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A Computational Framework for Uncertainty
Quantification and Stochastic Optimization in Unit

Commitment with Wind Power Generation
Emil M. Constantinescu, Victor M. Zavala,

Matthew Rocklin, Sangmin Lee, and Mihai Anitescu

Abstract—We present a computational framework for integrat-
ing a state-of-the-art numerical weather prediction (NWP) model
in stochastic unit commitment/energy dispatch formulations that
account for wind power uncertainty. We first enhance the NWP
model with an ensemble-based uncertainty quantification strategy
implemented in a distributed-memory parallel computing architec-
ture. We discuss computational issues arising in the implementation
of the framework and validate the model using real wind-speed
data obtained from a set of meteorological stations. We build a
simulated power system to demonstrate the developments.
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NOMENCLATURE

Numerical Weather Prediction
γ Ensemble inflation factor
M Numerical weather prediction model
M Number of model states
NS Number of ensemble members
Q Covariance of the model error
U , V , T Horizontal wind components and the tem-

perature atmospheric fields
V, C Covariance and correlation matrices of the

initial ensemble
x Atmospheric field
x, S2 Ensemble sample average and covariance

matrix
xNARR Atmospheric state reconciled with observa-

tions

Unit Commitment
aj,bj Coefficients of production cost function of

thermal unitj
ccj,hcj ,tcold

j Startup cost function coefficients of thermal
unit j

cd
j,k Shutdown cost of thermal unitj in periodk

cp
j,k Production cost of thermal unitj in period

k
cu
j,k Startup cost of thermal unitj in periodk

Cj Shutdown cost of thermal unitj
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Dk Load demand in periodk
DTj Minimum down time of thermal unitj
Kt

j Cost of intervalt of the stairwise startup
function of thermal unitj

N Number of thermal units
NS Number of wind-power scenarios
Nwind Number of wind units
NDj Number of intervals of the stairwise startup

function of thermal unitj
νj,k On/off state of thermal unitj in periodk
ps,j,k Power output of thermal unitj in periodk

and scenarios
pwind

s,j,k Forecasted power output of wind unitj in
periodk and scenarios

pwind,true
s,j,k Observed power output of wind unitj in

periodk and scenarios
P j Maximum power output of thermal unitj
P j Minimum power output of thermal unitj
Rk Reserve in periodk
RDj Ramp-down limit of thermal unitj
RUj Ramp-up limit of thermal unitj
SDj Shutdown limit of thermal unitj
SUj Startup limit of thermal unitj
T Number of periods
UTj Minimum up time of thermal unitj

Inference Analysis
A, b Coefficients of first-stage constraints
d Coefficients of first-stage cost
f̂ j

NS
Suboptimal sample average cost for batchj

LNS,M , s2
L,NS,M Mean and variance of lower bound

M Number of data batches
q Coefficients of second-stage cost
Q, Q Second-stage cost and realization
T,W Coefficients of second-stage constraints
UNS ,M , s2

U,NS,M Mean and variable of upper bound
v̂j

NS
Optimal sample average cost for batchj

ξs Realizations of random variable
y Second-stage decision variables for scenario

k
z First-stage decision variables

I. I NTRODUCTION

Wind power is becoming worldwide a significant component
of the power generation portfolio. In Europe, several countries
already exhibit adoption levels in the range of 5-20% of the
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total annual demand. In the U.S. an adoption level of 20%
is expected by the year 2030 [1]. Such a large-scale adoption
presents many challenges to the operation of the electricalpower
grid because wind power is highly intermittent and difficult
to predict. In particular, unit commitment (UC) and energy
dispatch (ED) operations are of great importance because of
their strong economic impact (on the order of billions of dollars
per year) and increasing emissions concerns.

Several UC studies analyzing the impact of increasing adop-
tion levels of wind power have been performed recently. In [21],
a security-constrained stochastic UC formulation that accounts
for wind-power volatility is presented together with an efficient
Benders decomposition solution technique. In [19], a detailed
closed-loop stochastic UC formulation is reported. The authors
analyze the impact of the frequency of recommitment on the
production, startup, and shutdown costs. They find that increas-
ing the recommitment frequency can reduce costs and increase
the reliability of the system. None of these previous stochastic
optimization studies present details on the wind-power forecast
model and uncertainty information used to support their con-
clusions. In [12], [15], artificial neural network (ANN) models
are used to compute forecasts and confidence intervals for the
total aggregated power for a set of distributed wind generators.
A problem with empirical (data-based) modeling approaches
[5], [20], [22], however, is that their predictive capabilities rely
strongly on the presence of persistent trends. In addition,they
neglect the presence of spatio-temporal physical phenomena
that can lead to time-varying correlations of the wind speeds
at neighboring locations. Such approaches can thus result in
inaccurate medium- and long-term forecasts and over- or un-
derestimated uncertainty levels [14], [8], [13], which in turn
affect the expected cost and robustness of the UC solution.A
comparison between uncertainty quantification techniqueswith
empirical and physical weather prediction models for ambient
temperature forecasting is presented in [23].

