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Abstract—We present a computational framework for integrat- Dy,
ing a state-of-the-art numerical weather prediction (NWP) model DT;
in stochastic unit commitment/energy dispatch formulatios that Kt

account for wind power uncertainty. We first enhance the NWP
model with an ensemble-based uncertainty quantification sategy N
implemented in a distributed-memory parallel computing architec-

ture. We discuss computational issues arising in the impleentation Ns
of the framework and validate the model using real wind-speé Nuyinad
data obtained from a set of meteorological stations. We buil a ND;
simulated power system to demonstrate the developments.
Index Terms—weather forecasting, wind, unit commitment, en- Vi k
ergy dispatch, closed-loop. Ds.jik
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I. INTRODUCTION

Wind power is becoming worldwide a significant component
of the power generation portfolio. In Europe, several coaat
already exhibit adoption levels in the range of 5-20% of the



total annual demand. In the U.S. an adoption level of 20% Arguably, more sophisticated hybrid methods that combine
is expected by the year 2030 [1]. Such a large-scale adoptlmoth NWP wind speed forecasts and empirical models are
presents many challenges to the operation of the elechava¢r needed to map the resolution of NWP forecasts down to a
grid because wind power is highly intermittent and difficulspecific domain and to account for system-specific character
to predict. In particular, unit commitment (UC) and energistics (e.g., power curves, orography) [13], [16], [6]. Weind
dispatch (ED) operations are of great importance becauseoat, however, that our approach offers several advantages o
their strong economic impact (on the order of billions ofldd previous work involving wind forecast, such as [16], [6].€Th
per year) and increasing emissions concerns. fact that we have control over both the UC/ED model and
Several UC studies analyzing the impact of increasing addhe WRF model allows us to refine the wind forecast with
tion levels of wind power have been performed recently. It],[2 uncertainty as needed. In particular, as presented in Se&, |
a security-constrained stochastic UC formulation thabants we can run the WRF at higher resolution than the data in [16],
for wind-power volatility is presented together with an @fnt [6], and we also have control over the the number of scenarios
Benders decomposition solution technique. In [19], a tkxdai used. The latter capability can have a large impact on th&DC/
closed-loop stochastic UC formulation is reported. Thénarg solution feasibility and efficiency and can be used in cociiom
analyze the impact of the frequency of recommitment on theth the confidence estimation described in Sec. IlI-D1 eith
production, startup, and shutdown costs. They find thae@sr to increase the number of scenarios in order to improve the
ing the recommitment frequency can reduce costs and inereagcertainty precision, if needed, or to use a more calctdlate
the reliability of the system. None of these previous stetiha conservative solution. Full quantification of these besdfitan
optimization studies present details on the wind-poweedast important medium-term goal of our project. The goal of this
model and uncertainty information used to support their-cowork, however, is to describe the benefits of the integration
clusions. In [12], [15], artificial neural network (ANN) mets framework and for UC/ED problems.
are used to compute forecasts and confidence intervals éor thWe model the uncertainty of the wind-speed forecasts using a
total aggregated power for a set of distributed wind gewesat sampling technique that generates an ensemble of the figure
A problem with empirical (data-based) modeling approache$izations in the targeted geographical region. The enteave
[5], [20], [22], however, is that their predictive capabés rely obtained by using a scalable implementation on a distribute
strongly on the presence of persistent trends. In additteey memory parallel computing and are sent to a stochastic UC/ED
neglect the presence of spatio-temporal physical phenamgmoblem. A resampling technique is developed to assess the
that can lead to time-varying correlations of the wind sjgeeduality of the stochastic UC/ED solutions. We validate the
at neighboring locations. Such approaches can thus rasultfarecasts and spatial correlations using real wind-spesd d
inaccurate medium- and long-term forecasts and over- or wbtained from a set of meteorological stations. We alsooperf
derestimated uncertainty levels [14], [8], [13], which i an economic analysis of the impact of increasing adoptioelse
affect the expected cost and robustness of the UC solufion.of wind power. The novelty of our work lies in the integration
comparison between uncertainty quantification techniquis of uncertainty quantification and stochastic optimizatimpics
empirical and physical weather prediction models for ambienormally analyzed independently. From this integratiorg w
temperature forecasting is presented in [23]. can analyze the economic effects of forecast accuracy and
In this work, we seek to exploit recent advances in numeridahcertainty bounds. An addition novelty of our work is a
weather prediction (NWP) models to perform UC/ED studiesomputational analysis of WRF, which is important in order
with wind-power adoption. The use of physical models isdesito understand its limitations and capabilities in an openeai
able because consistent and accurate uncertainty infiometn — setting.
be obtained [13]. In a previous study, we have found that NWPThe paper is structured as follows. Section Il presentsildeta
models allow one to obtain much tighter uncertainty intksede  on the WRF model and on uncertainty quantification. Section
temperature forecasts that translate into lower operatists in 11l describes the stochastic unit commitment formulatiord a
building systems [23]. On the other hand, we have also foupdesents a resampling technique used to perform inference
that the practical capabilities of NWP models are limitetheO analysis. Section IV presents numerical validation restdr
of the major limiting factors is their computational comytg. WRF and the closed-loop UC simulation results. We conclude
For instance, performing data assimilation every hour atwdth a summary and directions for future work.
high spatial resolution is currently not practical. In &b,
extracting uncertainty information from NWP models quickl
becomes intractable from the point of view of both simulatio
time and memory requirements. The question Fsom an
operational point of view, how suitable and practical areeth In this section, we describe the procedures used to forecast
forecasting capabilities of state-of-the-art NWP models$fis the wind speed using WRF. We present in detail the ensemble
is an important question because NWP models are expectedhitialization and restarting procedures required in aarafional
be used to make real-time operational decisions with ingmbrt framework. The WRF model [17] is a state-of-the-art nunadric
economic implications. To analyze this issue, we presentweeather prediction system designed to serve both opegdtion
framework that integrates the Weather Research and Foéredasecasting and atmospheric research needs. WRF is tHeaésu
(WRF) model with a closed-loop stochastic UC/ED formulatio a multi agency and university effort to build a highly paetiit-
In particular, we are interested in analyzing computati@saies able code that can run across scales ranging from largeteddy
and the effects of wind uncertainty on UC/ED operations. global simulations. WRF has a comprehensive descriptigheof

