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Abstract—Sensitivity analysis is an important tool for describ-
ing power system dynamic behavior in response to parameter
variations. It is a central component in preventive and corrective
control applications. The existing approaches for sensitivity calcu-
lations, namely, finite-difference and forward sensitivity analysis,
require a computational effort that increases linearly with the
number of sensitivity parameters. In this work, we investigate,
implement, and test a discrete adjoint sensitivity approach whose
computational effort is effectively independent of the number of
sensitivity parameters. The proposed approach is highly efficient
for calculating sensitivities of larger systems and is consistent,
within machine precision, with the function whose sensitivity we
are seeking. This is an essential feature for use in optimiza-
tion applications. Moreover, our approach includes a consistent
treatment of systems with switching, such as DC exciters, by
deriving and implementing the adjoint jump conditions that
arise from state and time-dependent discontinuities. The accuracy
and the computational efficiency of the proposed approach are
demonstrated in comparison with the forward sensitivity analysis
approach.

Index Terms—Adjoint sensitivity, discrete sensitivity, power
system dynamics, transient stability, trajectory sensitivity analysis

I. INTRODUCTION

DYNAMIC security is a concern for system planning
and operation experts because significantly higher pen-

etration of renewable energy resources, most of which are
electronically coupled to the grid, is expected in the future.
This situation presents new technical challenges, particularly
the increased dynamic content and reduction of system inertia
through the displacement of conventional generation resources
during light load periods. Thus, ensuring dynamic security
along with optimal and secure steady-state operation is an
important emerging problem. To this end, utilities typically
design preventive or corrective actions based on a set of
directives. For instance, a corrective action directive may pre-
scribe changing the dispatch of a specific set of generators to
alleviate overload problems caused by a specific contingency.
These directives, based on expert operational judgement and
accumulated knowledge, may not be optimal. Moreover, they
may even not be secure for the new dynamics of higher
renewable energy usage.
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Optimal and secure preventive and corrective control ac-
tions as well as suitable placement of controllers have been
extensively studied by power system researchers. The central
component in these studies is the calculation of first-order
sensitivities of the power system dynamics trajectories with re-
spect to the control parameters. Hiskens and Pai [1] established
the theory of trajectory sensitivity analysis (TSA) for hybrid
systems modeled by a differential-algebraic-discrete structure,
and they developed jump conditions for the sensitivities at
discrete events. Subsequently, TSA has been used in numerous
applications: stability assessment and real-time emergency
control [2]; determination of effectiveness of preventive gener-
ation rescheduling and shunt/series compensation in improving
transient stability [3]; preventive control of voltage instability
through shunt compensation and generation rescheduling [4];
assessment of best location of series-connected controllers to
enhance power system transient stability [5]; suitable place-
ment of series compensators for enhancing both transient and
small-signal stability [6]; design of a fixed shunt capacitive
compensator to maintain the first swing stability of micro
grids [7]; dynamic security constrained rescheduling under
contingencies [8]; reduction of composite load model param-
eters identified from field measurement [9]; identification of
parameters in nonlinear dynamical models that can be reliably
estimated from disturbance measurements [10]; estimation
of critical parameters such as clearing time and mechanical
input power [11]; transient stability assessment of power
systems containing series and shunt FACTS devices [12], [13];
reduction of computational burden of model predictive control
method for load shedding [14]; VAr planning in large power
system heavily stressed by voltage collapse [15]; parameters
design of power system stabilizers [16], [17]; and the study
of parameter uncertainty in system behavior [18], [19]. An
overview of the applications of TSA in the analysis of large
disturbance dynamic behavior of power systems is given in
[20].

The idea of sensitivity analysis is not new. For general sen-
sitivity calculations, two approaches, continuous and discrete,
have been widely used in many different fields, as shown in
Fig. 1. In continuous methods, sensitivity equations are derived
directly from the model equations and can be theoretically
solved with integration methods and time steps different from
those used for the model equations. Discrete methods, on the
other hand, are based on the discretized equations, so the prop-
agation scheme and time steps are completed determined by
the simulation code. Furthermore, both these approaches have
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Fig. 1. Taxonomy of approaches for sensitivity calculation.

TABLE I
COMPARISON OF DISCRETE FORWARD AND ADJOINT METHOD

Forward Adjoint

Best to use when np � nc np � nc

Computational complexity O(np) O(nc)

Checkpointing No Yes

Implementation Difficulty Medium High

Accuracy High High
np:number of parameters nc:number of cost functions

two variations: forward and adjoint mode. The forward mode
calculates the sensitivities by integrating a set of sensitivity
equations forward in time, while for the discrete mode the
sensitivity equations need a backward-in-time integration. An
interesting observation is that the continuous forward approach
can be equivalent to the discrete approach if using the same
choices of time integration methods and time steps; however,
this is not the case for continuous adjoint and discrete adjoint
even if the same time integration methods and the same time
steps are applied to both. Table I summarizes the comparison
between the discrete forward and adjoint approaches.