In this work, we seek to exploit recent advances in numerical
weather prediction (NWP) models to perform UC/ED studies
with wind-power adoption. The use of physical models is desir-
able because consistent and accurate uncertainty information can
be obtained [13]. In a previous study, we have found that NWP
models allow one to obtain much tighter uncertainty intervals of
temperature forecasts that translate into lower operatingcosts in
building systems [23]. On the other hand, we have also found
that the practical capabilities of NWP models are limited. One
of the major limiting factors is their computational complexity.
For instance, performing data assimilation every hour at a
high spatial resolution is currently not practical. In addition,
extracting uncertainty information from NWP models quickly
becomes intractable from the point of view of both simulation
time and memory requirements. The question is:From an
operational point of view, how suitable and practical are the
forecasting capabilities of state-of-the-art NWP models?This
is an important question because NWP models are expected to
be used to make real-time operational decisions with important
economic implications. To analyze this issue, we present a
framework that integrates the Weather Research and Forecast
(WRF) model with a closed-loop stochastic UC/ED formulation.
In particular, we are interested in analyzing computational issues
and the effects of wind uncertainty on UC/ED operations.

Arguably, more sophisticated hybrid methods that combine
both NWP wind speed forecasts and empirical models are
needed to map the resolution of NWP forecasts down to a
specific domain and to account for system-specific character-
istics (e.g., power curves, orography) [13], [16], [6]. We point
out, however, that our approach offers several advantages over
previous work involving wind forecast, such as [16], [6]. The
fact that we have control over both the UC/ED model and
the WRF model allows us to refine the wind forecast with
uncertainty as needed. In particular, as presented in Sec. IV-A,
we can run the WRF at higher resolution than the data in [16],
[6], and we also have control over the the number of scenarios
used. The latter capability can have a large impact on the UC/ED
solution feasibility and efficiency and can be used in conjunction
with the confidence estimation described in Sec. III-D1 either
to increase the number of scenarios in order to improve the
uncertainty precision, if needed, or to use a more calculated
conservative solution. Full quantification of these benefits is an
important medium-term goal of our project. The goal of this
work, however, is to describe the benefits of the integration
framework and for UC/ED problems.

We model the uncertainty of the wind-speed forecasts using a
sampling technique that generates an ensemble of the futurere-
alizations in the targeted geographical region. The ensembles are
obtained by using a scalable implementation on a distributed-
memory parallel computing and are sent to a stochastic UC/ED
problem. A resampling technique is developed to assess the
quality of the stochastic UC/ED solutions. We validate the
forecasts and spatial correlations using real wind-speed data
obtained from a set of meteorological stations. We also perform
an economic analysis of the impact of increasing adoption levels
of wind power. The novelty of our work lies in the integration
of uncertainty quantification and stochastic optimization, topics
normally analyzed independently. From this integration, we
can analyze the economic effects of forecast accuracy and
uncertainty bounds. An addition novelty of our work is a
computational analysis of WRF, which is important in order
to understand its limitations and capabilities in an operational
setting.

The paper is structured as follows. Section II presents details
on the WRF model and on uncertainty quantification. Section
III describes the stochastic unit commitment formulation and
presents a resampling technique used to perform inference
analysis. Section IV presents numerical validation results for
WRF and the closed-loop UC simulation results. We conclude
with a summary and directions for future work.

II. W IND FORECAST ANDUNCERTAINTY ESTIMATION

USING WRF

In this section, we describe the procedures used to forecast
the wind speed using WRF. We present in detail the ensemble
initialization and restarting procedures required in an operational
framework. The WRF model [17] is a state-of-the-art numerical
weather prediction system designed to serve both operational
forecasting and atmospheric research needs. WRF is the result of
a multi agency and university effort to build a highly paralleliz-
able code that can run across scales ranging from large-eddyto
global simulations. WRF has a comprehensive description ofthe
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atmospheric physics that includes cloud parameterization, land-
surface models, atmosphere-ocean coupling, and broad radiation
models. The terrain resolution can go up to 30 seconds of a
degree (less than1 km2).

To initialize the NWP simulations, we use reanalyzed fields,
that is, simulated atmospheric states reconciled with observa-
tions,because the entire atmospheric state space is required by
the model as initial conditions whereas only a small subset of
the state space is available through measurement at any given
time [9]. In particular, we use the North American Regional
Reanalysis (NARR) data set that covers the North American
continent (160W-20W; 10N-80N) with a resolution of 10 min-
utes of a degree, 29 pressure levels (1000-100 hPa, excluding
the surface), every three hours from 1979 until present. We use
an ensemble of realizations to represent uncertainty in theinitial
(random) wind field and propagate it through the WRF nonlinear
model. The initial ensemble is obtained by sampling from
an empirical distribution, a procedure similar to the National
Centers for Environmental Prediction (NCEP) method [10]. In
the following sections we describe in more detail the procedures
needed for generating the forecast and its uncertainty. A similar
approach is presented in [23].

1) Ensemble Initialization:In a normal operational mode, the
NWP system evolves a given state from an initial timet0 to a
final timetF . The initial state is produced from past simulations
and reanalysis fields. Because of observation sparseness inthe
atmospheric field and the incomplete numerical representation
of its dynamics, the initial states are not known exactly andcan
only be represented statistically. Therefore, we use a distribution
of the initial conditions to describe the confidence in the
knowledge of the initial state of the atmosphere. We assume
a normal distribution of the uncertainty field of the initialstate,
a typical assumption in weather forecasting. The distribution
is centered on the NARR field at the initial time, the most
accurate information available. In other words, the expectation
is exactly the NARR solution. The second statistical moment
of the distribution described by the covariance matrixV is
approximated by the sample variance or pointwise uncertainty
and its correlation,C. The initial NS-member ensemble field
xt0

s := xs(t0), i ∈ {1 . . .NS}, is sampled fromN (xNARR,V):

xt0
s = xNARR + V

1

2 ξs , ξs ∼ N (0, I) , s ∈ {1 . . .NS} , (1)

whereC = Vij/
√

ViiVjj andVii is the variance of variablei.
This is equivalent to perturbing the NARR field withN (0,V).
That is,xs = xNARR +N (0,V). In what follows, we describe
the procedure used to estimate the correlation matrix.