II. WIND FORECAST ANDUNCERTAINTY ESTIMATION
UsING WRF



atmospheric physics that includes cloud parameterizaéml- is, the difference at th&h pointin space between theh pair of
surface models, atmosphere-ocean coupling, and broaaticadi forecasts, wherév is the number of points in space multiplied
models. The terrain resolution can go up to 30 seconds obw the number of variables of interest. We can then define
degree (less thaih km?). as theith row, each of which correspond to the deviations for
To initialize the NWP simulations, we use reanalyzed fields, single point in space. Therefore, the covariance matnx ca
that is, simulated atmospheric states reconciled with mhse be approximated byw ~ dd™. Calculating and storing the
tions, because the entire atmospheric state space is requirecehyire covariance matrix are computationally intractal@en-
the model as initial conditions whereas only a small subfet gequently, we describe the correlation distance at eadfcaler
the state space is available through measurement at any gilevel and for each variable by two parameters representiag t
time [9]. In particular, we use the North American Regiondtast-West and North-South directions. This approach ceptu
Reanalysis (NARR) data set that covers the North Americéime Coriolis effect and the Earth rotation, as well as faatet
continent (160W-20W; 10N-80N) with a resolution of 10 minfarger-scale winds in the upper atmosphere. We assume that
utes of a degree, 29 pressure levels (1000-100 hPa, exgludibrrelations and winds are roughly similar in nature across
the surface), every three hours from 1979 until present. ¥¢e the continental U.S. This process is repeated in the vértica
an ensemble of realizations to represent uncertainty imitial  direction. To create the perturbations from these lengéhesc
(random) wind field and propagate it through the WRF nonlinese take a normally distributed noisy field and apply Gaussian
model. The initial ensemble is obtained by sampling froffilters in each direction with appropriate length scaleslitam
an empirical distribution, a procedure similar to the Na#ib the same effect as in (1).
Centers for Environmental Prediction (NCEP) method [10]. I 3) Ensemble Propagation through the WRF Moddlhe
the following sections we describe in more detail the proces initial state distribution is evolved through the NWP model
needed for generating the forecast and its uncertaintymaai  dynamics. The resulting trajectories can then be assentbled

approach is presented in [23]. obtain an approximation of the forecast covariance matrix:
1) Ensemble Initializationin a normal operational mode, the
NWP system evolves a given state from an initial titgeto a T = Myg—ip (22) +ns(t), s€{1...Ns}, (2