The TSA approach commonly used in power systems falls
into the forward approach category with the objective func-
tions defined to be entries in the system state vector. The major
drawback of TSA, just like other forward approaches, is that
the computational cost of the forward approach grows linearly
with the number of sensitivity parameters. By contrast, the cost
of the adjoint approach is effectively constant with respect to
the number of sensitivity parameters and grows linearly with
the number of objective functions [21]. Therefore, the adjoint
approach can be much more efficient than the forward ap-
proach when calculating the gradients of a few objective func-
tions with respect to many parameters, a common occurrence
in power system dynamics and control. In order to mitigate the
performance issue of TSA for dealing with many parameters,
embarrassingly parallel computing has been utilized in [22]
and [23] so that each parameter sensitivity is computed in
parallel. This strategy yields limited scalability, however, since
the maximum number of concurrent computational threads
will be limited by the number of parameters, and therefore
the performance is impacted when the number of parameters
and the computational resources are mismatched. This is not
the case in the adjoint approach because the sensitivities for
all parameters are computed simultaneously.

So far, few efforts have been made to explore the application
of the adjoint approach in power systems, probably because

of the following reasons:

1) Derivation of adjoints can be complicated depending on
the complexity of the dynamic models.

2) Accounting for switching actions in hybrid systems in
sensitivity analysis poses both theoretical challenges and
implementation challenges.

3) Efficient implementation of adjoint calculations requires
development of checkpointing schemes and a proper
method to solve linear systems involving Jacobian trans-
pose when an implicit time integration method is used.
Checkpointing is a scheme for dramatically reducing
the memory requirements of the adjoint method, while
moderately increasing the computational cost through
recomputations of the trajectory [21].

A noteworthy work along this line is [24], which has applied
a continuous adjoint equation method to evaluate the gradient
of a stability metric for optimal power flow and demonstrated
significant improvement in efficiency. Not addressed, however,
were the state-dependent nature of the switching conditions
and, as a result, the jump conditions of sensitivity variables
that are characteristic of hybrid systems such as DC exciters.

In this work we particularly investigate discrete adjoint
sensitivity approaches because the sensitivities computed by
discrete adjoint methods equal the derivatives of the function
applied to the discretized dynamical system, up to the order
of the machine precision. This is not the case for sensitivity
computations that use numerical integration of continuous
adjoints [25] and may lead to difficulties in convergence if
the gradients are used for solving optimization problems [26].
The contributions of this work are as follows.

1) We design, describe, and analyze a workflow to com-
pute discrete adjoints for single-step multistage methods
(such as theta methods and Runge-Kutta methods).

2) We implement this workflow in the widely used open-
source library Portable, Extensible Toolkit for Scientific
Computing (PETSc) [27]. This makes our approach
available to the research community for a large class
of numerical integration schemes.

3) We extend the discrete adjoint sensitivity analysis of [28]
to hybrid systems with state-dependent jumps.

4) We show the potential of our approach and the software
for real applications by validating the accuracy of our
approach and the expected behavior of adjoint differ-
entiation [21] on several test cases that include 9- and
118-bus dynamics with DC exciters, where the state-
dependent switching dynamics of the latter demonstrates
the correctness of our jump conditions.

The paper is organized as follows. The power system
dynamic model and its numerical solution are discussed in
Section II. The formulation of the discrete adjoint method,
along with the sensitivity equations and handling of state-
dependent jumps, is proposed in Section III. Section IV
presents the accuracy and computational efficiency of the
different approaches on several test systems. In Section V we
summarize our conclusions and briefly discuss future work.
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II. POWER SYSTEM DYNAMIC EQUATIONS

To carry out the objectives described in Section I, we present
a hybrid system abstraction of the target dynamical systems.
Such a framework is useful for solving both forward problems
and inverse problems [29]. We assume that the continuous
dynamics is governed by systems of parameter-dependent
differential-algebraic equations (DAEs) and that the discrete
events are reflected by a jumping mechanism between those
systems. This results in a piecewise smooth dynamical systems
For an initial value problem, the system visits the smooth
pieces in succession, with the states at the entrance in a smooth
piece depending on the states at the exit of the previous one.
Mathematically this can be described by

ẋ(i) = f (i)(x, y; p) (1)
γ(i)(x(i), y(i); p) = 0 (2)
0 = g(i)(x, y; p), (3)

where x ∈ Rnx are the dynamic state variables such as
machine angles and velocities, y ∈ Rny are the algebraic
variables such as load bus voltage magnitudes and angles, and
p ∈ Rnp are the system parameters such as line reactances,
generator mechanical input power, and fault clearing time.
An event is triggered when the stage-dependent condition (2)
is satisfied. The equations change at that point, resulting in
discontinuities in the state/algebraic variables. The superscript
(i) identifies the different sets of equations modeling the
events. Initial conditions are given by

x(t0) = Ix0(p), y(t0) = Iy0(p), (4)

where we assume that we start in the interior of the smooth
piece (0) and thus x0 and y0 must satisfy the algebraic
constraints for that piece:

g(x0, y0; p) = 0. (5)

We employ the usual assumption that g(i)y is nonsingular along
the trajectories, so each set of equations is a semi-explicit
index-1 DAE system [30]. We start with the numerical solution
and discrete sensitivity analysis for a single DAE system:

ẋ = f(x, y; p) (6a)
0 = g(x, y; p), (6b)

and we then extend the approaches to the hybrid cases. The
DAE system (6) can be cast into a general form

MẊ = F (X; p), (7)

where

X =

[
x
y

]
, F =

[
f
g

]
, M =

[
Inx×nx

0ny×ny

]
.

To solve (7), we can directly apply, for example, theta
methods:

MXn+1 =MXn + hn(1− θ)F (Xn; p)

+ hnθF (Xn+1; p), n = 0, . . . , N − 1. (8)

As special cases, the methods with θ = 1 and θ = 0.5
give backward Euler and Crank-Nicolson (also known as
trapezoidal) methods, respectively.

