight and resolution of the ED problem
comes at the expense of additional computational complexity.
The problem is usually cast as a large-scale linear or quadratic
optimization problem [20]. The main source of complexity is
the inherent transmission network that has to be accounted
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Fig. 1. Snapshot of total load and increasing levels of wind power.

for at each time step in the horizon. In addition, coupling
due to ramping constraints can render the problem intractable
for even a few time steps. While state-of-the-art optimization
solvers are currently able to solve large ED problems, scala-
bility bottlenecks are still a concern.

In this work, we analyze the interactions between the eco-
nomic and computational performance of ED. We first analyze
the effect of increasing the horizon of the problem and discuss
the associated computational implications. To this end, we
present a detailed model for the Illinois system and compare
the performance of barrier and simplex optimization solvers.
In particular, we identify scalability bottlenecks associated
with the core linear algebra kernels of the solvers. We exploit
the advantages of both barrier and simplex strategies and
notions of model predictive control to derive effective warm-
starting strategies. The proposed developments can enable
the implementation of detailed ED formulations under tight
solution time constraints.

II. EcoNOMIC DISPATCH PROBLEM

We consider the traditional social welfare formulation where
the objective is to minimize generation costs subject to direct-
current transmission and generation ramping constraints. The
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ED problem has the following form:
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Here, ¢ is the real time index, k is the horizon time index,
and N is the number of time steps in the horizon. The sets
B,L,G,W, and D are the buses, lines, thermal generators,
wind generators, and load demands, respectively. Subindexed
sets in j represent subsets at bus j. The problem variables
are the thermal generation levels Gy, ;, the ramp increments
AGy,;, the power flows Py ; ;, the bus angles 6 ;, and the
wind curtailment flows AW}, ;. The problem data are the load
demands Dy, ; and wind power flows W7, ;. The multipliers of
the network constraint (I1c) are the locational marginal prices
Ak,; at time k and bus j.

III. FORECAST HORIZON AND COST PERFORMANCE

At each time instant ¢, the ED problem is solved by using
the observed and forecasted data for the load demands and
wind flows. The observed flows are Wy ;, D, ;, while W,; ;,
Dy, = 1,...,N — 1 are forecast. The solution of this
problem sets the generator levels for the current time step
Gy, with associated cost ' = ¢; 37, ; Gy, and the
locational marginal prices A;j ¢, j € B. At the next time step
£+ 1, the true loads and wind power flows are observed, and
a new ED problem is solved to obtain G4 ; and cp%[f . To
manage the forecast horizon, one can use either a moving or a
shrinking horizon approach. Both approaches have advantages
and disadvantages from computational and implementation
perspectives.

A. Moving Horizon

In the moving horizon approach, the horizon at time ¢ is
k = {¢,...¢0 + N. At the next step, the horizon is shifted
forward in time £ = ¢+ 1,....4 + N + 1. This approach
has the computational advantage that the problem size remains
fixed. The horizon length is usually constrained by the solution

time, which must match the time resolution (e.g., typically five
minutes). From an implementation perspective, the horizon
needs to be shrunk toward the end of the bidding cycle
where the unit commitment decisions are made. The cycle is
usually 24 hours. Extending the horizon over the bidding cycle
can introduce a significant amount of uncertainty since the
minimum power outputs are determined after bidding. Thus,
if the bidding cycle contains 7' time steps and ¢ = O at the
beginning of the cycle, the horizon satisfies

N = N if (+N<T
T\ T—¢ if L+N>T

Warm-starting moving horizon problems is complicated be-
cause of the horizon shifting. Reusing the solution at ¢ to
initialize the problem at ¢ 4 1 is beneficial but inconsistent,
thus limiting the achievable solution times.

(=0,...T—1. (2

B. Shrinking Horizon

In the shrinking horizon approach, the problem is solved
for the entire bidding cycle N = T and this is updated at
each step by dropping only the first element of the horizon
such that N = T — ¢, ¢ = 0,...,T — 1. The advantage
of this approach are that it is consistent with the bidding
cycle and that it satisfies Bellman’s principle of optimality
[1]. Bellman’s principle states that, under perfect foresight, the
solution profile obtained with horizon k = ¢, ..., T is optimal
for the problem with shrunk horizon & = ¢ + 1,....T. A
disadvantage of this approach is that the bidding cycle can
be extremely large compared to the time resolution of the
problem. For instance, if we use a resolution of 5 minutes,
a bidding cycle will contain 7" = 288 steps. However, as
shown in Section IV, Bellman’s principle can be exploited
to derive effective warm-starting strategies that can enable the
implementation of ED problems with high time resolutions
and long horizons.