final timetz. The initial state is produced from past simulations
and reanalysis fields. Because of observation sparsengie invherezl® ~ N (zxarr, V), ns ~ N (0,Q), and My, ¢, (o)
atmospheric field and the incomplete numerical representatfépresents the evolution of the initial condition throudte t
of its dynamics, the initial states are not known exactly ead WRF model from timet, to time ¢. The initial condition is
only be represented statistically. Therefore, we use ailolision ~ Perturbed by the additive noisgthat accounts for the various
of the initial conditions to describe the confidence in therror sources during the model evolution. An analysis of the
knowledge of the initial state of the atmosphere. We assurf@variance propagation through the model is given in [23].
a normal distribution of the uncertainty field of the initsthte, ~ In this study, we assume that the numerical model (WRF) is
a typical assumption in weather forecasting. The distidut perfect, thatisy = 0, and given the exact real initial conditions,
is centered on the NARR field at the initial time, the moghe model produces error-free forecasts. For long prexticti
accurate information available. In other words, the exgiémt windows, this is a strong assumption. In this study, howewer
is exactly the NARR solution. The second statistical momergstrict the forecast windows to no longer than one day ahead
of the distribution described by the covariance mafkixis thus making this assumption reasonable.
approximated by the sample variance or pointwise unceytain 4) Accounting for Error Underestimationin an operational
and its correlationC. The initial Ng-member ensemble field setting, observations become available periodically s lwe
2l = x4(tg), i € {1... Ng}, is sampled fromV (zxarr, V): assimilated in the atmospheric state. In order to account fo
to 1 the new information, the ensemble needs to be recentered on
2y = Taann + V3G, &~ N(0,D), s €{1...Ns}, (1) the new reanalyzed field. In our example, we consider 12-hour
whereC = Vz’j/m andV; is the variance of variable Windows between restarts. However, the errors given by the
This is equivalent to perturbing the NARR field wittf (0, V). ensemble variance may be over- or underestimated because of
That is, 2, = Zxars + N (0, V). In what follows, we describe simulation and sampling errors. In other words, the ensembl
the procedure used to estimate the correlation matrix. statistics may diverge from the true statistics. Therefone
2) Estimation of the Correlation Matrixin weather models error levels need to be re-estimated before each initisdiza
the correlation structure typically is localized in spateere- Since correlations between entries in the state vector are m
fore, in creating the initial ensemble one needs to estirtiate robustly estimated — their values are accurate under fewer
spatial scales associated with each variable. To obtaiseth@ssumptions compared to variance — by our approach [9], [23]
spatial scales, we build correlation matrices of the foseesrors variance is the only parameter that needs to be adjusteda®ne
using the WRF model. These forecast errors are estimatedfdggach is to consider the reanalyzed field » as the true state,
using the NCEP method [10], which is based on starting sevef@r computing corrections purposes only, and require thist t
simulations staggered in time in such a way that, at any tinglution be on average within one standard deviation asngive
two forecasts are available. In particular, we run a month b¥ the ensemble spread. This approach corresponds to fiading
day-long simulations started every twelve hours so thatyevdactory that inflates the ensemble spread about its expectation.
twelve hours we have two forecasts, one started one dayeefe@t us consider again the ensemble s = 1,..., Ng and the
and one started half-a-day before. The differences betiveen reanalyzed solution: . Denote byz = - Sz, the
staggered simulations is denotedds € RV *(2x30days) ' that sample expectation and by; = /S2,;, j € {1... M}, the



standard deviation, whei®? = NS[l Zivjl(ws —7)(zs —7)T wherea; andb; are cost coefficients. To model the startup cost
is the sample covariance estimation. Then, we have ¢, We use a staircase Co&t!, t = 1,..., ND;, where ND;

is the number of intervals. This leads to the following set of
inequality constraints:

whereU, V, andT are the the wind-field components and the

temperature, the ensemble variables under considerdfimm. t

this comparison, we consider only the first five layers, which ¢}, > K} (uj,k - Z uj,k_n> ,

include grid points located below 300 m. The new ensemble n=1

is then obtained byr, «— T+ v(zs —7), s € {1...Ns}. JEN, k€T, t=1,..,ND;, (5a)
The factor is bounded between one, because the model error is dp > 0,j€ N, keT. (5b)
underestimated in our case, and four to avoid large jumps in '

the solution and destabilize the NWP model. Experimental
however, we noticed thaty ~ 2, which confirms that this
approach tends to underestimate the uncertainty. Thisiact .
not unexpected because the model error is not considered. Cik

~v = max(1, min(meany v.r (|Txare — T|/0),4)) .

I'¥he formulation of the shutdown cost is given by

Cj (I/j’kfl — Vj_’k), Jje N, keT, (6&)
0,

>
> 0,jeN, keT, (6b)

d
Cik
Il. UNIT COMMITMENT AND ENERGY DISPATCH ’

In this section, we describe the unit commitment and energiereC. is the shutdown cost of unit. The power output of
dispatch formulation used and discuss extensions to atéoun 1, unjit at each period must satisfy the bounds

wind-power uncertaintyThe main idea behind our computa-

tional framework is to design a closed-loop UC/ED strategy

using a stochastic programming formulation that incorfesa L5V5.k
weather forecast and uncertainty information from the WRF 0
model and the ensemble approach described in the previous

section. With this, we explore the accuracy of the forecasts
the effect of assimilating measurement information atedéht
frequencies (WRF model reanalysis).