III. DISCRETE ADJOINT SENSITIVITY CALCULATION

For deriving the discrete adjoint workflow, we assume that
system (7) is integrated with a one-step method

Xn+1 = Nn(Xn), n = 0, . . . , N − 1, X0 = I, (9)

where I are the initial values and the solution at the end
of the simulation is given by XN . We aim to efficiently
compute sensitivities of an objective function (sometimes
called response function) with respect to initial values or
system parameters. A general form of the objective function,
involving a terminal and trajectory term, can be written as

Ψ = ψ(X(tF ); p) +

∫ tF

t0

r(t,X; p)dt. (10)

Note that so-called trajectory sensitivity [20], known as the
derivative of the final solution (corresponding to Ψ = X(tF )
in (10)) with respect to initial values, is just a special case of
what we are considering. For notational brevity, in the rest of
the discussion we drop the argument p in ψ, r, F .

Continuous sensitivity approaches that are then discretized
do not take into consideration that the objective function is
approximated by numerical values, not the exact values. For
example, the exact function ψ(X(tF )) is approximated by
ψ(XN ), and the numerical approximation of the continuous
gradient with respect to the sensitivity parameters is the
gradient of ψ(XN ) only up to numerical integration tolerance.
Discrete approaches, on the other hand, compute algebraical
derivatives of ψ(XN ) and thus have an error on the order
of machine precision. For low- and moderate-precision inte-
gration (which, in real-time contexts, for example, would be
necessary) the latter error is much smaller. This is essential in
optimization applications, where we would like to make sure
that we have very accurate descent directions for ψ(XN ).

We first consider a simple case in which we compute
sensitivities of Ψapprox = ψ(XN ) to initial values. Here, Ψapprox

is the numerical approximation to the target objective function.
We use the Lagrange multipliers λ0,. . . ,λN to account for the
constraint from each time step as well as the initial condition,
resulting in

L = Ψapprox − λT0 (X0 − I)−
N−1∑
n=0

λTn+1 (Xn+1 −N (Xn)) .

(11)
Differentiating equation (11) w.r.t I leads to

dL
dI = λT0 −

(
dψ

dX
(XN )− λTN

)
∂XN

∂I

−
N−1∑
n=0

(
λTn − λTn+1

dN
dX

(Xn)

)
∂Xn

∂I . (12)

By defining λ to be the solution of the discrete adjoint model,

λN =

(
dψ

dX
(XN )

)T
, λn =

(
dN
dX

(Xn)

)T
λn+1,

n = N − 1, . . . , 0, (13)

we obtain the gradient ∇IΨapprox = λ0.
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For the general case where the objective function contains
integral terms as in the general form (10) and sensitivities to
parameters are also desired, the discrete adjoint model can be
derived in a similar way from the extended system

MẊ = F (t,X), (14)

where

M =

M Inp×np

1

 , X =

 Xp
q

 , F =

 F
0np×1
r

 .
The second equation enforces constant parameters during the
simulation, and the last equation comes from a transformation
of the integral

q =

∫ tF

t0

r(t,X)dX.

The initial condition for the extended system is X0 =
[I 01×np

0]T .
With the basic framework established, the discrete adjoint

for any one-step method can be easily derived. For example,
the adjoint theta method (8) is

MTλs = λn+1 + hnθF
T
X(Xn+1)λs + hnθr

T
X(tn+1, Xn+1),

(15)
λn =MTλs + hn(1− θ)FTX(Xn)λs

+hn(1− θ) rTX(tn, Xn), (16)
µn = µn+1 + hn

(
θ FTp (Xn+1) + (1− θ)FTp (Xn)

)
λs

+hn
(
θ rTp (tn+1, Xn+1) + (1− θ) rTp (tn, Xn)

)
,

(17)
n = N − 1, . . . , 0,

with the terminal conditions

λN =

(
dψ

dX
(XN )

)T
, µN =

(
dψ

dp
(XN )

)T
. (18)

The gradients of the objective functions are given as

∇IΨapprox = λ0, ∇pΨapprox = µ0.

If the terminal condition for λN in (18) is applied to the
discrete adjoint of a DAE system, however, there would be
conflicts with the constraints brought up by the algebraic
equations. Consider the simple case θ = 1 (backward Euler
method), and let λx and λy be the discrete differential and
algebraic adjoint variables, respectively. One can see that (16)
will lead to λy = 0 regardless of the terminal condition for
λyN . According to the implicit function theorem, the algebraic
variable y can be locally solved from (6) as

y = ϕ(x; p).

Substituting y into the objective functions in the terminal
conditions (18) leads to that λxN depend only on x and λyN
should be set to zero.

For the sensitivity calculation, we observe the following.
• The discrete adjoint equations (15) propagate the sensitiv-

ity variables backward in time following exactly the same
trajectory with the forward run. Thus, there is no time step

TABLE II
JACOBIANS REQUIRED WHEN CALCULATING ADJOINT SENSITIVITIES

W.R.T. INITIAL CONDITIONS AND PARAMETERS RESPECTIVELY

ψ Only With Integral

initial conditions FX FX , rX

parameters FX , Fp FX , Fp, rX , rp

control in the backward run. While this approach may
result in increased memory requirements compared with
forward approaches, that requirement can be dramatically
reduced with small increases in recomputation by using
advanced checkpointing techniques [21].