2) Estimation of the Correlation Matrix:In weather models
the correlation structure typically is localized in space.There-
fore, in creating the initial ensemble one needs to estimatethe
spatial scales associated with each variable. To obtain these
spatial scales, we build correlation matrices of the forecast errors
using the WRF model. These forecast errors are estimated by
using the NCEP method [10], which is based on starting several
simulations staggered in time in such a way that, at any time,
two forecasts are available. In particular, we run a month of
day-long simulations started every twelve hours so that every
twelve hours we have two forecasts, one started one day before
and one started half-a-day before. The differences betweentwo
staggered simulations is denoted asdij ∈ R

N×(2×30days), that

is, the difference at theith point in space between thejth pair of
forecasts, whereN is the number of points in space multiplied
by the number of variables of interest. We can then defineǫs

as theith row, each of which correspond to the deviations for
a single point in space. Therefore, the covariance matrix can
be approximated byV ≈ ddT. Calculating and storing the
entire covariance matrix are computationally intractable. Con-
sequently, we describe the correlation distance at each vertical
level and for each variable by two parameters representing the
East-West and North-South directions. This approach captures
the Coriolis effect and the Earth rotation, as well as fasterand
larger-scale winds in the upper atmosphere. We assume that
correlations and winds are roughly similar in nature across
the continental U.S. This process is repeated in the vertical
direction. To create the perturbations from these length scales,
we take a normally distributed noisy field and apply Gaussian
filters in each direction with appropriate length scales to obtain
the same effect as in (1).

3) Ensemble Propagation through the WRF Model:The
initial state distribution is evolved through the NWP model
dynamics. The resulting trajectories can then be assembledto
obtain an approximation of the forecast covariance matrix:

xtF
s =Mt0→tF

(

xt0
s

)

+ ηs(t) , s ∈ {1 . . .NS} , (2)

wherext0
s ∼ N (xNARR,Vt0), ηs ∼ N (0,Q), andMt0→tF

(•)
represents the evolution of the initial condition through the
WRF model from timet0 to time tF . The initial condition is
perturbed by the additive noiseη that accounts for the various
error sources during the model evolution. An analysis of the
covariance propagation through the model is given in [23].

In this study, we assume that the numerical model (WRF) is
perfect, that is,η ≡ 0, and given the exact real initial conditions,
the model produces error-free forecasts. For long prediction
windows, this is a strong assumption. In this study, however, we
restrict the forecast windows to no longer than one day ahead,
thus making this assumption reasonable.

4) Accounting for Error Underestimation:In an operational
setting, observations become available periodically and can be
assimilated in the atmospheric state. In order to account for
the new information, the ensemble needs to be recentered on
the new reanalyzed field. In our example, we consider 12-hour
windows between restarts. However, the errors given by the
ensemble variance may be over- or underestimated because of
simulation and sampling errors. In other words, the ensemble
statistics may diverge from the true statistics. Therefore, the
error levels need to be re-estimated before each initialization.
Since correlations between entries in the state vector are more
robustly estimated – their values are accurate under fewer
assumptions compared to variance – by our approach [9], [23],
variance is the only parameter that needs to be adjusted. Oneap-
proach is to consider the reanalyzed fieldxNARR as the true state,
for computing corrections purposes only, and require that this
solution be on average within one standard deviation as given
by the ensemble spread. This approach corresponds to findinga
factorγ that inflates the ensemble spread about its expectation.
Let us consider again the ensemblexi, s = 1, . . . , NS and the
reanalyzed solutionxNARR. Denote byx = 1

NS

∑NS

s=1 xs the
sample expectation and byσj =

√

S2
jj , j ∈ {1 . . .M}, the
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standard deviation, whereS2 = 1
NS−1

∑NS

s=1(xs − x)(xs − x)T

is the sample covariance estimation. Then, we have

γ = max(1, min(meanU,V,T (|xNARR − x|/σ) , 4)) ,

whereU , V , andT are the the wind-field components and the
temperature, the ensemble variables under consideration.For
this comparison, we consider only the first five layers, which
include grid points located below 300 m. The new ensemble
is then obtained byxs ← x + γ (xs − x) , s ∈ {1 . . .NS} .
The factor is bounded between one, because the model error is
underestimated in our case, and four to avoid large jumps in
the solution and destabilize the NWP model. Experimentally,
however, we noticed thatγ ≈ 2, which confirms that this
approach tends to underestimate the uncertainty. This factis
not unexpected because the model error is not considered.

III. U NIT COMMITMENT AND ENERGY DISPATCH

In this section, we describe the unit commitment and energy
dispatch formulation used and discuss extensions to account for
wind-power uncertainty.The main idea behind our computa-
tional framework is to design a closed-loop UC/ED strategy
using a stochastic programming formulation that incorporates
weather forecast and uncertainty information from the WRF
model and the ensemble approach described in the previous
section. With this, we explore the accuracy of the forecastsand
the effect of assimilating measurement information at different
frequencies (WRF model reanalysis).