Pjk Spj,ka jENa ke Ta (7a)

<
< P <Pk, jEN, keT,  (Tb)

whereP; and P; are the maximum and minimum capacities of
unit 7, respectively. The thermal power outputs must also satisfy
the ramp-up limits

A. Deterministic Formulation

The UC problem has been studied extensively in literature Pik = Pik-t +R_UJVM_1 * S%(Vj’k ~Vik-1)
reports. The interested reader can refer to [3], [21], [I8],The +Pi(1—vjp), GEN, keT, (8)
UC formulation considered here is based on the mixed-intege
linear programming (MILP) formulation of Carrion and Army and the shutdown and ramp-down limits are
[3]. The formulation is shown below. The sefs:= {1...T},
N = {1_...N}, and]\/w%-nd = {1_...Nwmd} represent th_e Dot < pj,k+RDjVj,k+SDj(Vj,k—1 —Vj,k)
time periods, thermal units, and wind generators, resgedgti _ ,

The demand at each time periadis denoted byD;,, and the +Pi(1—vjk), jEN, keT. (9
reserve requirement iB;. The power output of unif at timek

is given by the continuous variabjg ;. The expected value of Here, RD;, RU;, SD;, and SU; are the ramp-down, ramp-
the output of the wind unif at timek,E[p%”d] is approximated up, shutdown, and startup limits of unjt respectively. The

by S8 prind The continuous variablg; , represents the Minimum uptime constraints are

s,5,k "
maximum power output of unif at time k. This variable is
introduced in order to model the spinning reserves giverhiy t G
differencesp; ;, — p;... The units of all the power outputs are D U—vn)=0,jeN (10a)
MW. The on/off status of unij at timek is given by the binary k=1
variablev; ;. k+UT;—1
. Vin 2UTj(Vik —Vik-1), JEN
NP I TR IReH @ 2, vom 2 ULl )
Pakobikbik jeN keT ' '
J _ k=G;+1,....T-UT; +1 (10b)
sty piet Y. Eptir =D keT (3b) T
JEN J€Nwina Z (Vj,n - (Vj,k — I/j7k_1)) >0,75¢€ N7
S Bkt > EpYi)>Di+Ri, keT (3c) n=k
jGN jerind k:T—UTJ+2,,T, (10C)
(4)—(11).

The production cost for each thermal unit is approximated l\afvhere UT; are the minimum uptime Iimit.s and; =
. . rX|n(T7 (UT; — U?)vj,) is the number of periods that unjt
using the linear model [2] - g7

must be initially ON. The initial state of unjtis denoted by; ¢

cgk =ajvjk+bjpj, JEN, keT, (4) and is a fixed parameter. The minimum downtime constraints



are formulated as

L
S vik=0,jeN (11a)
k=1
k+DT;—1
Y (=vjn) = DTy(vjp-1 —vin), J €N,
n=~k
k=L;+1,....,T — DT; +1 (11b)
T
Z (1= vjm — (V1 —vix) 20, jEN,
n=~k
k=T-DT;+2,....T, (11c)

where DT; denote the minimum downtime limits anbl; =

reserve requirements can be reduced to less conservatels le
or even be removed. Note also that one can solve a closed-loop
stochasticdispatch problem by fixing the commitment actions.

C. Closed-Loop Implementation

To simulate the closed-loop performance of the power system
we consider aolling-shrinking horizon approach. The starting
rolling time is reset to one each time neviossil fuel and
electricity price information is obtainedrom the commodity
and day-ahead markets. The latter information is available
from the independent system operatdris period is assumed
to be T = 24 hours. At the start of the rolling time, we
assume that the wind-power forecast becomes available from

min(T, (DT} _S?)(I_Vj.,o)) is the number of periods that unitWRF for the next 24 hours. At this point, the stochastic unit
4 must be initially OFF. Note that it is possible to use this mlodcommitment problem is solved by using the current wind-

to simulate the performance of the energy dispatch problem power outputspy’.’;

fixing the commitment variables; .

B. Stochastic Programming Formulation

We extend the previous deterministic formulation by consi
ering corrective actions on the power outputs of the ther %I
generators to account for the uncertainty in the wind power

wind,true

= Djy and the future forecasts
p;’f;flkd, k = ¢+ 1,..,T7, where/ is the current time step.
The solution of this problem gives the commitment profiles
over the 24-hour rolling horizon. At each step inside théirrgl
horizon¢ = 2,...,T, the horizon is shrunk by one time step
«— T — ¢, and the stochastic energy dispatch is solved over
e remaining horizon with the new, true wind power but the
Same WRF forecasts of the current day. Each of these shgnkin

wind

outputs. The problem can be cast as a two-stage stochagsiic

programming problem similar to the ones proposed in [2

orizon problems gives the current power outpuits andp; ,
't current time.