• The number of variables λ and/or µ is the same as the
number of objective functions.

• For each objective function, only one linear system needs
to be solved for the theta methods in (15) at each
backward step, regardless of the number of parameters. In
the general case, the number of linear solves depends on
the time-stepping method. For example, implicit Runge-
Kutta methods may require as many linear solves as the
number of stages.

• The “prediction” matrix MT /(hn θ) − FTX from (15) is
the transpose of the one used in solving the nonlinear
equation (8). The Jacobian FX can be reused in the
adjoint run.

• The adjoint computation may require some extra Jacobian
functions depending on the needs of the application, as
summarized in Table II.

For the examples in our experiments, we store the entire
forward trajectory in memory in order to avoid recomputation,
since the memory capacity is sufficient. Nevertheless, we
have also implemented a variety of advanced checkpointing
schemes [21] for large-scale problems.

A. Sensitivity calculation with discontinuities

For illustration, we consider the following case of the
hybrid system (1)–(3) that has a single discontinuity at time
τ separating the system into two stages:

X(1)(t0) = I,
MẊ(1) = F (1)(X(1)), t ∈ [t0, τ ],

γ(X(1)(τ)) = 0,

MẊ(2) = F (2)(X(2)), t ∈ (τ, tf ].

Here I is the initial condition, and γ is transition function
between stages. The approach for this case can be straightfor-
wardly extended to multiple stages. We again assume that the
discretization of the hybrid systems is performed with one-step
methods:

X
(1)
k+1 = N (1)(X

(1)
k ), k = 0 . . . N1 − 1,

X
(2)
k+1 = N (2)(X

(2)
k ), k = N1 . . . N − 1, (N = N1 +N2).

The objective function Ψ is approximated by using the numer-
ical solution:

Ψ ≈ Ψapprox = ψ(XN2
).
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The following assumptions are made about this model for
the convenience of analysis.

1) The differential states in X(2) and X(1) are continuous
at the junction time

x(2)(τ) = x(1)(τ).

2) F (1), F (2), and γ are C1.
3) The transversality condition is satisfied [31]:

dγ

dX
(τ)F (1)(X(1)(τ)) 6= 0.

B. Jump conditions for discrete adjoint method

Similar to the steps taken in Section III, we build the
Lagrangian function:

L̂ = Ψapprox −
(
λ
(1)
0

)T (
X

(1)
0 − I

)
−
N1−1∑
k=0

(
λ
(1)
k+1

)T (
X

(1)
k+1 −N (1)(X

(1)
k )
)

−
N−1∑
k=N1

(
λ
(2)
k+1

)T (
X

(2)
k+1 −N (2)(X

(2)
k )
)
. (19)

Differentiating the Lagrangian function (19) at I and can-
celling out identical terms yield

dL̂
dI =

dψ

dX
(XN2

)
∂XN2

∂I −
XXXXXXX
dλT0
dI (X0 − I)−

(
λ
(1)
0

)T ∂X(1)
0

∂I

+
(
λ
(1)
0

)T
−
hhhhhhhhhhhhhhhhhh

N1−1∑
k=0

(
dλ

(1)
k+1

dI

)T (
X

(1)
k+1 −N (1)(X

(1)
k )
)

−
N1−1∑
k=0

(
λ
(1)
k+1

)T (∂X(1)
k+1

∂I − dN (1)

dX
(X

(1)
k )

∂X
(1)
k

∂I

)

−

XXXXXXXXXXXXXXXXXX

N−1∑
k=N1

(
dλ

(2)
k+1

dI

)T (
X

(2)
k+1 −N (2)(X

(2)
k )
)

−
N−1∑
k=N(1)

(
λ
(2)
k+1

)T (∂X(2)
k+1

∂I − dN (2)

dX
(X

(2)
k )

∂X
(2)
k

∂I

)

=
dψ

dX
(XN2

)
∂XN2

∂I −
(
λ
(1)
0

)T ∂X(1)
0

∂I +
(
λ
(1)
0

)T
−

N1∑
k=1

(
λ
(1)
k

)T ∂X(1)
k

∂I +

N1−1∑
k=0

(
λ
(1)
k+1

)T ∂N (1)

∂X
(X

(1)
k )

∂X
(1)
k

∂I

−
N∑

k=N1+1

(
λ
(2)
k

)T ∂X(2)
k

∂I

+

N−1∑
k=N1

(
λ
(1)
k+1

)T dN (2)

dX
(X

(2)
k )

∂X
(2)
k

∂I .

Substituting

N1∑
k=1

(
λ
(1)
k

)T ∂X(1)
k

∂I =
(
λ
(1)
N1

)T ∂X(1)
N1

∂I

−
(
λ
(1)
0

)T ∂X(1)
0

∂I +

N1−1∑
k=0

(
λ
(1)
k

)T ∂X(1)
k

∂I ,

N∑
k=N1+1

(
λ
(2)
k

)T ∂X(2)
k

∂I =
(
λ
(2)
N

)T ∂XN2

∂I

−
(
λ
(2)
N1

)T ∂X(2)
N1

∂I +

N−1∑
k=N1

(
λ
(2)
k

)T ∂X(1)
k

∂I

and then reorganizing leads to

dL̂
dI =

(
λ
(1)
0

)T
+

(
dψ

dX
(XN2

)−
(
λ
(2)
N

)T) ∂XN2

∂I

−
(
λ
(1)
N1

)T ∂X(1)
N1

∂I +
(
λ
(2)
N1

)T ∂X(2)
N1

∂I

−
N1−1∑
k=0

((
λ
(1)
k

)T
−
(
λ
(1)
k+1

)T dN (1)

dX
(X

(1)
k )

)
∂X

(1)
k

∂I

−
N−1∑
k=N1

((
λ
(2)
k

)T
−
(
λ
(2)
k+1

)T dN (2)

dX
(X

(2)
k )

)
∂X

(2)
k

∂I .