A. Deterministic Formulation

The UC problem has been studied extensively in literature
reports. The interested reader can refer to [3], [21], [18],[7]. The
UC formulation considered here is based on the mixed-integer
linear programming (MILP) formulation of Carrion and Arroyo
[3]. The formulation is shown below. The setsT := {1 . . . T },
N := {1 . . .N}, andNwind := {1 . . .Nwind} represent the
time periods, thermal units, and wind generators, respectively.
The demand at each time periodk is denoted byDk, and the
reserve requirement isRk. The power output of unitj at timek
is given by the continuous variablepj,k. The expected value of
the output of the wind unitj at timek, E[pwind

j,k ] is approximated

by 1
NS

∑NS

s=1 pwind
s,j,k . The continuous variablepj,k represents the

maximum power output of unitj at time k. This variable is
introduced in order to model the spinning reserves given by the
differencespj,k − pj,k. The units of all the power outputs are
MW. The on/off status of unitj at timek is given by the binary
variableνj,k.

min
pj,k,pj,kνj,k

∑

j∈N

∑

k∈T

cp
j,k + cu

j,k + cd
j,k (3a)

s.t.
∑

j∈N

pj,k +
∑

j∈Nwind

E[pwind
j,k ] = Dk, k ∈ T (3b)

∑

j∈N

pj,k +
∑

j∈Nwind

E[pwind
j,k ] ≥ Dk + Rk, k ∈ T (3c)

(4)− (11).

The production cost for each thermal unit is approximated by
using the linear model [2]

cp
j,k = ajνj,k + bjpj,k, j ∈ N , k ∈ T , (4)

whereaj andbj are cost coefficients. To model the startup cost
cu
j,k we use a staircase costKt

j, t = 1, ..., NDj, whereNDj

is the number of intervals. This leads to the following set of
inequality constraints:

cu
j,k ≥ Kt

j

(

νj,k −
t
∑

n=1

νj,k−n

)

,

j ∈ N , k ∈ T , t = 1, ..., NDj , (5a)

cu
j,k ≥ 0, j ∈ N , k ∈ T . (5b)

The formulation of the shutdown cost is given by

cd
j,k ≥ Cj

(

νj,k−1 − νj,k

)

, j ∈ N , k ∈ T , (6a)

cd
j,k ≥ 0, j ∈ N , k ∈ T , (6b)

whereCj is the shutdown cost of unitj. The power output of
each unit at each period must satisfy the bounds

P jνj,k ≤ pj,k ≤ pj,k, j ∈ N , k ∈ T , (7a)

0 ≤ pj,k ≤ P jνj,k, j ∈ N , k ∈ T , (7b)

whereP j andP j are the maximum and minimum capacities of
unit j, respectively. The thermal power outputs must also satisfy
the ramp-up limits

pj,k ≤ pj,k−1 + RUjνj,k−1 + SUj

(

νj,k − νj,k−1

)

+ P j(1− νj,k), j ∈ N , k ∈ T , (8)

and the shutdown and ramp-down limits are

pj,k−1 ≤ pj,k + RDjνj,k + SDj

(

νj,k−1 − νj,k

)

+P j(1− νj,k−1), j ∈ N , k ∈ T . (9)

Here, RDj, RUj , SDj , and SUj are the ramp-down, ramp-
up, shutdown, and startup limits of unitj, respectively. The
minimum uptime constraints are

Gj
∑

k=1

(1− νj,k) = 0, j ∈ N (10a)

k+UTj−1
∑

n=k

νj,n ≥ UTj

(

νj,k − νj,k−1

)

, j ∈ N

k = Gj + 1, . . . , T − UTj + 1 (10b)
T
∑

n=k

(

νj,n − (νj,k − νj,k−1)
)

≥ 0, j ∈ N ,

k = T − UTj + 2, . . . , T , (10c)

where UTj are the minimum uptime limits andGj =
min(T, (UTj − U0

j )νj,0) is the number of periods that unitj
must be initially ON. The initial state of unitj is denoted byνj,0

and is a fixed parameter. The minimum downtime constraints
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are formulated as
Lj
∑

k=1

νj,k = 0, j ∈ N (11a)

k+DTj−1
∑

n=k

(1− νj,n) ≥ DTj

(

νj,k−1 − νj,k

)

, j ∈ N ,

k = Lj + 1, . . . , T −DTj + 1 (11b)
T
∑

n=k

(

1− νj,n − (νj,k−1 − νj,k)
)

≥ 0, j ∈ N ,

k = T −DTj + 2, . . . , T , (11c)

where DTj denote the minimum downtime limits andLj =
min(T, (DTj−S0

j )(1−νj,0)) is the number of periods that unit
j must be initially OFF. Note that it is possible to use this model
to simulate the performance of the energy dispatch problem by
fixing the commitment variablesνj,k.