The perfect foresight problem with N = T, gives the best
possible cost trajectory g, £ = 0, ..., T over the bidding cycle.
For the moving horizon approach, as N — 7T, the moving
horizon cost approaches the optimal cost. The convergence
rate is problem dependent and thus difficult to establish a
priori. However, this property can be exploited to derive hybrid
moving-shrinking horizon strategies that do not need to set
N =T and can still exploit Bellman’s principle to generate
warm-starts. This approach has been proposed in the model
predictive control literature [6], [21].

IV. COMPUTATIONAL ISSUES

We can write the ED problem (1) in the general form

min ¢’z (3a)
st.Ax=15b (3b)
x>0, (3¢)

where x € R™ is the variable vector, A € R™*" is the
Jacobian matrix, ¢ € R" is the cost vector, and b € R™
is the data. Highly efficient solvers can be used to solve
large-scale problems of this form. Commercial solvers include



Cplex from IBM, Gurobi, Mosek, and Knitro; non commercial
solvers include Clp and Ipopt from the COIN-OR repository
http://www.coin-or.org. Cplex, Gurobi, Mosek, and Clp are
targeted to linear and quadratic optimization problems; these
solvers use implementations of the primal and dual simplex
method and of Mehrotra’s predictor-corrector barrier method
[13]. Ipopt [18] and Kanitro [5] are barrier solvers for general
nonlinear optimization problems. The reason for considering
these nonlinear solvers in this study is that their linear algebra
kernels are highly efficient, making them ideal for large-scale
applications. These advantages are explained in the following
subsections.

A. Simplex Methods

The simplex method starts by partitioning the variable space
into basic and non-basic variables 27 = [z 21| with 25 €
R zn € R With this, the Jacobian matrix can be
partitioned as A = [Ap An], where Ap € R™*™ is a square

matrix and Ay € RM*(n=m), Similarly, the cost vector can

be partitioned as ¢’ = [cL ¢%]. The optimality conditions of

(3) are

c—ATA—v=0 (4a)
Az —b=0 (4b)
Tv=02>0c—ATX>0, (4c)

where A € R™ and v € R" are the constraint and bound
multipliers, respectively. In pseudo-code, the basic steps of
the simplex method are as follows [2]:

o At iteration k = 0: Start with a non-singular basis A%,

x(}v =0, and :vOB > 0. If basis not available, set A% —

]Ime
o For iteration k > 0:
1) Factorize basis A’fg using LU decomposition to ob-
tain L%, UE, or update existing factors L%‘l, Ug_l.
2) Compute basic variables by solving A%x% = b —
Ak 2%, and multipliers by solving A% Nk = cp
with available factors.
3) Check l/J’i, =cnN — A’fVTAk > 0. If it holds, solution
is optimal; otherwise, choose any variable xﬁ}e in
X, for which Vllﬁ;e < 0 as an entering variable for
the basis.
4) Compute basis step by solving A% Az, = A% (:e)
and ratios OF = 2% /Azk . Here, A% (:,¢€) is the e-
th column of A%
5) Apply ratio test to find leaving variable xlfg’l with
©F > 0 such that 25! = 2% + OF Azk, > 0.
6) Update basis by setting A% (:,1) « A% (:,e);, set
x%’l + 0, and go to next step k < k + 1.
In this algorithm, the factorization step (1) is the most compu-
tationally intensive step [12], [17]. Efficient LU factorization
routines (such as MA48 from Harwell [8]) are used to factorize
the basis matrix, which is sparse, unsymmetric, and indefinite.
The factorization time of this matrix, will increase with the
horizon length and network complexity. Note that if a basis
is not originally supplied, the algorithm can take a very

large number of iterations (on the order of m) to obtain a
feasible basis. Consequently, a large number of factorizations
and long computational times can be expected. Once a good
basis matrix has been identified, strategies such as the Forrest-
Tomlin and Golub-Bartels can be used to update the basis LU
factors inexpensively [9], [17]. In real time applications, it
is thus critical to provide the algorithm with a good starting
basis.

B. Barrier Methods

Another approach to solve the problem consists of relaxing
the complementarity conditions (4c) as 27 (c — AT)) =
we, u* > 0 and applying Newton’s method directly to the
nonlinear optimality conditions. Here, e € " is a vector
of ones. The search step for the variables and multipliers is
computed simultaneously by solving the optimality conditions
for decreasing values of p* — 0. For fixed p*, the search
step at iteration j is computed from the solution of the linear
system:

¥ AT Ag? | [ e—ATN — XIpFe )
A AN | T Axd —b ’
where X7 = diag(z/),V? = diag(+?), and ¥ =

X77'V3. The bound multipliers are recovered from Ap/ =
—X9 (e + VIAz7) — 7. In the most basic setting, the
Newton iterations j > 0 try to converge to the solution z*(u*),
and then py, is decreased. Some more advanced p-updates can
be used.