(20)

We define λ to be the solution of the discrete adjoint model:

λ
(2)
N =

(
dψ

dX
(XN2

)

)T
,

λ
(2)
k =

(
dN (2)

dX
(X

(2)
k )

)T
λ
(2)
k+1, k = N − 1, . . . , N1,(

λ
(1)
N1

)T ∂X(1)
N1

∂I =
(
λ
(2)
N1

)T ∂X(2)
N1

∂I ,

λ
(1)
k =

(
dN (1)

dX
(X

(1)
k )

)T
λ
(1)
k+1, k = N1 − 1, . . . , 0.

Then we have

∇IΨapprox =
(
dL̂/dI

)T
= λ

(1)
0 .

To avoid computing the forward sensitivities ∂X(1)
N1
/∂I and

∂X
(2)
N1
/∂I, we use the results from [31, Equation 50 and

Theorem 1]:

dτ

dI = −
dγ

dX
(X

(1)
N1

)
∂X

(1)
N1

∂I
dγ

dX
(X

(1)
N1

)
∂X

(1)
N1

∂t

and

∂X
(2)
N1

∂I =
∂X

(1)
N1

∂I −
(
∂X

(2)
N1

∂t
−
∂X

(1)
N1

∂t

)
dτ

dI .
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Then we obtain the sensitivity transfer equation

λ
(1)
N1

=I +

(
∂X

(2)
N1

∂t
−
∂X

(1)
N1

∂t

) dγ

dX
(X

(1)
N1

)

dγ

dX
(X

(1)
N1

)
∂X

(1)
N1

∂t


T

λ
(2)
N1
. (21)

If we apply the analysis to the extended system (14), we
will obtain an additional transfer equation for the sensitivity
variable µ as

µ
(1)
N1

= µ
(2)
N1

+
(
∂X

(2)
N1

∂t
−
∂X

(1)
N1

∂t

) dγ

dp
(X

(1)
N1

)

dγ

dX
(X

(1)
N1

)
∂X

(1)
N1

∂t


T

λ
(2)
N1
. (22)

A similar derivation for the forward sensitivity analysis is
developed in Appendix A.

C. Implementation

The sensitivity analysis capabilities have been implemented
in the open-source high-performance numerical library PETSc
[27], [32] freely available at https://bitbucket.org/petsc/. Figure
2 describes the overall structure of the PETSc adjoint solver.
The solver first solves the ODE/DAE equation checkpointing
the solutions in the forward run and then conducts a backward
run propagating the sensitivity variables. TSStep implements
a time stepping scheme to propagate the solution one step
ahead and the choice can be changed at run time. TSMonitor
executes callbacks from users to monitor the solution (read-
only) at each time step. These are existing components in
PETSc’s time-stepping library TS. For this work, three ad-
ditions (made by the first three authors and available with the
PETSc distribution) were developed necessary for handling
discontinuities and discrete sensitivity calculations.

1) The TSEvent object supports detecting events (zero-
crossing of discontinuities), while performing the nu-
merical integration, through an interpolation-based root-
finding approach. It also allows users to add a post-
event handler that can conduct important operations
such as modification of the right-hand side function, re-
initialization of the DAE system, and application of the
jump conditions.

2) The TSTrajectory object provides a variety of so-
phisticated online and offline checkpointing schemes
for computing platforms with single-level storage media
(e.g. RAM) or multilevel storage media (e.g., RAM
and external disk/tape). Checkpoints can be stored with
the TSTrajectorySet method and restored with the
TSTrajectoryGet method. TSTrajectoryGet
may recompute from restored solution to obtain the
information needed by an adjoint step. Recomputation
typically happens when checkpoints are stored only at
selective time steps because of limited storage capacity

Fig. 2. Structure of PETSc implementation for adjoint sensitivity analysis.

with the strategy determined by a checkpointing sched-
uler such as revolve [33].

3) The TSAdjoint object calculates the sensitivities us-
ing a discrete adjoint approach. By design, its compo-
nents are either reused or modified from the original TS
solver. For example, TSAdjointStep corresponds to
the adjoint version of TSStep and they have similar
underlying infrastuctures.

All the components including existing ones and newly devel-
oped ones are compatible with each other and used together
within the highly composable solver for calculating the sensi-
tivities of hybrid systems.

Furthermore, PETSc is specifically designed to be scalable
at extreme scale. This feature can also be enjoyed by our
sensitivity analysis framework. The parallelism in the original
simulation naturally carries over to the adjoint run when the
sensitivities to initial conditions are calculated. Parallelization
of the adjoint run for computing the sensitivity to random
parameters cannot be automatically performed by the solver.
Nevertheless, it is achievable by implementing application-
dependent decomposition strategy though the PETSc DM ob-
ject.