B. Stochastic Programming Formulation

We extend the previous deterministic formulation by consid-
ering corrective actions on the power outputs of the thermal
generators to account for the uncertainty in the wind power
outputs. The problem can be cast as a two-stage stochastic
programming problem similar to the ones proposed in [2],
[21], [19]. The first-stage decision variables are the current
thermal power outputspj,1, pj,1 and the commitment profiles
over the entire planning horizonνj,k. The power outputs are
nonanticipatory (here and now) because it is assumed that the
current wind-power outputspwind

j,1 are known and given by
pwind,true

j,1 . To formulate the second stage, we consider multiple
realizations of the wind power outputspwind

s,j,k , and we define
scenario-dependent thermal power outputsps,j,k andps,j,k with
k > 1 (wait and see). Note that we do not define second-stage
scenario-dependent commitment variables because we wish to
keep the problem computationally tractable. The formulation of
the stochastic optimization problem is

min
ps,j,k,ps,j,k,νj,k

1

NS

∑

s∈S





∑

j∈N

∑

k∈T

cp
s,j,k + cu

j,k + cd
j,k



 (12a)

s.t.
∑

j∈N

ps,j,k +
∑

j∈Nwind

pwind
s,j,k = Dk, s ∈ S, k ∈ T (12b)

∑

j∈N

ps,j,k +
∑

j∈Nwind

pwind
s,j,k ≥ Dk + Rk, s ∈ S, k ∈ T

(12c)

ps,j,1 = p1,j,1 s ∈ S, j ∈ N (12d)

ps,j,1 = p1,j,1 s ∈ S, j ∈ N (12e)

(4)− (9), s ∈ S

(10)− (11),

whereS := {1 . . .NS}. The ramp and power-limit constraints
are defined over each scenario,s ∈ S where pj,k ← ps,j,k

and pj,k ← ps,j,k. The nonanticipativity constraints for the
power outputs in the first time step are given by equations
(12d) and (12e). For the known wind power outputs we set
pwind

s,j,1 ← pwind,true
j,1 . Note that if the stochastic formulation is

able to capture the uncertainty of the wind power accurately, the

reserve requirements can be reduced to less conservative levels
or even be removed. Note also that one can solve a closed-loop
stochasticdispatch problem by fixing the commitment actions.

C. Closed-Loop Implementation

To simulate the closed-loop performance of the power system,
we consider arolling-shrinking horizon approach. The starting
rolling time is reset to one each time newfossil fuel and
electricity price information is obtainedfrom the commodity
and day-ahead markets. The latter information is available
from the independent system operators. This period is assumed
to be T = 24 hours. At the start of the rolling time, we
assume that the wind-power forecast becomes available from
WRF for the next 24 hours. At this point, the stochastic unit
commitment problem is solved by using the current wind-
power outputspwind

s,j,ℓ ← pwind,true
j,ℓ and the future forecasts

pwind
s,j,k , k = ℓ + 1, ..., T , where ℓ is the current time step.

The solution of this problem gives the commitment profilesνj,k

over the 24-hour rolling horizon. At each step inside the rolling
horizon ℓ = 2, ..., T , the horizon is shrunk by one time step
T ← T − ℓ, and the stochastic energy dispatch is solved over
the remaining horizon with the new, true wind power but the
same WRF forecasts of the current day. Each of these shrinking
horizon problems gives the current power outputspj,ℓ andpj,ℓ

at current timeℓ.

D. Inference Analysis

In the above stochastic formulation, the wind-power outputs
are assumed to have a probability distributionP. In most
stochastic optimization studies this distribution is assumed to
be known. As seen in Section II, obtaining this distributionis
part of the modeling task. Since many different forecast models
(autoregressive, ANN, physics based) can be used to construct
the error distribution, there is not a unique distribution.From
a practical point of view, we expect that such a distribution
is able to encapsulate the actual realizations of wind power
and has tight confidence intervals. We model the wind speed
distribution by propagating an assumed Gaussian distribution
of the initial state conditions through the WRF model. Because
of the complexity of the model, we are limited to a single
batch of a few (less than a hundred) samples. From a stochastic
optimization point of view, this is an issue because we are not
solving the problem with the full distribution. Consequently, we
must perform an inference analysis to assess the quality of the
solution.

1) Computation of Confidence Intervals:The two-stage
stochastic UC problem with fixed binary variables can be
expressed in the following abstract form [11]:

min
z≥0

dT z +Q(z), s.t.Az = b. (13)

Here, z are the first-stage decision variables, andQ(z) =
E [Q(z, ξ)] is the second-stage cost. We assume that the proba-
bility distribution P of ξ has finite support; that is,ξ has a finite
number of scenarios{ξ1, ..., ξK} with probabilitiesπs ∈ (0, 1),
so we haveQ(z) = 1

K

∑K

s=1 Q(z, ξs), where

Q(z, ξs) = min
ys≥0

qT ys, s.t.Tz+Wys = ξs, s = 1, ..., K. (14)
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Here,ys are the second-stage decision variables, andξs are the
realizations of the wind-power outputs. SinceK is a very large
number, it is impractical to solve the stochastic problem exactly.
Therefore, given a fixed number of realizationsNS ≪ K from
WRF, we solve the approximate problem,

min
z≥0

dT z +
1

NS

NS
∑

s=1

Q(z, ξs), s.t.Az = b. (15)

This smaller problem is known as a sample-average-
approximation (SAA) of the original problem (13), which
is usually computationally intractable.We seek to estimate
lower and upper bounds of the true optimal solutionv∗ (us-
ing the entire set ofK realizations) and their correspond-
ing confidence intervals.Here we use the methodology put
forth in [11]. A lower bound can be estimated generating
j = 1, ..., M batches, each of sizeNS , and we can then
solve (15) for each batch. If we denote asv̂j

NS
the optimal

cost of each SAA problem, we can estimate the lower bound
as LNS,M = 1

M

∑M

j=1 v̂j
NS

. The sample variance estimator

is given by s2
L,NS,M = 1

M−1

∑M

j=1

(

v̂j
NS
− LNS,M

)2

. The
mean and variance can be used to construct confidence intervals
of the lower bound. To estimate the upper bound, we pick
a given value for the first-stage variablesẑ and generate a
new set ofj = 1, ..., M batches of data. We then evaluate
(13), leading tof̂ j

N (ẑ). Note that each evaluation involves the
solution of the second-stage problem (14). As before, we have
the meanUNS ,M = 1

M

∑M

j=1 f̂ j
NS

and variances2
U,NS,M =

1
M−1

∑M

j=1

(

f̂ j
NS
− UNS,M

)2

.