[21], [19]. The first-stage decision variables are the aurre

thermal power outputg; 1, p; ; and the commitment profiles

over the entire planning horizon; . The power outputs are D. Inference Analysis

nonanticipatory (here and now) because it is assumed tkat thin the above stochastic formulation, the wind-power owtput
current wind-power outputgy{"* are known and given by are assumed to have a probability distributin In most

wind,true
j:1 ‘
realizations of the wind power outpuﬁ%‘j}f‘,ﬁ,
scenario-dependent thermal power outguts . andp; ; , with

. To formulate the second stage, we consider multipiochastic optimization studies this distribution is ased to
and we define be known. As seen in Section Il, obtaining this distributien

part of the modeling task. Since many different forecast emd

k > 1 (wait and see). Note that we do not define second-sta@aitoregressive, ANN, physics based) can be used to cehstru
scenario-dependent commitment variables because we wishhie error distribution, there is not a unique distributiémom

keep the problem computationally tractable. The formatatf
the stochastic optimization problem is

1
min  — e+l 12a
Ds,j.k:Ps, j,kVik Ng = mzAflceZT s,5,k 7,k j,k ( )
Sty pejnt Y PN =Dy seSkeT  (12b)
JEN JE€Nwind
Z n wind
Ds,j i T+ Z Pssk = Dk + Rk, s € S, keT
jGN jerind
(12¢)
Dsj1=P1,j1SES, JE N (12d)
Poj1=P1j15E€ES, JEN (12e)
@-09), se8
(10)— (11),

a practical point of view, we expect that such a distribution
is able to encapsulate the actual realizations of wind power
and has tight confidence intervals. We model the wind speed
distribution by propagating an assumed Gaussian disiibbut
of the initial state conditions through the WRF model. Bessau
of the complexity of the model, we are limited to a single
batch of a few (less than a hundred) samples. From a stochasti
optimization point of view, this is an issue because we aite no
solving the problem with the full distribution. Consequgnive
must perform an inference analysis to assess the qualitiyeof t
solution.

1) Computation of Confidence IntervalsThe two-stage
stochastic UC problem with fixed binary variables can be
expressed in the following abstract form [11]:

min d'z + Q(2), st Az =b. (13)

whereS := {1... Ng}. The ramp and power-limit constraintsHere, = are the first-stage decision variables, a@dz) =

are defined over each scenario,c S wherep; . «— ps

E[Q(z,&)] is the second-stage cost. We assume that the proba-

andp,; — P, The nonanticipativity constraints for thebility distribution of £ has finite support; that i, has a finite
power outputs in the first time step are given by equatiomsimber of scenario§y, ..., £k } with probabilitiesr, € (0,1),
(12d) and (12e). For the known wind power outputs we s8b we haveQ(z) = + Zle Q(z,&s), where

wind
Ds 41

p;“.‘fj”d’”“e. Note that if the stochastic formulation is
able to capture the uncertainty of the wind power accuratiedy

Q&) = min g7y, SLT2 Wy, = &5 = 1, K. (1)
Ys=Z



Here,y, are the second-stage decision variables, @nare the IV. INTEGRATIVE STUDY

realizations of the wind-power outputs. Sinkeis a very large | this section we integrate the wind-speed forecasts mediu

number, it is impractical to solve the stochastic problemotly. 1,y \wRF by following the procedure described in Section lhwit

Therefore, given a fixed nu_mber of realizatioNy < K from  he stochastic unit commitment/energy dispatch formoiteti

WREF, we solve the approximate problem, described in Section IlIThe entire computational framework
is sketched in Figure.l

Ns
. 1
rznzlg d = Ng Z Q= &), st Az =1b. (15) Uncertainty Quantification
s=1 WRF
Model
This smaller problem is known as a sample-average- Initial State Field T [ Stte Forecast
approximation (SAA) of the original problem (13), which SENTECE Samples
is usually computationally intractabléMe seek to estimate Data Ensemble
lower and upper bounds of the true optimal solutioh (us- Assimilation Reanalyzed Generator
ing the entire set ofK realizations) and their correspond- MeasurementsT l W
ing confidence intervalsHere we use the methodology put Wind Farms & Wind Power
forth in [11]. A lower bound can be estimated generating Meteo Stations _ Curve
j = 1,..,M batches, each of siz&/s, and we can then Rl
solve (15) for each batch. If we denote é§s the optimal -
cost of each SAA problem, we can estimate the lower bound Weighted _
as Lys,m = ﬁZﬁl oy, The sample variance 2estimator R:s\;er;a'l)s:ﬁ‘g Wind Power Comm
is given by s? . = ﬁZﬁl (ﬁgvs _LNS’MJ . The { Sample Batches l ON/OFF
mean and variance can be used to construct confidence ilsterva States
of the lower bound. To estimate the upper bound, we pick 'Rfene"?e D'?"ef?Yh
a given value for the first-stage variablésand generate a nawsis et hate Sower Lova
new set ofj = 1,...,M batches of data. We then evaluate Cost Lotverand | Set-Points
(13), leading toffv(é). Note that each evaluation involves the Upper Bounds Thermal Power
solution of the second-stalge problem (14). As before, wehav g¢ochastic Optimization Generators
the meanUyn, v = %Z,jg fk, and variancesg, .,y = _ _ _
2 Fig. 1. Schematic representation of computational framkewo

T St (ffvs - UNs,M)