The factorization of the matrix on the left-hand side
(Karush-Kuhn-Tucker matrix) is the most computationally
intensive step in the algorithm. Note that this matrix is
symmetric and indefinite and is much larger than the basis
matrix factorized in the simplex method (i.e.; (n+m) X (n+m)
against m X m). In order to solve the linear system, two
approaches are normally used. The first one consists of elimi-
nating the step for the multipliers to form the normal equations

(a7t aT)ax = - ({ -4 ™), ©

where 1} = —(c — ATN — XJy¥e) and 1] = —(Az7 — b).
The matrix on the left-hand side is known as the normal
matrix. The step for the primal variables is recovered from
Azi = it (ri — ATAN). If the Jacobian matrix A is
full rank, then the normal matrix is positive definite. This
enables the application of a Cholesky factorization to obtain
factors of the form L7 and L7". Even though the normal
matrix is significantly smaller (m x m) than the original KKT
matrix, forming the normal system might destroy the sparsity
of the original KKT matrix, making the Cholesky factorization
inefficient. This is the strategy used in most barrier solvers
specialized for linear optimization problems such as Cplex
[4], [3] and Clp.

A more efficient approach that can be used to factorize the
KKT matrix consists of directly applying a saddle-point solver
such as MAS7 [7] or Pardiso [15]. Saddle-point solvers have
advanced significantly in the last few years and are capable of
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Fig. 2. Illinois system. Gray dots are generation buses.

solving very large systems efficiently. The key to this approach
is the ability to preserve and exploit the high degree of sparsity
of the KKT matrix.

A fundamental problem of interior-point solvers is that they
cannot exploit warm-start information efficiently [10]. The
reason is that barrier methods proceed progressively from the
interior toward the boundary of the feasible region. On the
other hand, this strategy also makes the number of iterations
insensitive to the problem size and number of variable bounds.
Consequently, these solvers are much more efficient than the
simplex method when no warm-start information is provided.
In the following section, we evaluate the performance of
barrier and simplex methods on large-scale ED problems. In
addition, we propose strategies to exploit the advantages of
these competing approaches to accelerate the solutions.

V. ILLINOIS SYSTEM SET UP

We have built an ED model using real data for the Illinois
system. The system comprises 1900 buses, 2538 transmission
lines, 870 load nodes, and 261 generators. Our data consists
of detailed specifications for the network topology, ramp
and generation limits, fuel costs, and transmission lines. The
Illinois system is sketched in Fig. 2. We have added artificial
wind power data in out-of-state buses to simulate a nominal
wind power adoption of 10%.

A. Economic Issues

We first analyze the effect of increasing the forecast horizon
in the ED formulation. We run the system using a moving
horizon approach for a single bidding cycle. We assume that
all the units are committed. In Fig. 3, we plot cost savings
as a function of horizon length using a one-hour horizon as
the reference. We use a time resolution of one hour. As can
be seen, significant savings can be realized by extending the
horizon over 8 hours. The optimal cost can be reached with
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Fig. 3. Effect of horizon length on cost savings.

an horizon of around 10 hours. The savings over the bidding
cycle are around $100, 000 this represents around 1% of the
daily generation cost. We have observed that the magnitude
of the savings depends on the ramp constraints, the initial
conditions for the generators, and the variability of the wind
power and loads. Consequently, while the overall trends are
realistic, assessing the full potential savings requires a more
detailed study.

B. Computations Issues

The previous study suggests that increasing the horizon
of the ED formulation can bring increased performance. In
Table I and Fig. 4 we present the problem dimensions as
the horizon increases. In addition, we present solution times
with no warm-start for the Ipopt (version 3.8) and Cplex
(version 12.2) solvers. The Harwell subroutine MAS57 was
used for factorization of the KKT matrix in IPOPT. The best
reordering strategy was nested dissection, implemented in the
Metis package [11]. The dual simplex method was used in
Cplex (Cplex-Dual). All calculations were obtained on a quad-
core Intel processor running Linux at 2.4 GHz.

The size of the problem increases linearly with the horizon
length. A problem with 24 time steps already contains more
than 100,000 variables. Most of the complexity comes from
the network constraints. We observe, however, that despite
the network complexity, the problems are very sparse and
the sparsity increases with the problem size. Ipopt has been
found to be significantly more efficient than Cplex-Dual in
the case where no warm-start is supplied. In particular, for
a problem with 24 time steps, the solution time of Ipopt
is less than 3 minutes, while that of Cplex is more than
11 minutes. The largest problem solved with Ipopt contains
48 time steps and 205,000 variables and can be solved in
less than 10 minutes. We point out that the barrier method
implemented in Cplex was not competitive in solution time
and robustness. For instance, the solution of an ED problem
with three time steps using Cplex-Barrier takes around two



TABLE I
COMPUTATIONAL PERFORMANCE OF OPTIMIZATION SOLVERS (NO
WARM-START).