2) Weighted Average Sampling:The inference analysis task
requires multiple batches of realizations. As expected, obtaining
these from WRF is not practical. Here, we present a heuristic
resampling technique to avoid this limitation. To create new
time series from the existing batch of WRF realizations, we
express a new realization as a weighted average of the available
ones. Suppose the WRF model isx(t) = M(t, x(0)), where
x(t) is the state vector at timet. If we are givenNS samples
xj and we can writex(0) =

∑

j∈S wjxj(0), the propagation of
x(0) is x(t) =M(t, x(0)) =M(t,

∑

j∈S wjxj(0)). Assuming
the variance of the samples is small, we can writexj(0) =
x̄(0) + ǫj(0). We justify the computation of weighted averages
of the time series by observing that

x(t) = M



t, x̄(0) +
∑

j

wjǫj(0)





≈ M(t, x̄(0)) +
∑

j

wj

∂M

∂x
(t, x̄(0))ǫj(0)

≈
∑

j

wjM
(

t, x̄(0) + ǫj(0)
)

=
∑

j

wjxj(t).

In other words, the weighted average approximates, to first
order, the nonlinear propagation of weighted samples of the
initial conditions. The weights are chosen to be Gaussian
near the unit vectors in the standard basis on a hyperplane
∑

j∈S wj = 1 in the w space.

IV. I NTEGRATIVE STUDY

In this section we integrate the wind-speed forecasts produced
by WRF by following the procedure described in Section II with
the stochastic unit commitment/energy dispatch formulations
described in Section III.The entire computational framework
is sketched in Figure 1.
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Fig. 1. Schematic representation of computational framework.

A. Wind Forecast and Uncertainty Quantification

We use the WRF model to forecast the wind speed in a
specific region that covers the state of Illinois. We set up
a computational nested domain structure including a high-
resolution sector that covers the target area and two additional
domains of larger coverage but lower resolution. The parent
domains supply the boundary conditions for the nested ones,
and the largest domain has prescribed boundary conditions from
coarser ones. This setup is illustrated in Fig. 2. A similar setup
with one coarse domain is described in [23]. We generate six
ensemble data sets, each containing the predicted wind speed for
Illinois corresponding to domain # 3 in Fig. 2. Each ensemble
hasNS = 30 members. The data is sampled every 10 minutes,
and each ensemble is evolved one day ahead. The starting time
of the experimentt0 corresponds to June1, 2006, 6:00 PM CT
(local time), with each data set restarted from the reanalyzed
solution at timet0 + (k − 1) × (12 hours) with k = 1, . . . , 6.
In other words, each data set is started at the revalidation time
with 12-hour increments.

1) Validation Using Wind and Temperature Data Measure-
ments: The weather station observations were obtained from
the National Climatic Data Center (NCDC), and their locations
are illustrated in Fig. 3.b. In Fig. 4 we show the wind-speed
(±2σ) predictions and measurements for Peru and Chicago, IL
(denoted by∇ in Fig. 3.b). Each ensemble evolves for 24 hours,
and new ones are started every 12 hours. We remark that the
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Fig. 4. Wind-speed (±2σ) predictions and measurements (o) for Peru (left,
RMS error=1.56, R2=0.32) and Chicago (right, RMS error=1.51, R2=0.35), IL.
The vertical dashed lines denote the beginning of a new 24-hour prediction
window; different colors are used to indicate ensembles started at different
times.

wind-speed measurements obtained from NCDC are given in
miles per hour rounded to the nearest integer. Doing so has
the unfortunate effect of diminishing the wind variabilityand
yielding more pessimistic than real validation results. Despite
this, the wind-speed uncertainty intervals generated by WRF
capture the trends well, with few exceptions. It is also clear from
Fig. 4 that the forecasts do not improve much when updated
every 12 hours instead of every 24 hours. Note that the forecasts
are not improved significantly at the middle of the day, perhaps
because measurements assimilated during the day are not as
informative as those assimilated during the night, where the
wind currents tend to be stronger. We have also observed that
the wind-speed trends are much more difficult to predict than
temperature trends. This point is enforced by the correlogram
for the temperature and wind speed at Peru, IL shown in Fig. 6,
where it is clear that the time correlations of wind speed decay
more quickly than those of the temperature.