IV. NUMERICAL EXAMPLES

This section illustrates the accuracy and computational ef-
ficiency of the adjoint discrete sensitivity analysis approaches
on hybrid systems. First, we compare the accuracy of the
discrete forward and adjoint approach on the hybrid system
example given in [1]. Next, we illustrate the benefit of us-
ing the adjoint sensitivity results in optimization. Then, we
present the computational efficiency comparison of the discrete
sensitivity approaches on 9-bus and 118-bus test examples.
All simulations are performed with PETSc. The solutions are
checkpointed at each time step so that no recomputation is in-
volved, constituting an ideal scenario for adjoint computation.

A. Hybrid system example
The hybrid system given in [1] is governed by

ẋ = Aix, (23)
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where x has two components x1 and x2 and Ai is an matrix
that changes from

A1 =

[
1 −100
10 1

]
to A2 =

[
1 10
−100 1

]
when the switching condition x2 = 2.75x1 is satisfied and
from A2 to A1 when x2 = 0.36x1. The initial condition is
I = [0 1]T , and A1 is used. We are interested in the trajectory
sensitivities of x1 and x2 to the parameter p = 2.75 in the first
switching condition.

Figure 3 shows the trajectory sensitivities to the perturbation
of p computed with the discrete forward approach and the
discrete adjoint approach. The system is discretized by using
the Crank-Nicolson scheme with an initial time step of 0.001
seconds. PETSc monitors signs of the switching conditions
(e.g., x2− 2.75x1) at each time step and rolls back the step if
the signs change indicating that an event has been stepped over.
A new time step estimated by using linear interpolation will
then be attempted repeatedly until the event point is reached
within a certain numerical tolerance that the user can control
(by default it is set to 1e−6). After the event, the step size will
be adjusted so that the two steps before and after the event
sum up to 0.001.

To see how the theory on the adjoints is applied to this
problem, consider the calculation of the trajectory sensitivity
of the solution component x1 with respect to initial condition
and parameter p, represented by λ = [∂x1/∂I] and µ =
∂x1/∂p, respectively. The terminal conditions are λ = [1 0]
and µ = 0. According to the jump conditions (21) (22), the
adjoint variables should be transferred at the switching point
by

λnew =

(
I + (A2 −A1)x

[−2.75 1]

[−2.75 1]A1x

)T
λold

µnew = µold +

(
(A2 −A1)x

[−2.75 1]

[−2.75 1]A1x

)T
λold

when A2 switches to A1 in the adjoint run and

λnew =

(
I + (A1 −A2)x

[−0.36 1]

[−0.36 1]A1x

)T
λold

µnew = µold +

(
(A1 −A2)x

[−0.36 1]

[−0.36 1]A1x

)T
λold

when A1 changes to A2.
The sensitivities are plotted for different simulation times

ranging from 0 to 0.2 seconds. As expected, both sensitivities
∂x1/∂p and ∂x2/∂p jump at switching points and decay to
zero as the trajectory approaches the equilibrium point. The
results of the two different methods show good agreement with
each other (the numerical values match for 15 digits), as well
as with the result presented in Fig. 6 of [1].

B. Maximization of generator mechanical power input

This simple power system example highlights the impact
of the accuracy of adjoint sensitivities on the optimization
process. Typically, such an approximated dynamic model of
the generator may not be applied in practice. We provide
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Fig. 3. Trajectory sensitivities for a hybrid example from [1].

this simplistic example merely to illustrate the accuracy of
the discrete adjoint method. We consider a maximization
objective of the mechanical power input Pm subject to the
generator swing equations and a constraint on the maximum
rotor deviation δ(t) ≤ δmax,∀t. This can be reformulated as a
minimization with a penalty term on the rotor angle deviation
as follows:

min−Pm + σ

∫ tF

t0

max (0, δ − δmax)
η

dt (24)

s.t.
dδ

dt
= ωB (ω − ωs) (25)

dω

dt
=

ωs
2H

(Pm − Pmax sin(δ)−D(ω − ωs)) . (26)

Here, η is an exponent to ensure sufficient smoothness, and σ
is a multiplier to ensure decent progress of the optimization.
The optimization problem is solved with the bounded limited-
memory variable-metric (BLMVM) algorithm in the TAO
solver included in the PETSc package. The initial guess of
Pm is 1.06. The convergence tolerances are all set to 10−14,
and δmax is set to 1 radian (i.e., 57.27 degrees).

Table III shows the gradients computed with the two discrete
adjoint approaches compared with finite differences, with a
step size 7.45 × 10−9 (comparable to the optimal choice
of square root of machine precision [21]), at the first three
iterations of the optimization. As shown in Table III, the
results of the two discrete approaches agree with each other
and are close to the finite-difference approximations. Figure 4
shows the convergence behavior using the gradients from the
three different methods. The forward and adjoint sensitivities
can make the optimization process converge to the optimal
value 1.0079 after 13 iterations. On the other hand, the
finite-difference approximations cause the optimization to stall
with a residual of 10−6. This is an expected downside of the
reduced precision of finite differences, now demonstrated on
a power grid example.
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TABLE III
COMPARISON OF PARAMETER AND GRADIENT OBTAINED WITH

DIFFERENT METHODS DURING OPTIMIZATION PROCESS

Iteration No. Adjoint Forward Finite Difference

0
Pm 1.06 1.06 1.06

gradient 140.0487958 140.0487958 140.0487323

1
Pm 1.032130009 1.032130009 1.032129996

gradient 45.40765371 45.40765371 45.40760848

2
Pm 1.018758331 1.018758331 1.018758323

gradient 14.84698503 14.84698503 14.84697329
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Fig. 4. Convergence of the optimization process using gradients obtained
with three methods.