TABLE I
COMPUTATIONAL PERFORMANCE OF OPTIMIZATION SOLVERS
(WARM-START). TOTAL WIND POWER PERTURBATION OF 10%.

Nonzeros Ipopt Cplex-Dual Ipopt Cplex
N n m Jacobian [%] CPUs- Iter CPUs - Iter N | CPUs- No. Refactorizations  CPUs- No. Refactorizations
4272 4009 0.068 0.7-22 0.3-1154 09 -14 02 -1
3 12816 12027 0.024 4.2-36 4.5-5100 6 17.67 -38 4.85 -8
21360 20045 0.014 9.5-41 17.6- 10312 12 47.82 -43 14.95 -9
10 | 42720 40090 0.007 36.0-46 120.1-25427 18 118.33 -46 16.06 -8
12 | 51264 48108 0.006 42.0-43 181.7-31191 24 13545 -47 28.28 -9
16 | 68352 64144 0.005 94.1-51 344.7 - 46099
20 | 85440 80180 0.004 110.4 - 47 600.5 - 63737
24 | 102528 96216 0.003 163.8 - 50 679.3 - 68540
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Fig. 4. Effect of horizon length on computational performance of optimiza-
tion solvers (no warm-start).

minutes. This can be attributed mainly to the linear algebra
kernel and ill-conditioning of the KKT matrix. Unfortunately,
since the Cplex output display is limited, it is difficult to
pinpoint performance bottlenecks.

In Table II and Fig. 5 we present the performance of
the solvers when warm-start is provided. In this set up, the
problems are solved with nominal wind power values to
obtain the initial solution. The wind power outputs are then
perturbed by 10% of their nominal value. The rationale behind
this set up is that the solutions of the previous cycle at the
same time can be used. In other words, this warm starting
approach exploits the natural periodicity of the load in the
bidding cycle can be exploited. When warm-started, Cplex
significantly outperforms Ipopt. In particular, note that for a
problem with 24 time steps, Cplex takes 28 seconds, while
Ipopt takes more than 2 minutes. We observe that Cplex
requires only 9 refactorizations of the basis matrix. Another
interesting observation is that the factorization times of the
KKT matrix are lower than those of the basis matrix, despite
the fact that the KKT matrix is twice as large. This clearly
illustrates the efficiency of MAS57 and the Metis reordering.

In Fig. 6 we analyze the robustness of the warm-starts
provided to the solvers. We solve a problem with six time

Horizon Length [-] Horizon Length [-]

Fig. 5. Effect of horizon length on computational performance of optimiza-
tion solvers (with warm-start).

steps and perturb the wind power profiles by 10, 20, 30, 40,
and 50% of the nominal values. We have found that the basis
matrix can keep the solution times of Cplex relatively stable
despite the strong perturbations. Similar behavior has been
observed for perturbations in the loads. For a problem with
12 time steps and a perturbation of 10% in all the bus loads,
the solution time goes down from 442 seconds with no warm-
start to 37 seconds with warm-start. In the warm-started case,
only 883 dual simplex iterations and four refactorizations are
needed. For a problem with 16 time steps the solution time
can be reduced from 350 seconds to 50 seconds with only
4 refactorizations needed. Note that a perturbation of 10%
in the loads is much larger than the forecast errors observed
in real operations (2-5%). This result is important because it
suggests that we can construct basis matrices in advance (e.g.,
one day ahead using the forecasted load) and reuse them in
real time to accelerate the solutions. Moreover, the warm-start
basis matrix can be constructed with barrier solvers such as
Ipopt or Knitro, and this can be fed to the simplex solver to
perform fast, real time LU updates.
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VI. CONCLUSIONS AND FUTURE WORK

We have presented a preliminary evaluation of the effects
of increasing the detail of dispatch formulations. In particular,
it is clear that longer horizons are needed in more dynamic
operations such as those expected in the next-generation grid.
We have tested the performance of two state-of-the-art solvers
implementing barrier and simplex methods in a large-scale
systems. We have found that the basis matrix in the simplex
method is robust to data perturbations. In addition, we have
found that barrier solvers that directly factorize the Karush-
Kuhh-Tucker matrix scale well in large-scale problems. These
complementary advantages can be used to derive warm-
starting strategies to avoid computational bottlenecks. For
instance, we suggest that warm-start basis matrices should be
constructed one bidding cycle in advance using forecast infor-
mation and reused in real time. The presented computational
analysis also sets a reference for the expected performance
of state-of-the-art solvers. This is important in moving to
more complex dispatch formulations, including real time unit
commitment, storage, and transmission switching decisions.
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