We present validation results at six active wind-farms in
the state of Illinois to analyze their magnitude and correlation

structure. The order of the windows goes from left to right
and coincides with the wind-farm location numbering shown
in Fig. 3. Currently, the power produced by wind turbines
depends on the wind speed at elevations of about 40-120 meters.
The wind-speed fields at these heights can be extracted from
WRF. Unfortunately, the NCDC data available for validation
is reported only at 10 meters. Obtaining real wind-speed data
at higher altitudes requires access to proprietary databases of
operational wind farms. The wind-speed fields at 10 meters
above the ground for three consecutive days of June 2006 are
presented in Fig. 5. The WRF realizations are able to capture
the general trends of the actual observations at all locations. In
addition, they are able to encapsulate the observations. Note that
the wind speed is relatively low at this height. The maximum
average is around 6-7 meters per second. We have found that
the wind speeds reach a maximum average of around 10 meters
per second at 100 meters in the studied region. In addition, we
have observed that the uncertainty levels increase significantly
at this height as a result of the larger range and variability.
This increase is also expected because most of the wind speed
data assimilated in WRF is near ground level. The 100 meters
profiles are not presented here because of space restrictions. For
more details, please refer to Section 4.1 in the technical report
[4]. In Fig. 7 we show the spatial correlations of the wind speed
for a particular wind farm on June 5, 1:50 AM, as inferred from
the 30-member WRF ensemble simulation. The wind speed is
highly correlated over the studied region, and it has a nontrivial
spatial structure. This observation is confirmed by comparing
Figs. 3 and 5. Here, we can see that the wind-speed realizations
for wind farms #2, 3, and 4 are strongly correlated, as predicted
by the correlation mapping.
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Fig. 5. Wind-speed realizations for 6 wind farm locations inIllinois at 10m and
observations (dots) at nearest meteorological stations. Vertical lines represent
beginning of day (12:00 AM).

2) Implementation Considerations:In this study we used
version 3.1 of WRF [17]. The ensemble approach taken for esti-
mating the uncertainty in the weather system is highly paralleliz-
able because each scenario evolves independently through WRF.
The most expensive computational element is the evolution of
each sample through the WRF system. We therefore consider
a two-level parallel implementation scheme. The first levelis a
coarse-grained task decomposition represented by each sample.
A secondary finer-grained level consists in the parallelization of
each sample. This approach yields a highly scalable solution.
The simulations were performed on the Jazz Linux cluster at
Argonne National Laboratory. Jazz (now decommissioned) had
350 compute nodes, each with a 2.4 GHz Pentium Xeon with



8

0 0.5 1 1.5 2 2.5 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Lag k [days]

γ k

 

 
T − obs

T − WRF

Wind obs.

Wind − WRF

Fig. 6. Correlogram for the wind and
temperature measurements at Peru, IL.

−92 −91 −90 −89 −88 −87

38

39

40

41

42

43

 

 

° Longitude W

° 
La

tit
ud

e 
N

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Fig. 7. Spatial correlation for the
wind field for wind farm #8 on June 5,
1:50 AM, denoted by “X.” The circle
markers denote the other wind farms
in Illinois.

1.5 GB of RAM and used Myrinet 2000 and Ethernet for
interconnect. Our running times given in Fig. 8 indicate that
around 32 CPUs were sufficient to generate forecasts with WRF
in a closed-loop UC/ED setting. The times also suggest that,in
order to generate forecasts every hour, one would need about
500 CPUs.
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Fig. 8. Scalability of WRF on the computer cluster Jazz for 24hours.
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Fig. 9. Wind power realizations for 6 wind farm locations in Illinois at 10 m and
observations (dots) at nearest meteorological stations. Vertical lines represent
beginning of day (12:00 am).

B. Economic Study Unit Commitment/Energy Dispatch

Because of the lack of detailed design data of thermal and
wind-power units in the open literature, we have constructed
an artificial simulation study. We first describe the thermaland
wind-power assumptions used and then discuss our results from
the simulation.

1) Power System Description:The thermal power system
specifications used in this work are based on those reported in
[3]. The system contains a total of 10 thermal generators with
a total installed capacity of 1662 MW. The peak demand is
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Fig. 10. Closed-loop profiles for thermal units. Solid thin line is optimal profile
(with perfect information), solid thick line is stochasticUC solution, and thick
gray lines are planned scenarios at the beginning of each day.
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Fig. 11. Closed-loop total power profiles obtained with stochastic UC formu-
lation. Top thick line is demand profile, medium thick line isthe implemented
thermal profile, gray lines are planned realizations at beginning of each day,
bottom thick line is actual total wind power, and adjacent gray lines are forecast
profiles.

1326 MW. The ramp limits of the units are not reported, so we
have assumed them to be 50% of the corresponding maximum
capacity. The reserve requirements are assumed to be 10% of the
demand. To simulate increasing level of wind power adoption,
we increase the number of wind turbines at 12 existing wind
farm locations in Illinois.

2) Results:To generate wind-power forecasts, we propagate
the wind-speed observations and the WRF realizations at a
height of 10 metersthrough a typical wind-power curve with
a maximum capacity of 1.5 MW. The nominal curve has a
cut-in speed of 3 meters per second and reaches the rated
capacity at 12 meters per second. The wind-speed observations,
forecast, and ensembles used are summarized in Fig. 5. As
previously mentioned, we used the height of 10 meters because
the NCDC data used for validation are reported only at this
level. As expected, the wind speeds are relatively low at this
level, thus leading to small power outputs. Instead of using
the wind speed WRF forecasts at 100 meters, we have kept
the 10 meters WRF forecasts and observations and mapped
these using a shifted power curve obtained by displacing the
nominal cut-in speed from 3 to 2 meters per second. With this,
the rated capacity is reached at around 11 meters per second.
This strategy allowed us to obtain more consistent validation
results for wind power compared to linear interpolation of the
wind-speed observations. The resulting wind-power realizations
and observations are presented in Fig. 9. The wind-power
distribution is clearly affected by the nonlinear structure of the
power curve, increasing the spread of the distribution. TheWRF
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realizations are able to encapsulate the actual power observa-
tions. The largest differences are observed at the beginning of
the third day.