C. Sensitivity of frequency violations

Sensitivity-based approaches are necessary for solving dy-
namic security-constrained OPF (DSCOPF) problems that
include a frequency constraint. In [8], [34], the sensitivities of
the generator frequency violations have been used to obtain
a transient security-constrained dispatch. The computational
costs of the approaches proposed therein, finite-differencing
and forward sensitivity, can be high, especially when the
number of parameters to be optimized becomes large. We
have compared forward and adjoint sensitivity calculation
approaches for DSCOPF on two test systems: the IEEE 9-bus
and 118-bus. The 9-bus test case used in this work is the 3-
generator, 9-bus system available in [35] with the dynamic data
from Chapter 7 of [36]. All generators are modeled as a fourth-
order dq two-axis model with an IEEE Type-1 DC exciter,
shown in Figure 5, for maintaining the generator terminal
voltage, and a TGOV1 type steam turbine governor model to
regulate the generator frequency. The power system dynamics
equations are integrated by using the implicit trapezoidal
method with a time step of 0.01 seconds and a simulation
horizon of 1 second. In our model we include discontinuities
that are both time-based (they occur at prescribed times)
and state-based (at which the transition is induced by state-
dependent switching function). The time-based discontinuities
are initiated by faults, and they consist of a six-cycle self-
clearing three-phase fault applied on bus 1 for the 118-bus
system and bus 9 for the 9-bus system. The state based
discontinuity is initiated when the voltage regulator output

Fig. 5. IEEE type-1 DC exciter model.

reaches its minimum or maximum limit.
Following [34], the sensitivities are evaluated for the fol-

lowing dynamic security metric that measures the severity of
frequency violation for each generator:

Hi(x, y) = σ

∫ T

0

[
max(0, ωi − ω+, ω− − ωi)

]η
dt,

i = 1, . . . ,m. (27)

Here, ωi is the speed of the generator i, m is the total number
of generators, σ and η follow the conventions in (24), and ω+

and ω− are the maximum and minimum limits, respectively,
on the generator frequencies. We aim to find the sensitivity
of the constraint function Hi with respect to the parameters
(i.e., the generator active and reactive dispatch and the bus
voltage magnitudes and angles at time t0). The number of
states for the differential-algebraic system and the parameters
associated with the two systems are listed in Table IV. Note
that other metrics may exist for dynamic security. They can
also be easily handled in our framework as soon as they can
be represented in the general form of the objective function
10.

TABLE IV
SETTINGS FOR THE 9-BUS AND 118-BUS SYSTEMS

No. of Variables No. of Parameters No. of Functions
9 bus 42 24 3

118 bus 884 344 54

Figure 6 shows the generator frequencies, the frequency
violations, and the sensitivities of the frequency violations
w.r.t the initial dispatch of the three generators for the 9-
bus system. Following a fault on bus 9, the frequencies of
the three generators deviate from the nominal trajectory, with
generator 3 having the largest frequency deviation because of
its close proximity to the fault location. The shaded regions in
the frequency plots represent the contributions to the frequency
violation measure Hi. Generator 1, with the largest inertia, has
the smallest frequency deviation and does not exceed ω+=60.5
Hz. As a result H1=0. The sensitivities of the frequency
violation measure w.r.t. generator initial dispatch, ∂H/∂Pg
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are also shown in Fig. 6 and Table V. As seen in Table V,
generators 2 and 3 have the largest sensitivities for a fault at
bus 9, while generator 1 has the smallest one. This sensitivity
information can serve as an important metric for performing
generator redispatch decisions.
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Fig. 6. Plots of generator frequencies (top), frequency violations (middle),
and sensitivities of frequency violations to initial power dispatch (bottom) for
the 9-bus system. The frequency limits are ω+=60.5 Hz and ω−=59.5 Hz.

TABLE V
SENSITIVITIES OF FREQUENCY VIOLATIONS (Hi) WITH RESPECT TO

POWER DISPATCH PARAMETERS (Pg ) AT TIME t = 1 SECONDS

P 1
g P 2

g P 3
g

H1 0 0.002465 0.005118

H2 0 0.032956 0.007997

H3 0 0.045809 0.045636

Figure 7 shows the dynamics of the voltage regulator
outputs V iR, i = 1, 2, 3. V 2

R and V 3
R reach their maximum

limit. Generator 2 continues to operate at its maximum voltage
limit, while V 3

R drops below the maximum limit after about
0.9 seconds. The sensitivities of the voltage regulator output
w.r.t. the generator terminal voltage magnitudes, ∂V iR/∂V

i
m,

are shown in Fig. 7. This plot shows a jump in the adjoint
sensitivities when the maximum limit is reached or abandoned,
which is accurately captured by our method.