2) Weighted Average Samplin@he inference analysis task
requires multiple batches of realizations. As expectethiolmg ) o
these from WRF is not practical. Here, we present a heurisfie Wind Forecast and Uncertainty Quantification
resampling technique to avoid this limitation. To createvne We use the WRF model to forecast the wind speed in a
time series from the existing batch of WRF realizations, w&pecific region that covers the state of lllinois. We set up
express a new realization as a weighted average of the blailaea computational nested domain structure including a high-
ones. Suppose the WRF modeld$t) = M(t,2(0)), where resolution sector that covers the target area and two additi
x(t) is the state vector at time If we are givenNgs samples domains of larger coverage but lower resolution. The parent
z; and we can writer(0) = >, s w;z;(0), the propagation of domains supply the boundary conditions for the nested ones,
z(0) is z(t) = M(t, 2(0)) = M(t, > ;s wyz;(0)). Assuming and the largest domain has prescribed boundary conditions f

the variance of the samples is small, we can wrif¢0) = coarser ones. This setup is illustrated in Fig. 2. A simiktup
z(0) +¢;(0). We justify the computation of weighted averagewith one coarse domain is described in [23]. We generate six
of the time series by observing that ensemble data sets, each containing the predicted wind $pee

lllinois corresponding to domain # 3 in Fig. 2. Each ensemble
has Ns = 30 members. The data is sampled every 10 minutes,
M | t,z(0) + ijej(o) and each ensemble is evolved one day ahead. The starting time
j of the experiment, corresponds to Jung 2006, 6:00 PM CT

x(t)

OM (local time), with each data set restarted from the reaealyz
~ M(t,2(0)) + ijw(t’j(o))ej(o) solution at timety + (k — 1) x (12hourg with k = 1,...,6.
J In other words, each data set is started at the revalidaitioa t
~ ij/\/l(t, z(0) + ej(())) = ija:]—(t). with 12-hour increments.
7 7 1) Validation Using Wind and Temperature Data Measure-

ments: The weather station observations were obtained from
In other words, the weighted average approximates, to fitee National Climatic Data Center (NCDC), and their locasio
order, the nonlinear propagation of weighted samples of thee illustrated in Fig. 3.b. In Fig. 4 we show the wind-speed
initial conditions. The weights are chosen to be Gaussi&t2c) predictions and measurements for Peru and Chicago, IL
near the unit vectors in the standard basis on a hyperplgdenoted byV in Fig. 3.b). Each ensemble evolves for 24 hours,
> jes wj = 1in thew space. and new ones are started every 12 hours. We remark that the



45731, structure. The order of the windows goes from left to right
Grd/Size - and coincides with the wind-farm location numbering shown
#1 - 32km* 240 in Fig. 3. Currently, the power produced by wind turbines
#123?6Xk$ % 35} k depends on the wind speed at elevations of about 40-120sneter
126 x 121 7 | ) The wind-speed fields at these heights can be extracted from
AN WRF. Unfortunately, the NCDC data available for validation
[ S : = is reported only at 10 meters. Obtaining real wind-speed dat
-120 -110 -100 -90 -80 R . . .
° Longitude W at higher altitudes requires access to proprietary da¢zbab
Fig. 2. Size and spatial resolution of the computational @iom operational wind farms. The wind-speed fields at 10 meters

above the ground for three consecutive days of June 2006 are
presented in Fig. 5. The WRF realizations are able to capture
the general trends of the actual observations at all loestim
addition, they are able to encapsulate the observatiorts. tNat

the wind speed is relatively low at this height. The maximum
average is around 6-7 meters per second. We have found that
the wind speeds reach a maximum average of around 10 meters
per second at 100 meters in the studied region. In additien, w
have observed that the uncertainty levels increase signtfic

at this height as a result of the larger range and variability

° Latitude N
° Latitude N

o~
-92 -91 -9 -89 -88 -87 -92 -91 -90 -89 -88 -87

N onigde W gt W This increase is also expected because most of the wind speed
a) Wind farm location b) Weather stations datq assimilated in WRF is near ground level. The 1Q0 meters
_ _ _ _ o _ profiles are not presented here because of space restsickion
ﬁ%iliﬁbis.wmd farms (circles) and meteorological station&figles) locations more details, please refer to Section 4.1 in the techniqairte
[4]. In Fig. 7 we show the spatial correlations of the windegpe
° N for a particular wind farm on June 5, 1:50 AM, as inferred from

the 30-member WRF ensemble simulation. The wind speed is
highly correlated over the studied region, and it has a noatr

s i spatial structure. This observation is confirmed by conmgari
Figs. 3 and 5. Here, we can see that the wind-speed reafizatio
for wind farms #2, 3, and 4 are strongly correlated, as ptedic