We have run the closed-loop UC/ED system assuming a
rolling horizon and a forecast frequency of 24 hours. The
ED problem runs every hour. A total of 30 WRF realizations
are used to solve the stochastic problem. The resulting MILP
problems are implemented in AMPL and are solved with the
CBC solver from the COIN-OR repository. The MILP contains
38,651 variables from which 240 are binary, 783 equality
constraints, and 40,747 inequality constraints. The average
solution time for the stochastic UC problem in a quad-core Intel
processor running Linux is about 9 minutes in cold-start mode.
The solution time of the energy dispatch problem is less than10
seconds. The results for the 20% penetration study are presented
in Figs. 10 and 11.In Fig. 10, we present the policies for
the power levels of six thermal units. The solid lines represent
the predicted and the realized power profiles, while the gray
lines represent the forecasted realizations at the beginning of
the day.We notice that the sensitivity of the power levels of
some units to the uncertainty of the wind power is very small.
Generators #2 and #5 are the most sensitive, while generators #3
and #4 exhibit no sensitivity. We have found that the sensitivity
levels depend strongly on the design characteristics and prices
of the generators. We have also found that the optimal cost
of the stochastic strategy over three days of operation is only
about 1% larger than that of the perfect information strategy.
We also performed an inference analysis using the resampling
strategy of Section III-D2 for the first day of operation using
M = 30 different batches. The upper bound mean was found
to be UNS,M = $474, 064 with variances2

U,NS,M = 1, 082$2.
The lower bound mean was found to beLNS,M = $474, 317
with variances2

L,NS,M = 1, 656$2. Both variances are less than
0.25% of the mean cost. This value indicates that 30 WRF
realizations are sufficient to estimate the optimal cost accurately.
We have also found that updating the WRF forecast every
12 hours instead of every 24 hours does not bring important
economic benefits. The reason is twofold: minor improvements
in forecast accuracy, as pointed out in Section IV-A, and the
properties of the power system under consideration. A different
outcome could be obtained with a different generator mix.

In Fig. 11 we present the profiles of total aggregated (sum
over the total units) demand, thermal power, and wind power.
The solid lines represent the predicted and the realized power
profiles while the gray lines represent the forecasted realizations
at the beginning of the day. The top solid line is the daily
demand profile, which is assumed to be constant.Note that the
aggregated wind-power profile (bottom) does not follow a strong
periodic trend. Nevertheless, the WRF realizations are able to
encapsulate the actual profiles (solid lines) during the first two
days. As a result, the optimizer is always able to satisfy theload,
even for an adoption level of20%. On the third day, however,
we see a significant mismatch between the forecasted wind
power and the realized one in the first 12 hours of operation.
In this case, the reserves are sufficient to satisfy the load.This
effect could potentially be ameliorated by inflating the initial
conditions of the WRF ensembles, but it cannot be predicteda
priori . Thus, a high frequency and adaptive inflation/resampling
procedure should be added to the system. We also found that

a deterministic strategy (using only the WRF forecast mean)is
not able to sustain adoption levels of more than10% even with
the allocated reserves. We observed that increasing the adoption
levels increases the startup and shutdown costs, but these are
negligible (on the order of $10,000) with respect to the total
production costs.

V. CONCLUSIONS ANDFUTURE WORK

We presented a computational framework for the integration
of the state-of-the-art Weather Research and Forecasting (WRF)
model in stochastic unit commitment/energy dispatch formu-
lations that account for wind-power uncertainty. We extended
the WRF model with a sampling technique implemented in a
distributed-memory parallel computing architecture to generate
uncertainty information. In addition, we developed a resampling
strategy that avoids expensive WRF simulations to perform
inference analysis. Our simulated commitment study indicates
that using WRF forecasts and uncertainty information is critical
to achieve high adoption levels with minimum reserves. Our
study illustrates an operational setting with real data, pointing
out several issues and limitations that are not found in idealized
experiments using artificial forecasts and uncertainty informa-
tion. For instance, we have not found significant benefits of
updating the WRF forecasts in intra-day operations. In addition,
the numerical experiments indicate that a relatively largenumber
of CPUs are required to generate forecasts and uncertainty infor-
mation at a higher frequency than 12 hours.We emphasize that
the integrative framework presented here is preliminary and does
not consider more detailed issues such as intra-day rescheduling
of unit commitment, effects of updating wind power forecasts at
higher tempeoral resolutions (e.g., hourly), as used in theDanish
power system. These two factors affect the value of wind power
forecasts during intra-day operation. Therefore, as part of future
work, we are interested in developing techniques to generate
forecasts at higher spatial and temporal resolution. In addition,
we are interesting in generating wind-power forecast models
by fusing WRF wind-speed forecasts and operational wind-
power data. Thanks to our open access to WRF, our framework
is highly flexible and allows us to consider these extensions.
Additionally, we are interested in dealing with networks of
real size with hundreds of generators, transmission constraints,
and intra-day scheduling. To solve these challenging problems,
we are developing algorithms for the solution of stochastic
optimization problems in parallel computing architectures.
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