Table VI compares the difference between forward and
adjoint sensitivity values in terms of maximum norm for
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Fig. 7. Response of voltage regulator output (top) and its sensitivities w.r.t.
generator terminal voltage magnitude (bottom).

various time simulation intervals. All the observed discrep-
ancies are close to machine precision (around 1e−15). Table

TABLE VI
DIFFERENCE OF THE SENSITIVITY RESULTS FOR ADJOINT AND FORWARD

APPROACHES (IN MAXIMUM NORM)

t = 0.5s t = 0.6s t = 0.7s t = 0.8s t = 0.9s t = 1s
9 bus 2.1e−16 3.3e−16 7.2e−16 8.3e−16 1.1e−15 1.8e−15

118 bus 6.1e−16 8.9e−16 1.0e−15 1.3e−15 1.7e−15 1.2e−15

VII presents the computational results of the two sensitivity
approaches. For both systems, one can see that the adjoint
approach is faster than the forward sensitivity approach. Note
that the execution time listed in Table VII for the forward and
adjoint approaches also includes the execution time for the
dynamics simulation. The adjoint approach is faster than the
forward approach by 2.4X and 7.7X for the 9-bus and 118-
bus systems, respectively. Larger speedups can be expected for
larger networks or systems with more parameters.

These results demonstrate that discrete adjoint approaches
are significantly more effective than their forward versions in
the regimes described in this paper and that they can accurately
compute derivatives of numerically simulated trajectories, even
when the added complexity of system switching is present.

TABLE VII
TIMING RESULTS FOR THE 9-BUS AND 118-BUS SYSTEMS

Forward Adjoint Simulation
9 bus 0.12 s 0.05 s 0.03 s
118 bus 14.00 s 1.82 s 0.33 s
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V. CONCLUSIONS

This paper presents an efficient approach for computing
sensitivities of large-scale power systems using a discrete
adjoint method and shows that it is a competitive alter-
native to forward sensitivity analysis approaches such as
TSA when many number of system parameters are involved.
To accommodate the switching dynamics present in many
applications, such as the one induced by DC exciters, we
derived the adjoint jump conditions that allow the accurate
computation of parametric derivatives by an adjoint approach.
Numerical results on several test systems and examples have
been compared with the forward sensitivity approach demon-
strating the machine-precision-level accuracy and efficiency
of the proposed method. In particular, the discrete sensitivity
approach has been demonstrated to be much faster compared
with the forward sensitivity approach, and in the 118-bus case
it resulted in 7.7X speedup. To our knowledge, this is the first
time discrete adjoint computations have been demonstrated in
the power systems area for test cases of the size discussed here,
which moreover included switching dynamics. Their signifi-
cance resides in the fact that no other sensitivity method both
achieves the kind of speedup described above and provides
a gradient to a target functional to machine-precision quality.
For applications such as optimization of large systems with
transient security constraints, both these features are important.
All the algorithms described in this paper are publicly available
through the widely used open-source numerical library PETSc.
At the time this paper was written, the sensitivity analysis
capability in PETSc had been applied to parameter estimation
of dynamical power systems with uncertainty [37]. Future
extensions will include the usage of advanced checkpointing
for reducing the memory footprint and sensitivity calculation
of larger systems, such as interconnect-size ones.

APPENDIX A
DISCRETE FORWARD APPROACH

We take the derivative of the one-step time integration
algorithm and obtain the discrete forward model. For example,
differentiation of the theta methods (8) at parameter p will lead
to

MS`,n+1 =MS`,n+hn
(
(1−θ) (FX(Xn)S`,n + Fp`(Xn))

+ θ (FX(Xn+1)S`,n+1 + Fp`(Xn+1))
)
. (28)

Here S`,n = dXn/dp`, 1 ≤ ` ≤ m, denote the solution
sensitivities (also known as trajectory sensitivities). One can
verify that this approach leads to the same formulation as with
the traditional forward approach when using the same theta
method and step size for solving the continuous sensitivity
equation.

With the solution sensitivities, the total derivative of ψ(XN )
can be computed by using

dψ

dp`
(XN ) =

∂ψ

∂X
(XN )S`,N +

∂ψ

∂p`
(XN ). (29)

Let q be the integral term in (10). The total derivative of q
to parameters p is given as

dq

dp`
=

∫ tF

t0

(
∂r

∂X
(t,X)S` +

∂r

∂p`
(t,X)

)
dt. (30)

This integral must be calculated with the same time-stepping
algorithm and sequence of time steps in the discrete ap-
proaches such that the derivative computed sticks tightly to
the numerical procedure that is used to evaluate the objective
function.

Note that for each parameter p` there is one variable S`
carrying the sensitivity information and one linear system
arising from (28) to be solved at each time step. Thus, the
computational cost of the forward approach is determined
mainly by the number of parameters to which the sensitivities
are desired.

The initial values for S` follow directly from the condi-
tion (5). Since X consists of both differential variables and
algebraic variables, S` can also be separated into Sx` and Sy`
corresponding to sensitivities associated with differential and
algebraic parts of the solution respectively. Differentiating (5)
yields the following relationship:

gxSx` + gySy` + gp` = 0. (31)

Given the value of Sx` and the assumption that gy is invertible,
Sy` could be solved from (31).

If the trajectory sensitivities to initial values are desired, we
can also treat the initial values in the same way as parameters,
and the derivatives to p` such as Fp` , ∂ψ/∂p`, ∂r/∂p` and
gp` in (28)-(31) should be zeros.

We also present the sensitivity transfer equation used in
forward method for completeness. Details on the derivation
can be found in [31] and [1]. The jump conditions are

S(2)`,N1
=

I +

(
∂X

(2)
N1

∂t
−
∂X

(1)
N1

∂t

) dγ

dX
(X

(1)
N1

)

dγ

dX
(X

(1)
N1

)
∂X

(1)
N1

∂t

S(1)`,N1
.
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