by the correlation mapping.
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Fig. 4. Wind-speed+20) predictions and measurements (o) for Peru (left
RMS error=1.56, R2=0.32) and Chicago (right, RMS error1%2=0.35), IL.
The vertical dashed lines denote the beginning of a new 24-peediction
window; different colors are used to indicate ensemblestestaat different
times.
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wind-speed measurements obtained from NCDC are given °  “Tmem om0 Ctmew
miles per hour rounded to the nearest integer. Doing so has
the unfortunate effect of diminishing the wind variabilind Fig. 5. Wind-speed realizations for 6 wind farm locationsliinois at 10m and
s L . . observations (dots) at nearest meteorological statiorsticdl lines represent
yielding more pessimistic than real validation resultsspi eginning of day (12:00 AM).
this, the wind-speed uncertainty intervals generated byFWR
capture the trends well, with few exceptions. It is also icfeam
Fig. 4 that the forecasts do not improve much when updated?) Implementation Considerationdn this study we used
every 12 hours instead of every 24 hours. Note that the fetecaversion 3.1 of WRF [17]. The ensemble approach taken for esti
are not improved significantly at the middle of the day, ppshamating the uncertainty in the weather system is highly pelizl
because measurements assimilated during the day are noalide because each scenario evolves independently thro&fh W
informative as those assimilated during the night, where tifhe most expensive computational element is the evolutfon o
wind currents tend to be stronger. We have also observed thath sample through the WRF system. We therefore consider
the wind-speed trends are much more difficult to predict thantwo-level parallel implementation scheme. The first lésed
temperature trends. This point is enforced by the corralmgr coarse-grained task decomposition represented by eaghlesam
for the temperature and wind speed at Peru, IL shown in Fig.& secondary finer-grained level consists in the parallébzeof
where it is clear that the time correlations of wind speedagieceach sample. This approach yields a highly scalable salutio
more quickly than those of the temperature. The simulations were performed on the Jazz Linux cluster at
We present validation results at six active wind-farms iArgonne National Laboratory. Jazz (now decommissioned) ha
the state of lllinois to analyze their magnitude and cotietea 350 compute nodes, each with a 2.4 GHz Pentium Xeon with
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temperature measurements at Peru, 1l1:50 AM, denoted by “X.” The circle
markers denote the other wind farms
in lllinois.

o

Fig. 10. Closed-loop profiles for thermal units. Solid thin line igiomal profile
(with perfect information), solid thick line is stochastiC solution, and thick
gray lines are planned scenarios at the beginning of each day

1.5 GB of RAM and used Myrinet 2000 and Ethernet for
interconnect. Our running times given in Fig. 8 indicatetthe 1
around 32 CPUs were sufficient to generate forecasts with Wis .|
in a closed-loop UC/ED setting. The times also suggest that,
order to generate forecasts every hour, one would need ab
500 CPUs.

800
600

Total Power [M

400
200

—— Scalability on Jazz 0
C P US T| me - e~ Linear Scalability Time [hr]
10°
[hr] Fig. 11. Closed-loop total power profiles obtained with bastic UC formu-
4 50 lation. Top thick line is demand profile, medium thick linetli®e implemented
8 28 N thermal profile, gray lines are planned realizations atribegg of each day,
e bottom thick line is actual total wind power, and adjacerstygines are forecast
16 17 profiles
32 10
10° clpoLjs 10°
Fig. 8. Scalability of WRF on the computer cluster Jazz forhdirs. 1326 MW. The ramp limits of the units are not reported, SO we
have assumed them to be 50% of the corresponding maximum
<15 capacity. The reserve requirements are assumed to be 108 of t
s '1 demand. To simulate increasing level of wind power adoption
§ we increase the number of wind turbines at 12 existing wind
0.5 . . . .
E farm locations in lllinois.
0 .
<15 24 48 72 0 24 48 72 2) Results: To generate wind-power forecasts, we propagate
S '1 the wind-speed observations and the WRF realizations at a
§ height of 10 metersthrough a typical wind-power curve with
0.5 . . .
7§ a maximum capacity of 1.5 MW. The nominal curve has a
0

o 2 % zime[h;]ts 2 % e cut-in speed of 3 meters per second and reaches the rated
capacity at 12 meters per second. The wind-speed obsarsatio
Fig. 9. Wind power realizations for 6 wind farm locations linbis at 10 mand forecast, and ensembles used are summarized in Fig. 5. As
observations (dots) at nearest meteorological statioesticel lines represent previously mentioned, we used the height of 10 meters becaus
beginning of day (12:00 am). the NCDC data used for validation are reported only at this
level. As expected, the wind speeds are relatively low a thi
level, thus leading to small power outputs. Instead of using
the wind speed WRF forecasts at 100 meters, we have kept
the 10 meters WRF forecasts and observations and mapped
Because of the lack of detailed design data of thermal atitese using a shifted power curve obtained by displacing the
wind-power units in the open literature, we have constraictmominal cut-in speed from 3 to 2 meters per second. With this,
an artificial simulation study. We first describe the theriawadl the rated capacity is reached at around 11 meters per second.
wind-power assumptions used and then discuss our resoits frThis strategy allowed us to obtain more consistent valiati
the simulation. results for wind power compared to linear interpolation o t
1) Power System DescriptionThe thermal power systemwind-speed observations. The resulting wind-power ratibns
specifications used in this work are based on those repartechnd observations are presented in Fig. 9. The wind-power
[3]. The system contains a total of 10 thermal generatork widlistribution is clearly affected by the nonlinear struetaf the
a total installed capacity of 1662 MW. The peak demand ower curve, increasing the spread of the distribution. i~

B. Economic Study Unit Commitment/Energy Dispatch



realizations are able to encapsulate the actual power \abser deterministic strategy (using only the WRF forecast méan)

tions. The largest differences are observed at the begjnofin not able to sustain adoption levels of more tHaf% even with

the third day. the allocated reserves. We observed that increasing thgiado
We have run the closed-loop UC/ED system assuminglevels increases the startup and shutdown costs, but thiese a

rolling horizon and a forecast frequency of 24 hours. Theegligible (on the order of $10,000) with respect to the Itota

ED problem runs every hour. A total of 30 WRF realizationproduction costs.

are used to solve the stochastic problem. The resulting MILP

problems are implemented in AMPL and are solved with the V. CONCLUSIONS ANDFUTURE WORK

CBC solver from the COIN-OR repository. The MILP contains \We presented a computational framework for the integration
38,651 variables from which 240 are binary, 783 equalityf the state-of-the-art Weather Research and ForecastiRF}
constraints, and 40,747 inequality constraints. The @eeranodel in stochastic unit commitment/energy dispatch formu
solution time for the stochastic UC problem in a quad-cotelln |ations that account for wind-power uncertainty. We exthd
processor running Linux is about 9 minutes in cold-start @odthe WRF model with a sampling technique implemented in a
The solution time of the energy dispatch problem is less fttan distributed-memory parallel computing architecture toeate
seconds. The results for the 20% penetration study aremiebe yncertainty information. In addition, we developed a regkmg
in Figs. 10 and 11In Fig. 10, we present the policies forstrategy that avoids expensive WRF simulations to perform
the power levels of six thermal units. The solid lines repres inference analysis. Our simulated commitment study irtdica
the predicted and the realized power profiles, while the gr@yat using WRF forecasts and uncertainty information igoe
lines represent the forecasted realizations at the bewnof to achieve high adoption levels with minimum reserves. Our
the day.We notice that the sensitivity of the power levels otydy illustrates an operational setting with real datantig
some units to the uncertainty of the wind power is very smayt several issues and limitations that are not found inliziec
Generators #2 and #5 are the most sensitive, while gensr&or experiments using artificial forecasts and uncertaintgrimé-
and #4 exhibit no sensitivity. We have found that the seniti tjon. For instance, we have not found significant benefits of
levels depend strongly on the design characteristics aitépr ypdating the WRF forecasts in intra-day operations. In tiafti
of the generators. We have also found that the optimal c@Rt numerical experiments indicate that a relatively langeber
of the stochastic strategy over three days of operation i of CPUs are required to generate forecasts and uncertaiioty i
about 1% larger than that of the perfect information stiatedmation at a higher frequency than 12 hote emphasize that
We also performed an inference analysis using the resagplife integrative framework presented here is preliminadydwes
strategy of Section [1I-D2 for the first day of operation Wsinnot consider more detailed issues such as intra-day reslihgd
M = 30 different batches. The upper bound mean was fourdl unit commitment, effects of updating wind power foresast
to be Ung, = $474,064 with variancest, v 5, = 1,0828%.  higher tempeoral resolutions (e.g., hourly), as used ifDéusish
The lower bound mean was found to lhey, s = $474,317  power system. These two factors affect the value of wind powe
with variances] v 5, = 1,6563°. Both variances are less tharforecasts during intra-day operation. Therefore, as fdttare
0.25% of the mean cost. This value indicates that 30 WR{york, we are interested in developing techniques to geeerat
realizations are sufficient to estimate the optimal costietely. forecasts at higher spatial and temporal resolution. Iritiaic
We have also found that updating the WRF forecast evefe are interesting in generating wind-power forecast nedel
12 hours instead of every 24 hours does not bring importai fusing WRF wind-speed forecasts and operational wind-
economic benefits. The reason is twofold: minor improvesieriower data. Thanks to our open access to WRF, our framework
in forecast accuracy, as pointed out in Section IV-A, and the highly flexible and allows us to consider these extensions
properties of the power system under consideration. Amiffe Additionally, we are interested in dealing with networks of
outcome could be obtained with a different generator mix. real size with hundreds of generators, transmission caings

In Fig. 11 we present the profiles of total aggregated (susind intra-day scheduling. To solve these challenging prob|
over the total units) demand, thermal power, and wind powgje are developing algorithms for the solution of stochastic

The solid lines represent the predicted and the realizedepowptimization problems in parallel computing architecture
profiles while the gray lines represent the forecastedzaiitins

at the beginning of the day. The top solid line is the daily ACKNOWLEDGMENTS
demand profile, which is assumed to be constdiote that the  11is work was supported by the Department of Energy
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In this case, the reserves are sufficient to satisfy the [0hi
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